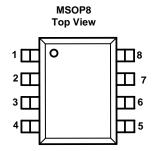
■ INTRODUCTION

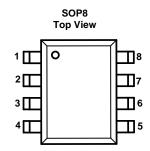
The CE0010 is a fully differential audio power amplifier designed for portable communication device applications. It is capable of delivering 1 watt of continuous average power to an 8Ω BTL load with less than 1% distortion (THD+N) from 5V battery voltage. It operates from 2.0 to 5.0V. Features like 83dB PSRR at 217Hz. improved RF-rectification immunity, the space-saving 8-pin MSOP8 and SOP8 package, the advanced pop & click circuitry, a minimal external components low-power shutdown mode make CE0010 ideal for wireless handsets. The CE0010 is unity-gain stable, and the gain can be configured by external input resistors and internal feedback resistors.

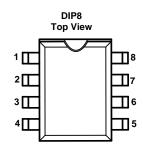
APPLICATIONS

- Toys
- Mini sound panel
- Baby Monitor
- Portable audio devices

■ FEATURES


- Fully differential amplifier
- Improved PSRR at 217Hz ($V_{DD}>3.0V$) 83dB (Typ.)
- Power output at 5.0V & 1% THD 1W (Typ.)
- Power output at 3.6V & 1% THD 0.5W (Typ.)
- Power output at 2.4V & 1% THD 0.16W (Typ.)
- Ultra low shutdown current 0.1μA (Typ.)
- Improved pop & click circuitry eliminates noises during turn-on and turn-off transitions
- Thermal overload protection circuitry
- No output coupling capacitors, bootstrap capacitors required
- Unity-gain stable
- External gain configuration capability
- Available in space-saving packages:
 8-pin MSOP8, SOP8, DIP8 & DICE


ORDER INFORMATION


CE0010(1)

DESIGNATOR	SYMBOL	DESCRIPITION
	SM	Package:
	SIVI	MSOP8
1	S	Package: SOP8
	D	Package: DIP8
	_	Package: DICE

■ PIN DIAGRAM

■ PIN CONFIGURATION

MSOP8	SOP8	DIP8	SYMBOL	TYPE	FUNCTION
1	1	1	INN	I	Positive input.
2	2	2	ACIN	I	Negative input.
3	3	3	V _{SS}	I	Ground.
4	4	4	VREF	0	Common-mode voltage, connect a Bypass capacitor to Ground.
5	5	5	CE	I	Chip Enable Logical Control, "High" is active.
6	6	6	SPP	0	Positive output.
7	7	7	V_{DD}	0	Power Supply.
8	8	8	SPN	0	Negative output.

■ BLOCK DIAGRAM AND TYPICAL APPLICATION

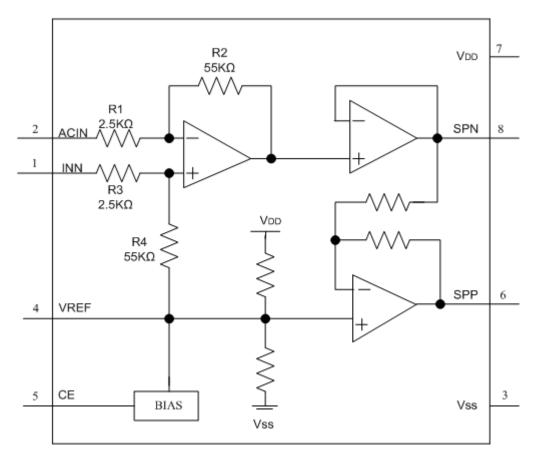


Fig1 BLOCK DIAGRAM

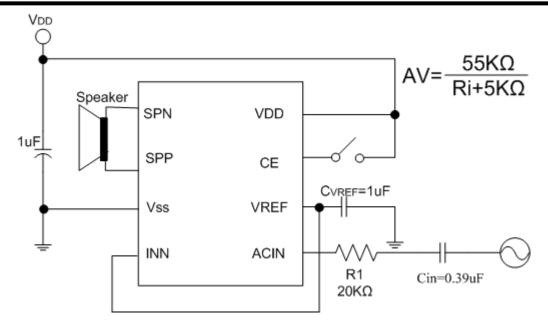


Fig2 SINGLE END APPLICATION

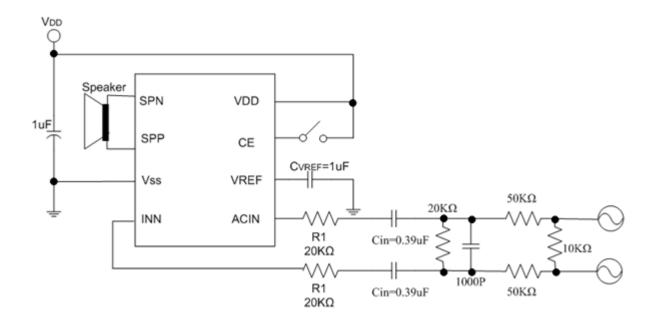


Fig3 DOUBLE END APPLICATION (With Input Filter Circuit)

