

CESD5V0D3 ESD Protection Diode

DESCRIPTION

The CESD5V0D3 is designed to protect voltage sensitive components from ESD. Excellent clamping capability, low leakage, and fast response time provide best in class protection on designs that are exposed to ESD. Because of its small size, it is suited for use in cellular phones, MP3 players, digital cameras and many other portable applications where board space is at a premium.

FEATURES

- Stand-off Voltage:5.0 V
- Low Leakage
- Response Time is Typically < 1 ns
- ESD Rating of Class 3 (> 16 kV) Per Human Body Model
- IEC61000-4-2 Level 4 ESD Protection
- These are Pb-Free Devices

Maximum Ratings @Ta=25℃

Parameter	Symbol	Limit	Unit	
IEC61000-4-2(ESD)		±15	KV	
	Contact		±8.0	r v
ESD Voltage		30	КV	
Total Power Dissipation on FR-5 Boar	PD	200	mW	
Thermal Resistance Junction-to-Am	$R_{\Theta JA}$	625	°C/W	
Lead Solder Temperature – Maximun	ΤL	260	°C	
Junction and Storage Temperature Ra	T _{j,} T _{stg}	-55 ~ +150	°C	

Stresses exceeding maximum ratings may damage the device. Maximum ratings are stress ratings only. Functional operation above the recommended. Operating conditions is not implied. Extended exposure to stresses above the recommended operating conditions may affect device reliability.

1. FR-5 = 1.0 x 0.75 x 0.62 in.

ELECTRICAL CHARACTERISTICS (Ta= 25°C unless otherwise noted)

Symbol	Parameter						
I _{PP}	Maximum Reverse Peak Pulse Current						
Vc	Clamping Voltage @ IPP						
V _{RWM}	Working Peak Reverse Voltage						
I _R	Maximum Reverse Leakage Current @ V _{RWM}						
V _{BR}	Breakdown Voltage @ I⊺						
IT	Test Current						
l _F	Forward Current						
V _F	Forward Voltage @ I _F						
P _{pk}	Peak Power Dissipation						
С	Max. Capacitance @V _R =0 and f =1MHz						

LECTIVICAL CHARACTERISTICS (1a – 25 C unicess otherwise noted, $v_F = 0.9$ v wax. ($w_{F} = 1000$ A of all types	ELECTRICAL CHARACTERISTICS (Ta = 25°C unless otherwise noted,	$V_{\rm F} = 0.9$ V Max. @ $I_{\rm F} = 10$ mA for all types)
--	-------------------------------------	-----------------------------------	---

Device*	Device Marking	V _{RWM} (V)	I _R (μΑ) @V _{RWM}	V _{BR} (V) @ Ι _T (Note 2)		Ι _τ	VC @IPP = 5 A	I _{₽₽} (A) ⁺	V _с (V) @Max I _{PP} ⁺	P _{pk} ⁺ (W)	C (pF)
		Max	Max	Min	Max	mA	v	Max	Max	Max	Тур
CESD5V0D3	ZA	5.0	10	6.2	7.3	1.0	9.8	15	15.5	350	350

*Other voltages available upon request.

+Surge current waveform per Figure 6.

2. V_{BR} is measured with a pulse test current I_T at an ambient temperature of 25°C.