

CF1216

Capacitive Touch Screen Controller

Datasheet

Version 1.0

2019/04/08

Note: Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice. This is not a final specification. Some parameters are subject to change.

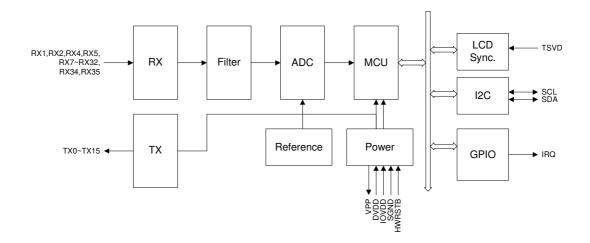
1 INTRODUCTION

The CF1216 is a capacitive sensing controller for small size projected capacitive touch screen. It is a RISC microcontroller with capacitor charge, capacitor sensing, slave I2C interface, general purpose I/O and embedded non-volatile memory.

Internal program and cooperating digital circuit convert finger / capacitor stylus physical touching into button pressing message or multiple coordination information for application. The maximum fingers identification ability is up to ten.

The CF1216 uses low profile QFN package and support ITO electrode on glass or film substrate. Hence, slim and small touch panel module is realizable.

And more, low electromagnetic interference of CF1216 makes it suitable for modern touch screen application such as mobile phone, industrial equipment and automotive vehicle.


FEATURES

- MCU based touch controller
- Operation voltage
 - $-VDD = 2.8V \sim 3.6V$
 - $-IOVDD = 1.65V \sim 3.6V$
- Operation Temperature: -40°C ~ 85°C
- Storage Temperature: -40°C ~ 125°C
- Interface
 - I2C (slave)
- Sensor
 - 16 TX, 32 RX
- Ten fingers detection and tracking
- Support zero external component (0C0R)
- Support TX voltage up to 5.5V
- Capacitive Sensor
 - Mutual-capacitance sensing
 - Self-capacitance sensing
 - Report rate: 100Hz
 - Hardware noise reduction
 - Waterproof circuit
 - LCD synchronisation

- Package
- QFN56

APPLICATIONS

- Mobile phone
- Appliance
- Medical
- Industrial automation
- Home automation
- Point of Sales
- Automotive

2 PACKAGE INFORMATION

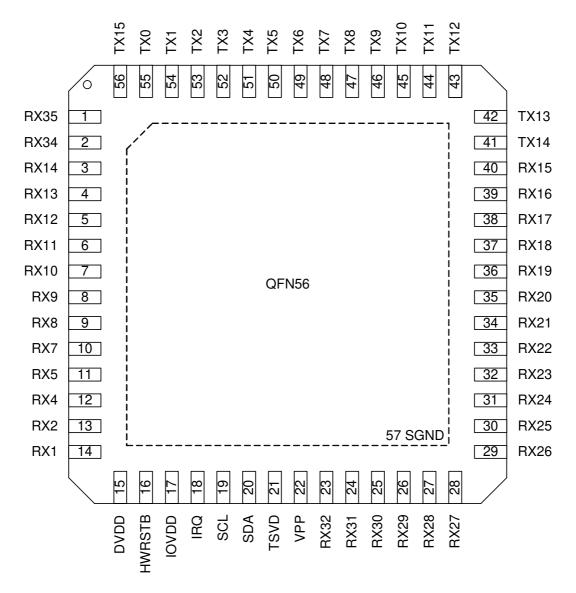


Figure 2-1 CF1216 Package Pin Configuration

Table 2-1 CF1216 Package Signal Descriptions

Pin#	Pin Name	I/O	Description
1~2	RX35~RX34		Receiver channel
3~10	RX14~RX7	ı	Receiver channel
11~12	RX5~RX4	ı	Receiver channel
13~14	RX2~RX1	ı	Receiver channel
15	DVDD	Р	Power supply
16	HWRSTB	ı	System reset signal input, active low
17	IOVDD	Р	I/O power supply
18	IRQ	1/0	Indicate coordinate data ready
19	SCL	1/0	I2C serial clock
20	SDA	1/0	I2C serial data
21	TSVD	ı	LCD synchronisatin input
22	VPP	Р	Power for program
23~40	RX32~RX15	ı	Receiver channel
41~55	TX14~TX0	0	Transmitter channel
56	TX15	0	Transmitter channel
57	SGND	Р	Ground

Note: I/O type: P=Power pin, I=Input pin, O=Output pin

3 SYSTEM MANAGEMENT

3.1 Power Down

Host can pull low HWRSTB pin to force CF1216 in power down mode which consumes only little current. The way to exit power down mode is by pulling high HWRSTB pin.