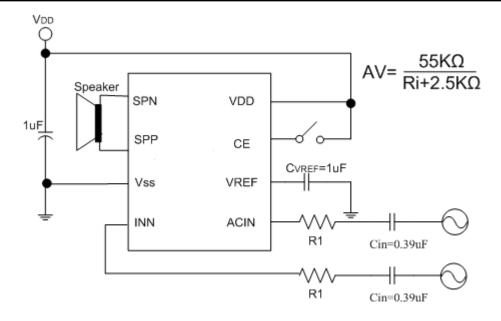


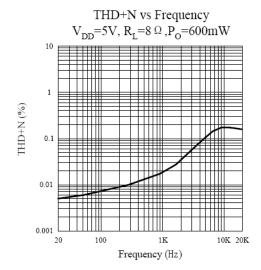
Fig4 DOUBLE END APPLICATION (Without Input Filter Circuit)

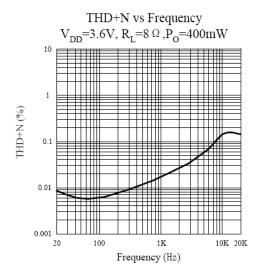
Note: Capacitor in the application can be Tantalum, Electrolytic and Ceramic etc.

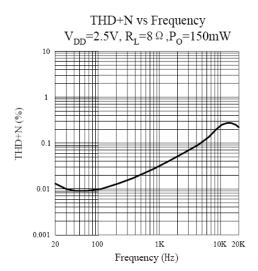
■ ABSOLUTE MAXIMUM RATINGS

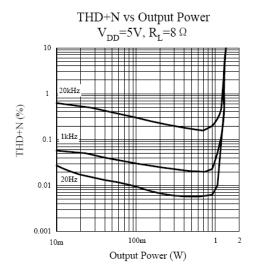
(Unless otherwise specified, Ta=25°C)

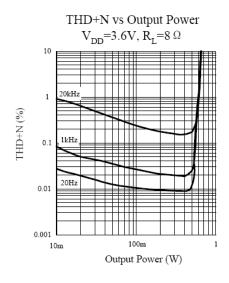
PARAMETER		SYMBOL	RATINGS	UNITS
V _{DD} pin voltage	}	V_{DD}	$V_{SS} - 0.3 \sim V_{SS} + 8$	V
	MSOP8	PD	500	mW
Power dissipation	SOP8	PD	300	mW
	DIP8	PD	500	mW
Operating temperature		T_{opr}	-40 ~ +85	°C
Storage temperature		T _{stg}	-40 ~ +125	°C
Soldering Temperature & Time		T _{solder}	260℃, 10s	

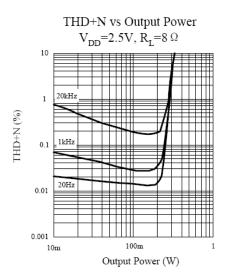

■ ELECTRICAL CHARACTERISTICS

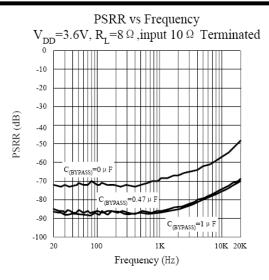

 $V_{DD}=5V(8\Omega \text{ load, AV}=1V, Ta=25^{\circ}C)$

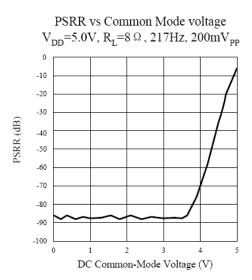

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operation Voltage	V_{DD}		2.0		5.0	V
Current consumption	I _{DD}	$V_{DD} = 5V, V_{CE} = V_{DD},$ No Load $V_{DD} = 5V, V_{CE} = V_{DD},$ $R_{L} = 8\Omega$		2.5		mA mA
Current consumption during shutdown	I _{SHDN}	Shutdown=V _{SS}		0.1	1.0	μΑ
Output Power	Po	THD=1% (max); f=1KHz		1		W
Total Harmonic Distortion Noise	THD+N	Po=0.6Wrms; f=1KHz		0.1		%
Power Supply Rejection Ratio	PSRR	V _{ripple} =200mV sine P-P f=217Hz f=1KHz		-83 -83		dB dB
Common Mode Rejection Ratio	CMRR	f=217Hz, V _{CM} =200mV _{pp}		-78		dB
Output Offset Voltage	V _{OS}	V _{IN} =0V		2		mV
Shutdown Voltage Input High	V _{SDIH}		1.5			V
Shutdown Voltage Output Low	V _{SDIL}				0.3	V
Closed Loop Gain	A _V		50KΩ Ri+2.5KΩ	55KΩ Ri+2.5KΩ	60KΩ Ri + 2.5KΩ	V/V
Enable Time	ne T _{ON}	V_{DD} =5V,C $_{IN}$ =0.39 μ F, C_{VREF} =0.33 μ F		50		ms
LIIANIC IIIIIC		V_{DD} =3 V , C_{IN} =0.39 μ F, C_{VREF} =0.33 μ F		35		ms

