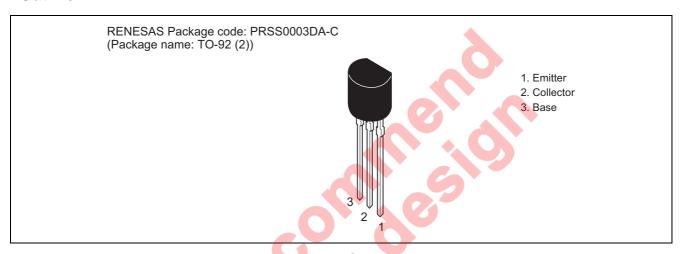


2SC535


Silicon NPN Epitaxial Planar

REJ03G0683-0200 (Previous ADE-208-1047) Rev.2.00 Aug.10.2005

Application

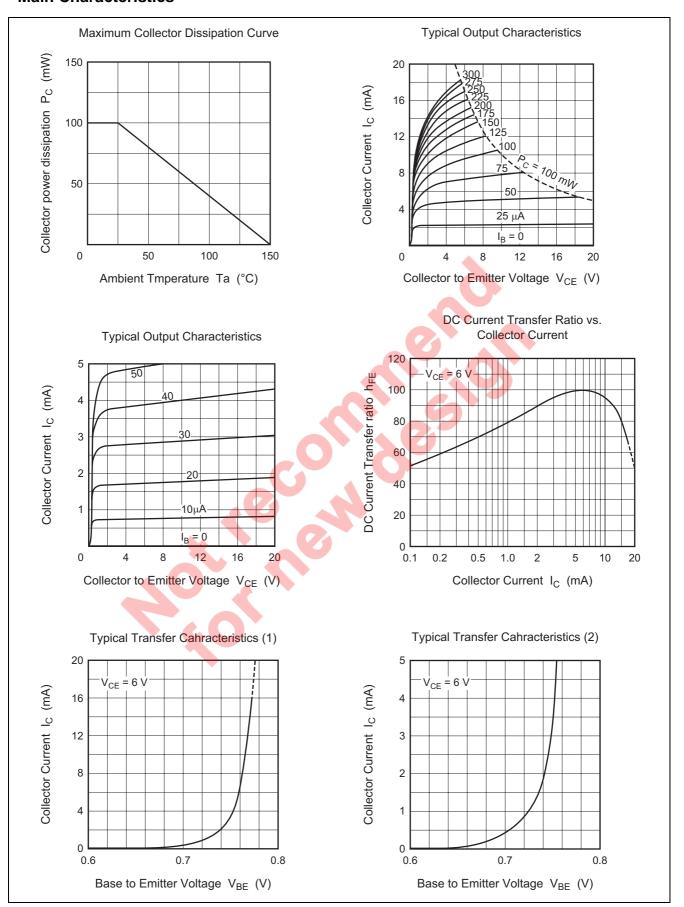
VHF amplifier, mixer, local oscillator

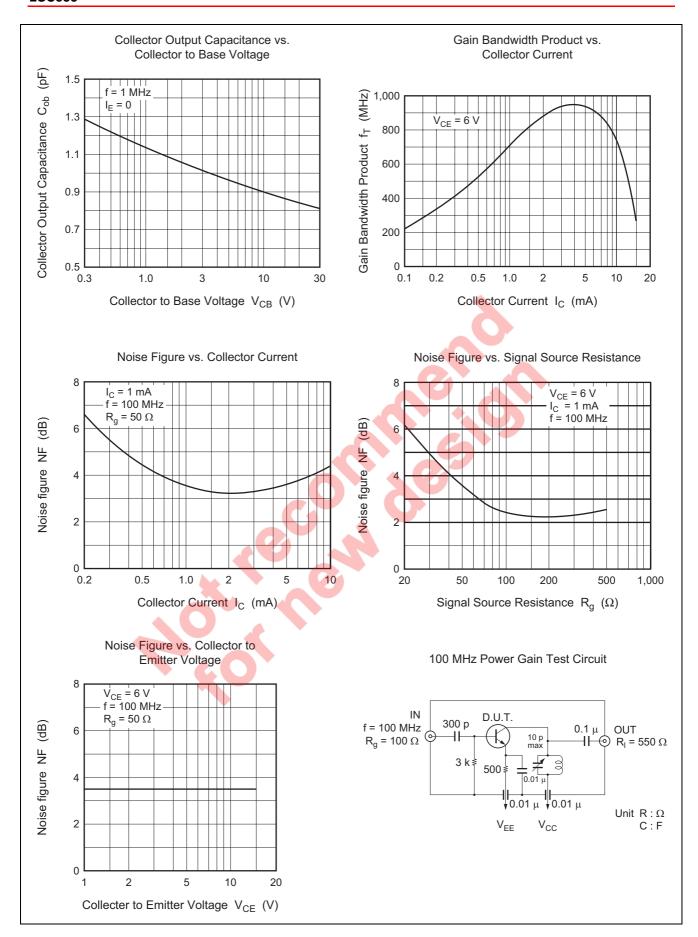
Outline

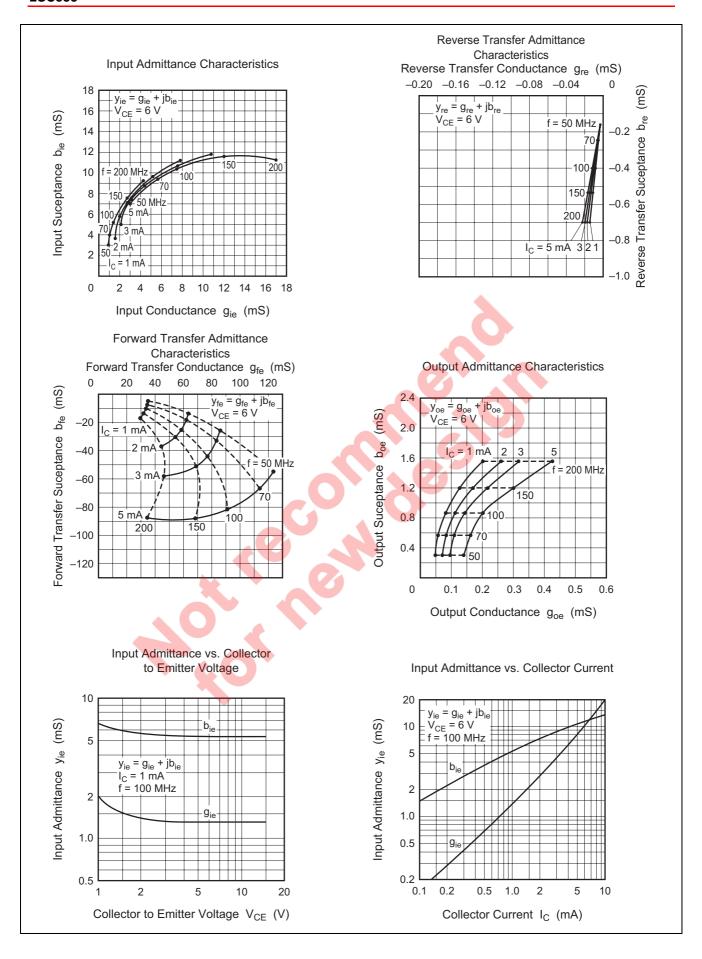
Absolute Maximum Ratings