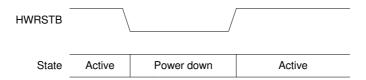


Figure 3-1 Power Down Sequence

3.2 Power On/Off Sequence

HWRSTB pin should be held low before power on and power off. During power on, after both DVDD and IOVDD reach normal voltage, HWRSTB pin needs to be held low for 5ms to ensure internal block stable.

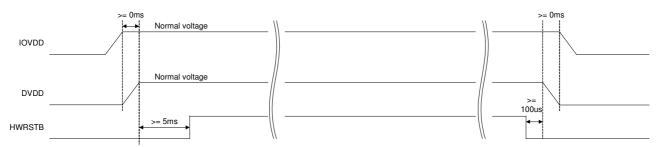


Figure 3-2 Power On/Off Sequence

4 DIGITAL INTERFACE

4.1 I2C Slave Interface

CF1216 equipped with I2C provides two wires, serial data (SDA) and serial clock (SCL), to carry transferring information at up to 400 kbit/s(Fast mode). CF1216 plays the slave role in I2C transfer. Both SDA and SCL are bidirectional lines, connected to IOVDD via pull-up resistors. All transactions begin with a START (S) and can be terminated by a STOP (P). 7-bits address follows START to recognize device. Each bye is 8-bits length and followed by an acknowledge bit. A HIGH to LOW transition on the SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition. The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.

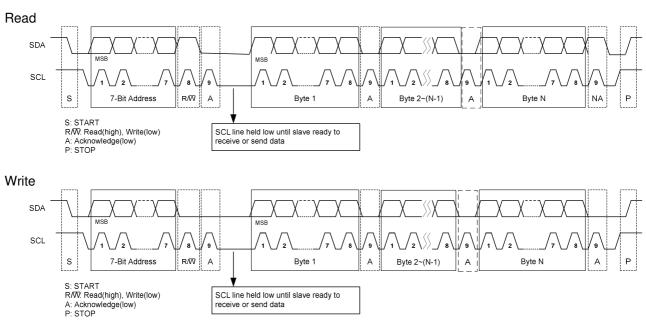


Figure 4-1 I2C Waveform

5 ELECTRICAL CHARACTERISTIC

5.1 Absolute Maximum Ratings

Table 5-1 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
DVDD	V_{DVDD}	-0.3	TBD	٧
IOVDD	VIOVDD	-0.3	TBD	٧
Operating Ambient Temperature	TA	-40	+85	°C
Storage Temperature	Ts	-40	+125	°C

*Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. All the ranges are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposed to the absolute maximum rating conditions for extended periods may affect device reliability.

5.2 DC Electrical Characteristics

Table 5-2 System DC Electrical Characteristics

Condition: DVDD = IOVDD = 3.3V, T_A = 25°C, unless be specified individually.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
VDD	V_{VDD}	2.8	-	3.6	V	
IOVDD	VIOVDD	1.65	-	3.6	V	
	I _{NML}	-	15.7	-	mA	16TX, 32RX, scan rate=101.9Hz, 1 Finger touch
Operating Current	I _{NML}	-	16.6	1	mA	16TX, 32RX, scan rate=101.9Hz, 5 Finger touch
operating content	I _{NML}	-	18.1	-	mA	16TX, 32RX, scan rate=101.9Hz, 10 Finger touch
Idle Current	I _{IDLE}	-	1.3	-	mA	scan rate=29.7Hz
Power Down Current	I _{PD}	-	1.5	-	uA	
Input High Voltage	V _{IH}	0.8*IO	-	_	V	IOVDD=1.65V
Input riigir voltago	V III	VDD			•	IOVDD=1.8V
Input High Voltage	V_{IH}	0.85*I OVDD	-	-	V	IOVDD=3.6V
Input Low Voltage	VıL	_	-	0.2*10	V	IOVDD=1.65V
Input Low Voltage	V IL			VDD	•	IOVDD=1.8V
Input Low Voltage	VIL	-	1	0.15*I OVDD	٧	IOVDD=3.6V
Output Driving Current	I_{DRV}	4	-	-	mA	V _{OH} = IOVDD x 0.8, IOVDD=1.65V
Output Driving Current	I _{DRV}	5	1	-	mA	V _{OH} = IOVDD x 0.8, IOVDD=1.8V
Output Driving Current	I _{DRV}	21	1	-	mA	V _{OH} = IOVDD x 0.8, IOVDD=3.6V
Output Sinking Current	Isink	4	-	-	mA	V _{OL} = IOVDD x 0.2, IOVDD=1.65V

