FAST SOFT-RECOVERY RECTIFIER DIODES

Silicon double-diffused rectifier diodes in plastic envelopes. They are intended for use as clamp diode, dV/dt limiter and output rectifier diodes in professional and consumer switched-mode power supply applications and as scan rectifier diodes in television receivers. The devices feature non-snap-off characteristics and a very fast turn-on behaviour, which makes them extremely suitable for clamp and dV/dt limiting applications.

QUICK REFERENCE DATA

		BYW19-800(R)		1000(R	1)
Repetitive peak reverse voltage	v_{RRM}	max	800	1000	_ v
Average forward current	lF(AV)	max	7	,	Α
Non-repetitive peak forward current	IFSM	max	40)	Α
Reverse recovery time	t _{rr}	<	450)	ns

MECHANICAL DATA (see also page 2)

Dimensions in mm

SOD-38

The exposed metal base-plate is directly connected to tag 1.

BYW19 SERIES

MECHANICAL DATA (continued)

Net mass: 2,5 g

Recommended diameter of fixing screw: 3,5 mm

Torque on screw

when using washer and heatsink compound: min 0,95 Nm (9,5 kg cm) max 1,5 Nm (15 kg cm)

Accessories:

supplied with device: washer

available on request: 56316 (mica insulating washer)

POLARITY OF CONNECTIONS

	BYW19-800 and BYW19-1000	BYW19-800R and BYW19-1000R		
Base-plate	cathode	anode		
Tag 1	cathode	anode		
Tag 2	anode	cathode		

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages		BYW	19-800(R)	1000(F	₹)
→ Non-repetitive peak reverse voltage	v_{RSM}	max	1000	1000	V
Repetitive peak reverse voltage	v_{RRM}	max	800	1000	V
Working reverse voltage	$v_{\sf RW}$	max	800	800	V
Continuous reverse voltage	v_R	max	800	800	٧
Currents					
Average forward current assuming zero switching losses (averaged over any 20 ms period; see page 7)	•				
square-wave; $\delta = 0.5$; up to $T_{mb} = 98 {}^{\circ}C$	F(AV)		max	·7 4	A A
square-wave; δ = 0,5; at T _{mb} = 125 °C sinusoidal; up to T _{mb} = 98 °C	IF(AV)		max max	7	A
sinusoidal; at T _{mb} = 125 °C	I _F (AV)		max	4	Α
Repetitive peak forward current; $t_p = 20 \mu s$; $\delta \le 0.02$	^I FRM		max	75	Α
Non-repetitive peak forward current square-wave; t = 10 ms; T _i = 150 ^O C prior					
to surge; with reapplied V _{RWmax}	^I FSM		max	40	Α
Temperatures	*				
Storage temperature	T_{stg}		-40 to	+125	oC
Junction temperature	Тj		max	150	oC

THERMAL RESISTANCE

From junction to mounting base	From	junction	to	mounting	base	
--------------------------------	------	----------	----	----------	------	--

$$R_{th j-mb} = 4.5 \text{ }^{\circ}\text{C/W}$$
 $Z_{th l-mb} = 0.3 \text{ }^{\circ}\text{C/W}$

Z_{th i-mb}

Influence of mounting method

1. Heatsink mounted

Thermal resistance from mounting base to heatsink

$$R_{th mb-h} = 1.5 \text{ °C/W}$$

$$R_{th mb-h} = 2.7 \text{ °C/W}$$

$$R_{th mb-h} = 5 \text{ }^{\circ}\text{C/W}$$

2. Free air operation

The quoted values of Rth i-a should be used only when no leads of other dissipating components run to the same tie-points.

Thermal resistance from junction to ambient in free air: mounted on a printed-circuit board at a = maximum lead length and with a copper laminate

a.
$$> 1 \text{ cm}^2$$

$$b. < 1 cm^2$$

$$R_{th j-a} = 50 \text{ oC/W}$$

 $R_{th j-a} = 55 \text{ oC/W}$

7262315.1

mounted on a printed-circuit board at a lead length a = 3 mm and with a copper laminate

$$c. > 1 cm^2$$

$$d. < 1 \text{ cm}^2$$

$$R_{th j-a} = 55 \text{ °C/W}$$

 $R_{th j-a} = 60 \text{ °C/W}$

CHARACTERISTICS

Forward voltage

 V_F < 2,3 V^*

Reverse current

$$V_R = V_{RWmax}$$
; $T_i = 125 \, {}^{o}C$

I_R < 0,6 mA

Reverse recovery when switched from

$$I_F = 2 \text{ A to V}_R \ge 30 \text{ V}; -dI_F/dt = 20 \text{ A}/\mu\text{s}; T_j = 25 \text{ °C}$$

Recovered charge Recovery time O_S < 0,7 μC t_{rr} < 450 ns

Maximum slope of the reverse recovery current

when switched from IF = 2 A to VR \geqslant 30 V; with -dIF/dt = 2 A/ μ s; T₁ = 25 °C

 $|dI_R/dt| < 5 A/\mu s$

^{*} Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)

Forward recovery when switched to

I $_{\rm F}$ = 10 A with t $_{\rm r}$ = 1 $\mu {\rm s}$ at T $_{\rm j}$ = 25 $^{\rm O}{\rm C}$ Recovery time Recovery voltage

Forward output waveform

MOUNTING INSTRUCTIONS

- 1. Soldered joints must be at least 2,5 mm from the seal.
- The maximum permissible temperature of the soldering iron or bath is 270 °C; contact with the joint must not exceed 3 seconds.
- The devices should not be immersed in oil, and few potting resins are suitable for re-encapsulation. Advice on these materials is available on request.
- 4. Leads should not be bent less than 2,5 mm from the seal. Exert no axial pull when bending.
- 5. For good thermal contact heatsink compound should be used between base-plate and heatsink.

OPERATING NOTES

Dissipation and heatsink considerations:

a. The various components of junction temperature rise above ambient are illustrated below:

b. The method of using the graphs on page 7 is as follows:

Starting with the required current on the LE(ANA) axis, tr

Starting with the required current on the $I_{F(AV)}$ axis, trace upwards to meet the appropriate form factor curve. Trace right horizontally and upwards from the appropriate value on the I_{amb} scale. The intersection determines the $I_{th\ mb-a}$. The heatsink thermal resistance value ($I_{th\ h-a}$) can now be calculated from:

Any measurement of heatsink temperature should be made immediately adjacent to the device.

c. The heatsink curves are optimized to allow the junction temperature to run up to a maximum of 150 °C (T_{i max}) whilst limiting T_{mb} to 125 °C (or less).

NOMOGRAM

Power loss $\Delta P_{R(AV)}$ due to switching only (to be added to steady state power losses). I_F = forward current just before switching off; T_i = 150 °C