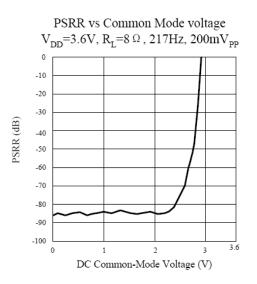

CHIPOWER TECHNOLOGY

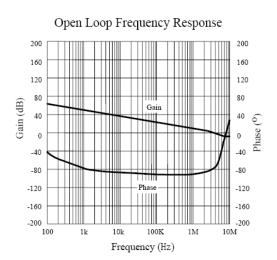

■ TYPICAL PERFORMANCE CHARACTERISTICS

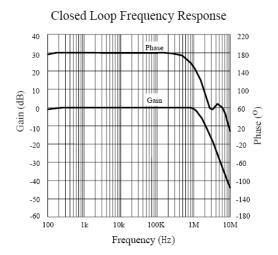


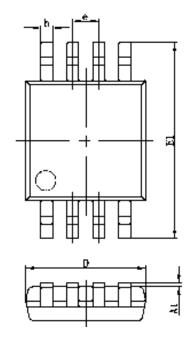


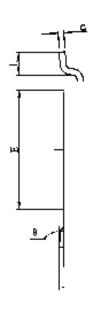






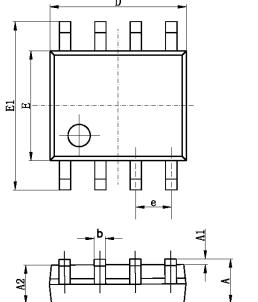

PSRR vs Frequency V_{DD} =5.0V, R_L =8 Ω ,input 10 Ω Terminated -10 -20 -30 PSRR (dB) -40 -50 -60 -70 -80 -90 C_(BYPASS)=1) -100 20 100 1K 10K 20K Frequency (Hz)

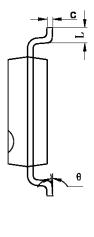




■ PACKAGING INFORMATION

MSOP8 PACKAGE OUTLINE DIMENSIONS

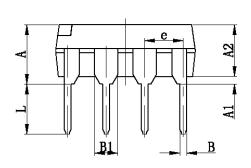


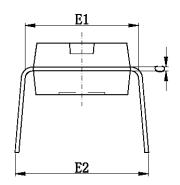


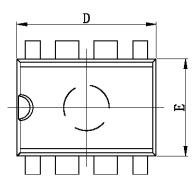
Ch a l	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	0. 820	1.100	0. 032	0.043	
A1	0. 020	0. 150	0.001	0.006	
A2	0. 750	0. 950	0.030	0.037	
Ь	0. 250	0.380	0.010	0.015	
С	0.090	0. 230	0.004	0.009	
D	2. 900	3. 100	0.114	0. 122	
e	0.650	(BSC)	0.026(BSC)		
E	2. 900	3. 100	0. 114	0. 122	
E1	4. 750	5. 050	0. 187	0. 199	
L	0.400	0.800	0.016	0. 031	
θ	0°	6°	0°	6°	

CHIPOWERTECHNOLOGY

• SOP8 PACKAGE OUTLINE DIMENSIONS






Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0.004	0. 010
A2	1. 350	1. 550	0.053	0. 061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0. 050 (BSC)	
L	0. 400	1. 270	0. 016	0. 050
θ	0°	8°	0°	8°

CHIPOWER TECHNOLOGY

• DIP8 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In	n Millimeters	Dimensions	In Inches	
	Min	Max	Min	Max	
Α	3. 710	4. 310	0. 146	0. 170	
A1	0. 510		0. 020		
A2	3. 200	3. 600	0. 126	0. 142	
В	0. 380	0. 570	0. 015	0. 022	
B1	1. 524 (BSC)		0. 060 (BSC)		
C	0. 204	0. 360	0. 008	0. 014	
D	9. 000	9. 400	0. 354	0. 370	
Е	6. 200	6. 600	0. 244	0. 260	
E1	7. 320	7. 920	0. 288	0. 312	
е	2. 540 (BSC)		0. 100 (BSC)		
L	3. 000	3. 600	0. 118	0. 142	
E2	8. 400	9. 000	0. 331	0. 354	

© Nanjing Chipower Electronics Inc.

Chipower cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Chipower product. No circuit patent license, copyrights or other intellectual property rights are implied. Chipower reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.

