

C180A-C180PC SERIES

High-reliability discrete products and engineering services since 1977

SILICON CONTROLLED RECTIFIERS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

Symbol	C180	Units
I _{T(RMS)}	235	А
I _{T(AV)}	150	А
I _{TSM}	3500	А
I _{TSM}	3200	А
di/dt	800	A/µs
di/dt	150	A/µs
l ² t	50,800	A ² s
P _{GM}	10	W
P _{G(AV)}	2	W
T _{stg}	-40 to +150	°C
TJ	-40 to +125	°C
	250 to 300	Inlb.
	28 to 34	N-m
	IT(RMS) IT(AV) ITSM ITSM di/dt di/dt Ital Ital <th>$\begin{tabular}{ c c c c } \hline I_{T(RMS)} & 235 & \\ \hline I_{T(AV)} & 150 & \\ \hline I_{TSM} & 3500 & \\ \hline I_{TSM} & 3200 & \\ \hline I_{TSM} & 3200 & \\ \hline di/dt & 800 & \\ \hline di/dt & 150 & \\ \hline di/dt & 150 & \\ \hline di/dt & 150 & \\ \hline P_{GM} & 10 & \\ \hline P_{GM} & 10 & \\ \hline P_{G(AV)} & 2 & \\ \hline T_{stg} & -40 to +150 & \\ \hline T_J & -40 to +125 & \\ \hline 250 to 300 & \\ \hline \end{tabular}$</th>	$\begin{tabular}{ c c c c } \hline I_{T(RMS)} & 235 & \\ \hline I_{T(AV)} & 150 & \\ \hline I_{TSM} & 3500 & \\ \hline I_{TSM} & 3200 & \\ \hline I_{TSM} & 3200 & \\ \hline di/dt & 800 & \\ \hline di/dt & 150 & \\ \hline di/dt & 150 & \\ \hline di/dt & 150 & \\ \hline P_{GM} & 10 & \\ \hline P_{GM} & 10 & \\ \hline P_{G(AV)} & 2 & \\ \hline T_{stg} & -40 to +150 & \\ \hline T_J & -40 to +125 & \\ \hline 250 to 300 & \\ \hline \end{tabular}$

VOLTAGE RATINGS

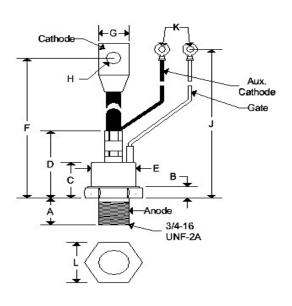
Characteristics	C180A	C180B	C180C	C180D	C180E	C180N	C1805	C180M	C180T	C180P	C180PA	C180PB	C18
Working peak reverse voltage	100	200	300	400	500	600	700	800	900	1000	1100	1200	13

ELECTRICAL CHARACTERISTICS (T_c = 25°C unless otherwise specified)

Characteristics	Symbol	Test Conditiions	C180	Uni
Voltage – Blocking State Maximums Forward leakage, peak	I _{DRM}	$T_J = 125$ °C, $V_{DRM} = Rated$	20	mA
Reverse leakage, peak	I _{RRM}	T _J = 125°C, V _{RRM} = Rated	20	mA
Current – Conducting State Maximums Peak on-state voltage	V _{TM}	T _J = 25°C, I _{TM} = 1500A	2.85	v
Switching Typical turn-off time	t _q	I_T = 150A, T_J = 125°C, di _R /dt = 12.5A/µsec, reapplied dv/dt = 20V/µsec, linear to 0.8V _{DRM} , V_R = 50V	100	μse
Typical delay time	t _d	I_{T} = 100A, V_{DRM} = Rated, gate supply = 10V open ckt, 25 Ω , 0.1 μsec rise time	1.0	μse
Minimum critical dv/dt exponential to $V_{\mbox{\tiny DRM}}$	dv/dt	T _J = 125°C, gate open	200	V/µs
Thermal Maximum thermal resistance, junction to case	R _{θJC}		.14	°C/\
Case to sink, lubricated	R _{ecs}		0.075	°C/\
Gate – Maximum Parameters Gate current to trigger	I _{GT}	$T_c = 25^{\circ}C$, $V_D = 6Vdc$, $R_L = 3\Omega$	150	mA
Gate voltage to trigger	V _{GT}	T_{C} = -40 to +125°C, V_{D} = 6Vdc, R_{L} = 3 Ω	3.0	V
Non-triggering gate voltage	V _{GDM}	T_J = 125°C, Rated V _{DRM} , R _L = 1000 Ω	0.15	V

