Data sheet acquired from Harris Semiconductor SCHS259 January 1997 # NOT RECOMMENDED FOR NEW DESIGNS Use CMOS Technology # Buffered Inputs Features - Typical Propagation Delay: 5.6ns at V_{CC} = 5V, $T_{\Delta} = 25^{\circ}C$ - · Positive Edge Triggered - CD74FCT564 - Inverting - CD74FCT574 - Noninverting - SCR Latchup Resistant BiCMOS Process and Circuit Design - Speed of Bipolar FAST™/AS/S - 48mA Output Sink Current - Output Voltage Swing Limited to 3.7V at V_{CC} = 5V - Controlled Output Edge Rates - Input/Output Isolation to V_{CC} - BiCMOS Technology with Low Quiescent Power # *CD74FCT564,* CD74FCT574 **BiCMOS FCT Interface Logic,** Octal D-Type Flip-Flops, Three-State # Description The CD74FCT564 and CD74FCT574 are octal D-Type, three-state, positive edge triggered flip-flops which use a small geometry BiCMOS technology. The output stage is a combination of bipolar and CMOS transistors that limits the output HIGH level to two diode drops below V_{CC}. This resultant lowering of output swing (0V to 3.7V) reduces power bus ringing (a source of EMI) and minimizes V_{CC} bounce and ground bounce and their effects during simultaneous output switching. The output configuration also enhances switching speed and is capable of sinking 48 milliamperes. The eight flip-flops enter data into their registers on the LOW to HIGH transition of the clock (CP). The Output Enable (OE) controls the three state outputs and is independent of the register operation. When the Output Enable (OE) is HIGH, the outputs are in the high impedance state. The CD74FCT564 and CD74FCT574 share the same configurations; the CD74FCT564, however, has inverted outputs and the CD74FCT574 has noninverted outputs. ## Ordering Information | PART NUMBER | TEMP.
RANGE (^O C) | PACKAGE | PKG.
NO. | |--------------|----------------------------------|------------|-------------| | CD74FCT564E | 0 to 70 | 20 Ld PDIP | E20.3 | | CD74FCT574E | 0 to 70 | 20 Ld PDIP | E20.3 | | CD74FCT564M | 0 to 70 | 20 Ld SOIC | M20.3 | | CD74FCT574M | 0 to 70 | 20 Ld SOIC | M20.3 | | CD74FCT574SM | 0 to 70 | 20 Ld SSOP | M20.209 | NOTE: When ordering the suffix M and SM packages, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel. #### **Pinouts** CD74FCT564 CD74FCT574 (PDIP, SOIC, SSOP) (PDIP, SOIC, SSOP) **TOP VIEW TOP VIEW** OE 1 OE 1 20 V_{CC} 20 V_{CC} D0 2 D0 19 Q0 19 Q0 D1 18 Q1 D1 18 Q1 17 Q2 D2 [2 D2 17 Q2 Q3 Q3 D3 D3 16 16 D4 6 15 Q4 D4 15 Q4 14 Q5 14 Q5 D5 D5 13 Q6 13 Q6 D6 8 D6 8 12 Q7 D7 D7 9 12 Q7 11 CP 11 CP GND 1 # CD74FCT564, CD74FCT574 # Functional Diagram #### **TRUTH TABLE (NOTE 1)** | | | | OUTPUTS | | | | |----|--------|----|------------|------------|--|--| | | INPUTS | _ | CD74FCT564 | CD74FCT574 | | | | OE | СР | DN | QN | QN | | | | L | 1 | Н | L | Н | | | | L | 1 | L | Н | L | | | | L | L | Х | Qo | Qo | | | | Н | Х | X | Z | Z | | | ### NOTE: - 1. H = High Level (Steady State) - L = Low Level (Steady State) - X = Don't Care - \uparrow = Transition from low to high level Qo = The level of Q before the indicated steady state input conditions were established. Z = HIGH Impedance # IEC Logic Symbols #### CD74FCT564 #### CD74FCT574 # CD74FCT564, CD74FCT574 ## **Absolute Maximum Ratings** | DC Supply Voltage (V _{CC}) | -0.5V to 6V | |--|-------------| | DC Diode Current, I _{IK} (For V _I < -0.5V) | 20mA | | DC Output Diode Current, I_{OK} (for $V_O < -0.5V$) | 50mA | | DC Output Sink Current per Output Pin, IO | 70mA | | DC Output Source Current per Output Pin, IO | 30mA | | DC V _{CC} Current (I _{CC}) | 140mA | | DC Ground Current (I _{GND}) | 400mA | #### **Thermal Information** | Thermal Resistance (Typical, Note 2) | θ_{JA} (°C/W) | |--|--| | PDIP Package | 135 | | SOIC Package | 125 | | SSOP Package | 130 | | Maximum Junction Temperature | 150 ^o C | | Maximum Storage Temperature Range65 | 5 ⁰ C to 150 ⁰ C | | Maximum Lead Temperature (Soldering 10s) | 300°C | | (SOIC and SSOP-Lead Tips Only) | | ## **Operating Conditions** | Operating Temperature Range, $T_A cdots cdots$ | 0°C to 70°C | |--|-------------------------------------| | Supply Voltage Range, V _{CC} | 4.75V to 5.25V | | DC Input Voltage, V ₁ | 0 to V _{CC} | | DC Output Voltage, VO | \dots 0 to \leq V _{CC} | | Input Rise and Fall Slew Rate, dt/dv | 0 to 10ns/V | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air. # **Electrical Specifications** Temperature Range 0° C to 70° C, V_{CC} Max = 5.25V, V_{CC} Min = 4.75V | | | | | | AMB | IENT TEM | PERATURE | RATURE (T _A) | | |--|------------------|--|---------------------|---------------------|------|----------|-------------|--------------------------|-------| | | | TEST CONDITIONS | | | 25°C | | 0°C TO 70°C | | | | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | V _{CC} (V) | MIN | MAX | MIN | MAX | UNITS | | High Level Input Voltage | V _{IH} | | | 4.5 to 5.5 | 2 | - | 2 | - | V | | Low Level Input Voltage | V _{IL} | | | 4.5 to 5.5 | - | 0.8 | - | 0.8 | V | | High Level Output Voltage | V _{OH} | V _{IH} or
