THYRISTOR TETRODE

The BRY39T is a planar p-n-p-n trigger device in a TO—72 metal envelope, intended for use in low-power switching applications such as relay and lamp drivers, sensing network for temperature and as a trigger device for thyristors and triacs.

For BRY39P and BRY39S see 'Small signal transistors' handbook.

QUICK REFERENCE DATA

Repetitive peak voltages	V _{DRM} = V _{RRM}	max.	70	٧
Average on-state current	^l T(AV)	max.	250	mA
Non-repetitive peak on-state current	^I TSM	max.	3	Α

MECHANICAL DATA

Dimensions in mm

Fig.1 TO-72; Anode gate connected to case.

Accessories supplied on request: 56246 (distance disc)

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Anode to cathode

Non-repetitive peak voltages	V _{DSM} = V _{RSM}	max.	70	V*
Repetitive peak voltages	$V_{DRM} = V_{RRM}$	max.	70	V*
Continuous voltages	$V_D = V_R$	max.	70	V*
Average on-state current up to $T_{case} = 0$ in free air up to $T_{amb} = 25$ °C	85 °C _T (AV) _{T(AV)}	max. max.	250 175	mA mA
Repetitive peak on-state current $t = 10 \mu s$; $\delta = 0.01$	I _{TRM}	max.	2.5	Α
Non-repetitive peak on-state current $t = 10 \mu s; T_j = 150 ^{\circ}C$ prior to surge	¹ TSM	max.	3	Α
Rate of rise of on-state current after triggering to $I_T = 2.5 \text{ A}$	dl _T	max.	20	A/μs
Cathode gate to cathode				
Peak reverse voltage	V _{RGKM}	max.	5	V
Peak forward current	¹ FGKM	max.	100	mA
Anode gate to anode				
Peak reverse voltage	VRGAM	max.	70	V
Peak forward current	FGAM	max.	100	mA
Temperatures				
Storage temperature	T_{stg}	-65 to +200		οС
Junction temperature	Tj	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0.45	oC/mW
From junction to case	R _{th j-c}	=	0.15	oC/mW

^{*}These ratings apply for zero or negative bias on the cathode gate with respect to the cathode, and when a resistor R \leq 10 $k\Omega$ is connected between cathode gate and cathode.

CHARACTERISTICS

Anode to cathode

On-state voltage $I_T = 100 \text{ mA}$; $T_j = 25 ^{\circ}\text{C}$	v_T	<	1.4 V*
Rate of rise of off-state voltage that will not trigger any device	$\frac{dV_D}{dt}$ **		
Reverse current $V_R = 70 \text{ V; } T_i = 25 ^{\circ}\text{C}$	I _R	typ.	1 nA 100 nA

Holding current $R_{GK} = 10 \text{ k}\Omega; R_{GA} = 220 \text{ k}\Omega; T_j = 25 \text{ °C} \qquad \qquad I_H \qquad < \qquad 250 \quad \mu A$

Cathode gate to cathode

Voltage that will trigger all devices $V_D = 6 \text{ V}; T_j = 25 ^{\circ}\text{C}$	v_{GKT}	>	0.5 V
Current that will trigger all devices $V_D = 6 V; T_j = 25 ^{\circ}C$	l _{GKT}	>	1΄ μΑ

Anode gate to anode

Voltage that will trigger all devices $V_D = 6 \text{ V}; T_j = 25 \text{ °C}$	-V _{GAT}	>	1 V
Current that will trigger all devices $V_D = 6 \cdot V$; $R_{GK} = 10 \text{ k}\Omega$; $T_j = 25 \text{ °C}$	−l _{GAT}	>	100 μΑ

^{*}Measured under pulse conditions to avoid excessive dissipation.

^{**}The dV_D/dt is unlimited when the anode gate lead is returned to the supply voltage through a current limiting resistor.

Switching characteristics

Gate-controlled turn-on time (t_{gt} = t_d + t_r) when switched from V_D = 15 V to I_T = 150 mA; I_{GK} = 5 μ A; dI_{GK}/dt = 5 μ A/ μ s; T_j = 25 °C

Circuit-commutated turn-off time when switched from I_T = 150 mA to V_B = 15 V; $-dI_T/dt$ = 3 A/ μ s; dV_D/dt = 70 V/ μ s; V_D = 15 V

Fig.2 Gate-controlled turn-on time definition.

Fig.3 Circuit-commutated turn-off time definition.

Fig.7

APPLICATION INFORMATION

Sensing network

RS must be chosen in accordance with the light, temperature, or radiation intensity to be sensed; its resistance should be of the same order as that of the potentiometer.

In the arrangement shown, a decline in resistance of R_S triggers the thyristor, closing the relay that activates the warning system. If the positions of R_S and the potentiometer are interchanged, an increase in the resistance of R_S triggers the thyristor.