Output Sinking Current	I _{SINK}	5	-	-	mA	V _{OL} = IOVDD x 0.2, IOVDD=1.8V
Output Sinking Current	Isink	21	-		mA	V _{OL} = IOVDD x 0.2, IOVDD=3.6V

5.3 AC Electrical Characteristics

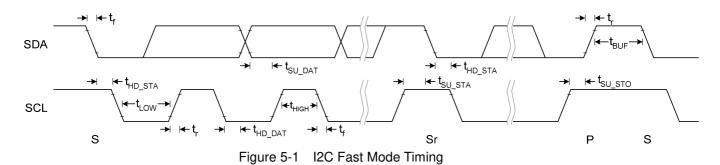


Table 5-3 I2C Fast Mode Timing Characteristic

Conditions: IOVDD = 3.3V, GND = 0V, $T_A = 25$ °C

Symbol	Parameter		Unit		
Symbol	y a didifferen		Тур.	Max.	Oilit
fscL	SCL clock frequency	0	-	400	kHz
tLOW	Low period of the SCL clock	1.3	-	-	us
tніgн	High period of the SCL clock	0.6	1	-	us
tf	Signal falling time	-	-	300	ns
tr	Signal rising time	-	1	300	ns
tsu_sta	Set up time for a repeated START condition	0.6	-	-	us
thd_sta	Hold time (repeated) START condition. After this period, the first clock pulse is generated	0.6	-	-	us
tsu_dat	Data set up time	100	-	-	ns
thd_dat	Data hold time	0	-	0.9	us
tsu_sto	Set up time for STOP condition	0.6	-	-	us
t _{BUF}	Bus free time between a STOP and START condition	1.3	-	-	us
Сь	Capacitive load for each bus line	-	-	400	pF

6 APPLICATION CIRCUITS

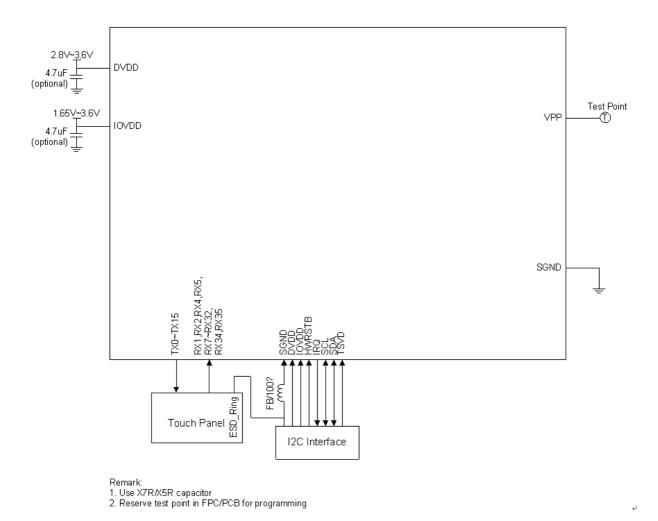
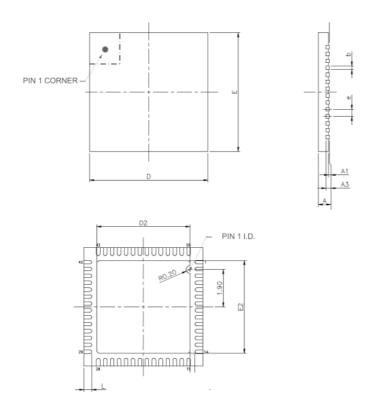



Figure 6-1 CF1216 Application Circuit

7 PACKAGE DIMENSION

SYMBOL	MIN.	MAX.		
Α	0.5	0.6		
A1	0.0	0.05		
A3	0.152 REF.			
b	0.13	0.23		
D	6.00 (6.00 (BSC)		
D2	4.6	4.8		
E	6.00 (.00 (BSC)		
E2	4.6	4.8		
L	0.35	0.45		
е	0.35 (BSC)			

UNIT : mm

Figure 7-1 CF1216 Package Dimension

8 REVISION

REVISION	DESCRIPTION	PAGE	DATE
1.0	■ First release		2019/04/08

The above information is the exclusive intellectual property of Sitronix Technology Corp. and shall not be disclosed, distributed or reproduced without permission from Sitronix. Sitronix Technology Corp. reserves the right to change this document without prior notice and makes no warranty for any errors which may appear in this document. Sitronix products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where products failure could result in injury, or loss of life, or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.