V _{IL} | -15 | Min | 2.4 | - | 2.4 | - | V | | Low Level Output Voltage | V _{OL} | V _{IH} or
V _{IL} | 48 | Min | - | 0.55 | = | 0.55 | V | | High Level Input Current | I _{IH} | Vcc | | Max | = | 0.1 | - | 1 | μΑ | | Low Level Input Current | I _{IL} | GND | | Max | = | -0.1 | = | -1 | μΑ | | Three-State Leakage Current | I _{OZH} | V _{CC} | | Max | = | 0.5 | = | 10 | μΑ | | | lozL | GND | | Max | = | -0.5 | - | -10 | μΑ | | Input Clamp Voltage | VIK | V _{CC} or
GND | -18 | Min | - | -1.2 | - | -1.2 | V | | Short Circuit Output Current (Note 3) | los | V _{CC} = 0
V _{CC} or
GND | | Max | -60 | - | -60 | - | mA | | Quiescent Supply Current, MSI | lcc | V _{CC} or
GND | 0 | Max | - | 8 | - | 80 | μΑ | | Additional Quiescent Supply
Current per Input Pin
TTL Inputs High, 1 Unit Load | Δl _{CC} | 3.4V
(Note 4) | | MAX | - | 1.6 | - | 1.6 | mA | #### NOTES: - 3. Not more than one output should be shorted at one time. Test duration should not exceed 100ms. - 4. Inputs that are not measured are at $V_{\mbox{\footnotesize{CC}}}$ or GND. - 5. FCT Input Loading: All inputs are 1 unit load. Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 1.6mA Max at 70°C. # CD74FCT564, CD74FCT574 # Switching Specifications Over Operating Range t_r , t_f = 2.5ns, C_L = 50pF, R_L - See Figure 4 | | | | | AMBIENT TEMPERATURE (TA) | | | | |---|------------|-------------------------------------|---------------------|--------------------------|------------|------|-------| | | | | | 25°C 0°C TO 70°C | | | | | PARAMET | ER | SYMBOL | V _{CC} (V) | TYP | MIN | MAX | UNITS | | Propagation Delays | | | | | | | | | Clock to Q | CD74FCT574 | t _{PLH} , t _{PHL} | 5 | 6.6 | 2 | 10 | ns | | Clock to Q | CD74FCT564 | t _{PLH} , t _{PHL} | 5 | 6.6 | 1.5 | 10 | ns | | Output Disable to Q | CD74FCT574 | t _{PLZ} , t _{PHZ} | 5 | 6 | 1.5 | 8 | ns | | Output Enable to Q | CD74FCT574 | t _{PZL} , t _{PZH} | 5 | 9 | 1.5 | 12.5 | ns | | Output Disable to Q | CD74FCT564 | t _{PLZ} , t _{PHZ} | 5 | 6 | 1.5 | 8 | ns | | Output Enable to Q | CD74FCT564 | t _{PZL} , t _{PZH} | 5 | 9 | 1.5 | 12.5 | ns | | Power Dissipation Capacitance | | C _{PD}
(Note 6) | - | | 34 Typical | | pF | | Minimum (Valley) V _{OHV} During Switching of Other Outputs (Output Under Test Not Switching) | | V _{OHV}
(Figure 1) | 5 | 0.5 | - | - | V | | Maximum (Peak) V _{OLP} During Switching of Other Outputs (Output Under Test Not Switching) | | V _{OLP}
(Figure 1) | 5 | 1 | - | - | V | | Input Capacitance | | C _I | - | - | - | 10 | pF | | Three State Output Capacitance | | CO | - | - | - | 15 | pF | #### NOTE: 6. C_{PD}, measured per flip-flop, is used to determine the dynamic power consumption. PD (per package) = $V_{CC} I_{CC} + \Sigma (V_{CC}^2 f_I C_{PD} + V_O^2 \text{ to } C_L + V_{CC} \Delta I_{CC} D)$ where: V_{CC} = supply voltage ΔI_{CC} = flow through current x unit load C_L = output load capacitance D = duty cycle of input high f_O = output frequency f_I = input frequency # **Prerequisite For Switching** | | | | AMBIENT TEMPERATURE (T _A) | | | | |--------------------------|------------------|---------------------|---------------------------------------|-------------|-----|-------| | | | | 25°C | 0°C TO 70°C | | | | PARAMETER | SYMBOL | V _{CC} (V) | TYP | MIN | MAX | UNITS | | Clock Pulse Width | | | | | | | | CD74FCT574 | t _W | 5 (Note 7) | | 7 | - | ns | | CD74FCT564 | t _W | 5 | | 7 | - | ns | | Setup Time Data to Clock | t _{SU} | 5 | | 2 | - | ns | | Data to Clock Hold Time | | | | | | | | CD74FCT574 | t _H | 5 | | 2 | - | ns | | CD74FCT564 | t _H | 5 | | 2 | - | ns | | Maximum Clock Frequency | f _{MAX} | 5 | | 70 | - | MHz | #### NOTE: 7. 5V: minimum is at 4.5V. 5V: minimum is at 4.75V for 0°C to 70°C. Typical is at 5V. #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1999, Texas Instruments Incorporated