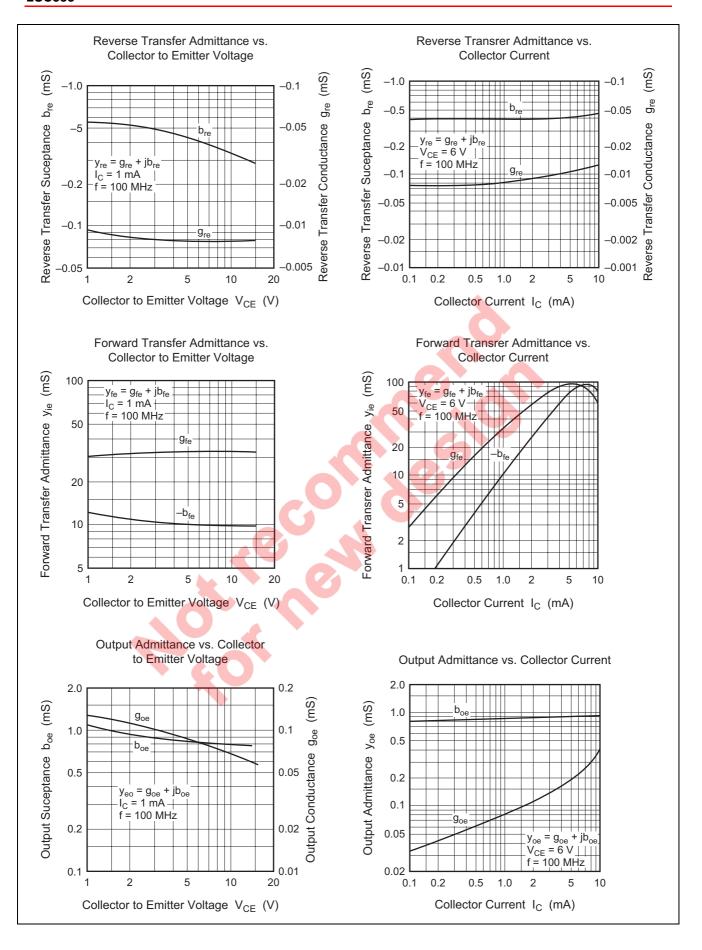
 $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit
Collector to base voltage	V_{CBO}	30	V
Collector to emitter voltage	$V_{\sf CEO}$	20	V
Emitter to base voltage	V_{EBO}	4	V
Collector current	Ι _C	20	mA
Collector power dissipation	Pc	100	mW
Junction temperature	Tj	150	°C
Storage temperature	Tstg	-55 to +150	°C