C180A-C180PC SERIES

High-reliability discrete products and engineering services since 1977

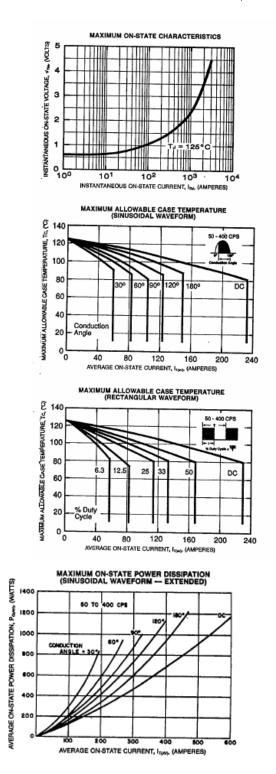

SILICON CONTROLLED RECTIFIERS

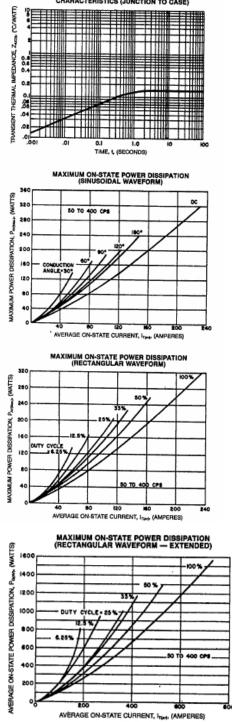
ELECTRICAL CHARACTERISTICS (T_c = 25°C unless otherwise specified)

Characteristics	Symbol	Test Conditiions	C180	Uni
Peak forward gate current	I _{GTM}		10	A
Peak reverse gate voltage	V _{GRM}		5	V

MECHANICAL CHARACTERISTICS

Case:	ТО-93
Marking:	Body painted, alpha-numeric
Polarity:	Cathode band

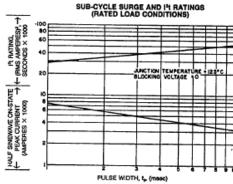

	TO-93					
	Inches Millimeters					
	NOMINAL	NOMINAL				
Α	1.060	26.900				
В	0.550	14.000				
C	1.500	38.100				
D	2.250	57.200				
Е	1.070	27.200				
F	7.910	200.900				
G	0.630	16.000				
Н	0.281	7.140				
J	7.910	200.900				
Κ	0.146	3.710				
L	1.245	31.620				

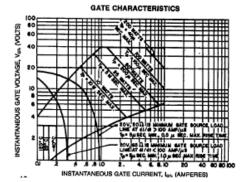

High-reliability discrete products and engineering services since 1977

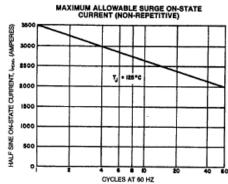
C180A-C180PC SERIES

SILICON CONTROLLED RECTIFIERS

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE)




C180A-C180PC SERIES


High-reliability discrete products and engineering services since 1977

SILICON CONTROLLED RECTIFIERS

- NOTES: 1. Maximum allowable everage gate dissipation = 5 watts, 2: The locus of possible do trigger points if e curside the boundaries shown at var-temporatures. 3: Tp = Rectangular gate current pulse width (5µs min. duration; 1.0µs max. ris 20% (651 source). 4: 20% 20% is the minimum gate source load line when rate of circuit current; Amp/µs or anode rate of current rise > 200 Ampa/µs (t_p = 5µs min., 0.5µs time).
 - Maximum long-term repetitive anode di/dt = 500 Amps/µs with 20V 200 gate source.