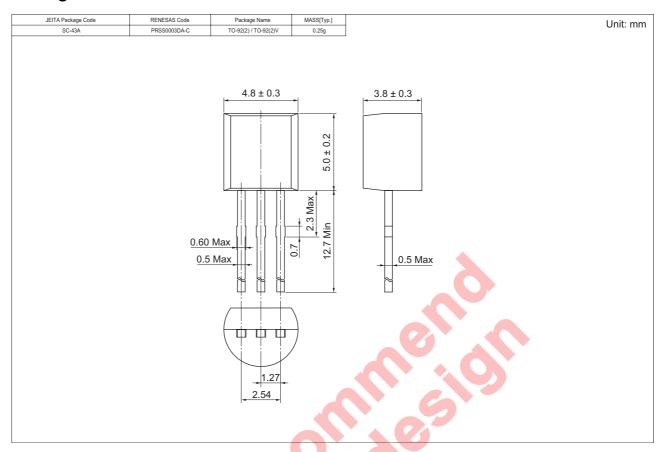

Electrical Characteristics


 $(Ta = 25^{\circ}C)$


Reverse transfer admittance (typ) yre -0. Forward transfer admittance (typ) yfe	— — — — — — — — — — — — — — — — — — —	.41	V V V μA V V MHz pF dB	$\begin{split} &I_C = 10 \ \mu\text{A}, \ I_E = 0 \\ &I_C = 1 \ m\text{A}, \ R_{BE} = \infty \\ &I_E = 10 \ \mu\text{A}, \ I_C = 0 \\ &V_{CB} = 10 \ V, \ I_E = 0 \\ &V_{CE} = 6 \ V, \ I_C = 1 \ m\text{A} \\ &V_{CE} = 6 \ V, \ I_C = 1 \ m\text{A} \\ &I_C = 20 \ m\text{A}, \ I_B = 4 \ m\text{A} \\ &V_{CE} = 6 \ V, \ I_C = 5 \ m\text{A} \\ &V_{CB} = 10 \ V, \ I_E = 0, \ f = 1 \ M\text{Hz} \\ &V_{CE} = 6 \ V, \ I_C = 1 \ m\text{A}, \\ &f = 100 \ M\text{Hz} \\ &V_{CE} = 6 \ V, \ I_C = 1 \ m\text{A}, \\ &f = 100 \ M\text{Hz}, \ R_g = 50 \ \Omega \\ &V_{CE} = 6 \ V, \ I_C = 1 \ m\text{A}, \\ &f = 100 \ M\text{Hz} \\ \end{split}$
			V μA V V MHz pF dB dB	$\begin{split} I_E &= 10 \ \mu\text{A}, \ I_C = 0 \\ V_{CB} &= 10 \ V, \ I_E = 0 \\ V_{CE} &= 6 \ V, \ I_C = 1 \ m\text{A} \\ V_{CE} &= 6 \ V, \ I_C = 1 \ m\text{A} \\ I_C &= 20 \ m\text{A}, \ I_B = 4 \ m\text{A} \\ V_{CE} &= 6 \ V, \ I_C = 5 \ m\text{A} \\ V_{CB} &= 10 \ V, \ I_E = 0, \ f = 1 \ M\text{Hz} \\ V_{CE} &= 6 \ V, \ I_C = 1 \ m\text{A}, \\ f &= 100 \ M\text{Hz} \\ V_{CE} &= 6 \ V, \ I_C = 1 \ m\text{A}, \\ f &= 100 \ M\text{Hz}, \ R_g = 50 \ \Omega \\ V_{CE} &= 6 \ V, \ I_C = 1 \ m\text{A}, \\ V_{CE} &= 6 \ V, $
	— 0.72 0.17 940 0.9 20 3.5 1.3 + j5.3 .078 – j0.	0.5 200 — — — 1.2 — 5.5	μA V V MHz pF dB dB	$\begin{split} &V_{CB} = 10 \text{ V}, \text{ I}_{E} = 0 \\ &V_{CE} = 6 \text{ V}, \text{ I}_{C} = 1 \text{ mA} \\ &V_{CE} = 6 \text{ V}, \text{ I}_{C} = 1 \text{ mA} \\ &I_{C} = 20 \text{ mA}, \text{ I}_{B} = 4 \text{ mA} \\ &V_{CE} = 6 \text{ V}, \text{ I}_{C} = 5 \text{ mA} \\ &V_{CB} = 10 \text{ V}, \text{ I}_{E} = 0, \text{ f} = 1 \text{ MHz} \\ &V_{CE} = 6 \text{ V}, \text{ I}_{C} = 1 \text{ mA}, \\ &f = 100 \text{ MHz} \\ &V_{CE} = 6 \text{ V}, \text{ I}_{C} = 1 \text{ mA}, \\ &f = 100 \text{ MHz}, \text{ R}_{g} = 50 \Omega \\ &V_{CE} = 6 \text{ V}, \text{ I}_{C} = 1 \text{ mA}, \end{split}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.17 940 0.9 20 3.5 1.3 + j5.3 078 - j0.3 32 - j10	200 — — — — — — — — — — — — — — — — — — —	V V MHz pF dB	$\begin{split} &V_{CE}=6 \text{ V, } I_{C}=1 \text{ mA} \\ &V_{CE}=6 \text{ V, } I_{C}=1 \text{ mA} \\ &I_{C}=20 \text{ mA, } I_{B}=4 \text{ mA} \\ &V_{CE}=6 \text{ V, } I_{C}=5 \text{ mA} \\ &V_{CB}=10 \text{ V, } I_{E}=0, f=1 \text{ MHz} \\ &V_{CE}=6 \text{ V, } I_{C}=1 \text{ mA, } \\ &f=100 \text{ MHz} \\ &V_{CE}=6 \text{ V, } I_{C}=1 \text{ mA, } \\ &f=100 \text{ MHz, } R_{g}=50 \Omega \\ &V_{CE}=6 \text{ V, } I_{C}=1 \text{ mA, } \end{split}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.17 940 0.9 20 3.5 1.3 + j5.3 078 - j0.3 32 - j10	 1.2 5.5	V MHz pF dB dB	$\begin{split} &V_{CE}=6 \text{ V, } I_{C}=1 \text{ mA} \\ &I_{C}=20 \text{ mA, } I_{B}=4 \text{ mA} \\ &V_{CE}=6 \text{ V, } I_{C}=5 \text{ mA} \\ &V_{CB}=10 \text{ V, } I_{E}=0, f=1 \text{ MHz} \\ &V_{CE}=6 \text{ V, } I_{C}=1 \text{ mA, } \\ &f=100 \text{ MHz} \\ &V_{CE}=6 \text{ V, } I_{C}=1 \text{ mA, } \\ &f=100 \text{ MHz, } R_{g}=50 \Omega \\ &V_{CE}=6 \text{ V, } I_{C}=1 \text{ mA, } \end{split}$
	0.17 940 0.9 20 3.5 1.3 + j5.3 078 - j0.3 32 - j10		V MHz pF dB dB	$\begin{split} &I_C = 20 \text{ mA}, \ I_B = 4 \text{ mA} \\ &V_{CE} = 6 \text{ V}, \ I_C = 5 \text{ mA} \\ &V_{CB} = 10 \text{ V}, \ I_E = 0, \ f = 1 \text{ MHz} \\ &V_{CE} = 6 \text{ V}, \ I_C = 1 \text{ mA}, \\ &f = 100 \text{ MHz} \\ &V_{CE} = 6 \text{ V}, \ I_C = 1 \text{ mA}, \\ &f = 100 \text{ MHz}, \ R_g = 50 \ \Omega \\ &V_{CE} = 6 \text{ V}, \ I_C = 1 \text{ mA}, \end{split}$
	940 0.9 20 3.5 1.3 + j5.3 .078 - j0. 32 - j10	- 1.2 - 5.5	MHz pF dB dB	$\begin{split} &V_{CE} = 6 \text{ V, } I_C = 5 \text{ mA} \\ &V_{CB} = 10 \text{ V, } I_E = 0, f = 1 \text{ MHz} \\ &V_{CE} = 6 \text{ V, } I_C = 1 \text{ mA,} \\ &f = 100 \text{ MHz} \\ &V_{CE} = 6 \text{ V, } I_C = 1 \text{ mA,} \\ &f = 100 \text{ MHz, } R_g = 50 \Omega \\ &V_{CE} = 6 \text{ V, } I_C = 1 \text{ mA,} \end{split}$
	0.9 20 3.5 1.3 + j5.3 .078 - j0. 32 - j10	5.5	pF dB dB	$\begin{split} &V_{CB} = 10 \text{ V}, \text{ I}_{E} = 0, \text{ f} = 1 \text{ MHz} \\ &V_{CE} = 6 \text{ V}, \text{ I}_{C} = 1 \text{ mA}, \\ &f = 100 \text{ MHz} \\ &V_{CE} = 6 \text{ V}, \text{ I}_{C} = 1 \text{ mA}, \\ &f = 100 \text{ MHz}, \text{ R}_{g} = 50 \Omega \\ &V_{CE} = 6 \text{ V}, \text{ I}_{C} = 1 \text{ mA}, \end{split}$
Power gain PG 17 Noise figure NF — Input admittance (typ) yie 1 Reverse transfer admittance (typ) yre —0. Forward transfer admittance (typ) yfe Output admittance (typ) yoe 0.	20 3.5 1.3 + j5.3 .078 – j0. 32 – j10	5.5	dB dB mS	$\begin{split} &V_{CE} = 6 \text{ V, } I_{C} = 1 \text{ mA,} \\ &f = 100 \text{ MHz} \\ &V_{CE} = 6 \text{ V, } I_{C} = 1 \text{ mA,} \\ &f = 100 \text{ MHz, } R_{g} = 50 \Omega \\ &V_{CE} = 6 \text{ V, } I_{C} = 1 \text{ mA,} \end{split}$
Noise figure NF Input admittance (typ) Reverse transfer admittance (typ) Forward transfer admittance (typ) Output admittance (typ) yre -0. Forward transfer admittance (typ) yfe Output admittance (typ) yoe 0.	3.5 1.3 + j5.3 .078 – j0. 32 – j10	.41	dB mS	$f = 100 \text{ MHz}$ $V_{CE} = 6 \text{ V, } I_{C} = 1 \text{ mA,}$ $f = 100 \text{ MHz, } R_{g} = 50 \Omega$ $V_{CE} = 6 \text{ V, } I_{C} = 1 \text{ mA,}$
Input admittance (typ) Reverse transfer admittance (typ) Forward transfer admittance (typ) Output admittance (typ) yie 1 1 Output admittance (typ) yoe Output admittance (typ)	1.3 + j5.3 .078 – j0. 32 – j10	.41	mS	f = 100 MHz, R_g = 50 Ω V_{CE} = 6 V, I_C = 1 mA,
Reverse transfer admittance (typ) yre -0. Forward transfer admittance (typ) yfe Output admittance (typ) yoe 0.	.078 – j0. 32 – j10	.41		
Forward transfer admittance (typ) yfe Output admittance (typ) yoe 0.	32 – j10		mS	
Output admittance (typ) yoe 0.				
			mS	
Note: 1 The 290535 is grouped by her as follows	.08 + j0.8	32	mS	
60 to 120 100 to 200				


В	С
60 to 120	100 to 200

Main Characteristics



Package Dimensions

Ordering Information

Part Name	Quantity	Shipping Container
2SC535BTZ	2500	Hold Box, Radial Taping
2SC535CTZ		

Note: For some grades, production may be terminated. Please contact the Renesas sales office to check the state of production before ordering the product.

RENESAS

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

A. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> 2-796-3115, Fax: <82> 2-796-2145

Renesas Technology Malaysia Sdn. Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510