

Power Bank Flash MCU

BP45F4MB

Revision: V1.10 Date: November 11, 2019

www.holtek.com

Table of Contents

Features	6
CPU Features	
Peripheral Features	6
General Description	7
Block Diagram	7
Pin Assignment	8
Pin Description	8
Absolute Maximum Ratings	10
D.C. Characteristics	
Operating Voltage Characteristics	
Operating Current Characteristics	11
Standby Current Characteristics	11
A.C. Characteristics	12
High Speed Internal Oscillator – HIRC – Frequency Accuracy	12
Low Speed Internal Oscillator Characteristics – LIRC	
Operating Frequency Characteristic Curves	
System Start Up Time Characteristics	13
Input/Output Characteristics	13
Memory Characteristics	14
LVR/LVD Electrical Characteristics	14
A/D Converter Electrical Characteristics	15
Over Voltage Protection Electrical Characteristics	16
Over Current Protection Electrical Characteristics	16
Power-on Reset Characteristics	17
System Architecture	
Clocking and Pipelining	
Program Counter	18
Stack	19
Arithmetic and Logic Unit – ALU	19
Flash Program Memory	20
Structure	20
Special Vectors	20
Look-up Table	
Table Program Example	
In Circuit Programming – ICP	
On-Chip Debug Support – OCDS	
Data Memory	
Structure	
General Purpose Data Memory	
Special Purpose Data Memory	24

Special Function Register Description	25
Indirect Addressing Registers – IAR0, IAR1	25
Memory Pointers – MP0, MP1	25
Accumulator – ACC	26
Program Counter Low Register – PCL	26
Look-up Table Registers – TBLP, TBHP, TBLH	26
Status Register – STATUS	26
Oscillators	28
Oscillator Overview	
System Clock Configurations	
Internal High Speed RC Oscillator – HIRC	
Internal 32kHz Oscillator – LIRC	
Operating Modes and System Clocks	29
System Clocks	
System Operation Modes	
Control Registers	
Operating Mode Switching	
Standby Current Considerations	
Wake-up	
Watchdog Timer	
Watchdog Timer Clock Source	
Watchdog Timer Cootrol Register	
Watchdog Timer Operation	
-	
Reset and Initialisation	
Reset Functions	
Reset Initial Conditions	
Input/Output Ports	
Pull-high Resistors	
Port A Wake-up	
I/O Port Control Registers	
Pin-shared Functions	
I/O Pin Structure	
Programming Considerations	
Timer Modules – TM	
Introduction	
TM Operation	
TM Clock Source	
TM Interrupts	
TM External Pins	
Programming Considerations	51
Standard Type TM – STM	52
Standard Type TM Operation	
Standard Type TM Register Description	
Standard Type TM Operation Modes	56

Periodic Type TM – PTM	66
Periodic Type TM Operation	66
Periodic Type TM Register Description	66
Periodic Type TM Operation Modes	70
Complementary PWM Output with Dead Time	79
Dead Time Insertion	
Complementary PWM Registers	80
Analog to Digital Converter	82
A/D Converter Overview	
A/D Converter Register Description	82
A/D Converter Reference Voltage	86
A/D Converter Input Signals	86
A/D Converter Operation	87
Conversion Rate and Timing Diagram	87
Summary of A/D Conversion Steps	88
Programming Considerations	89
A/D Conversion Function	89
A/D Conversion Programming Examples	90
Over Current Protection	91
Over Current Protection Operation	
Over Current Protection Registers	92
Input Voltage Range	94
OCP OPA and Comparator Offset Calibration	95
Over Voltage Protection	96
OVP Operation	
Over Voltage Protection Registers	97
Comparator Input Offset Calibration	99
Interrupts	100
Interrupt Registers	
Interrupt Operation	103
External Interrupts	104
A/D Converter Interrupt	105
Over Current Protection Interrupt	105
Over Voltage Protection Interrupt	105
Timer Module Interrupts	105
Time Base Interrupts	106
LVD Interrupt	107
Interrupt Wake-up Function	107
Programming Considerations	108
Low Voltage Detector – LVD	108
LVD Register	
LVD Operation	109
Application Circuits	110

BP45F4MB Power Bank Flash MCU

Instruction Set	
Introduction	111
Instruction Timing	111
Moving and Transferring Data	
Arithmetic Operations	111
Logical and Rotate Operation	
Branches and Control Transfer	112
Bit Operations	112
Table Read Operations	112
Other Operations	112
Instruction Set Summary	113
Table Conventions	
Instruction Definition	115
Package Information	124
16-pin NSOP (150mil) Outline Dimensions	125
20-pin SSOP (150mil) Outline Dimensions	

Features

CPU Features

- · Operating voltage
 - f_{SYS}=7.5MHz: 2.5V~5.5V
 - $f_{SYS}=15MHz: 4.5V\sim5.5V$
- Up to $0.27\mu s$ instruction cycle with 15MHz system clock at V_{DD} =5V
- Power down and wake-up functions to reduce power consumption
- · Oscillator types
 - Internal High Speed 30MHz RC HIRC
 - Internal Low Speed 32kHz RC LIRC
- Multi-mode operation: FAST, SLOW, IDLE and SLEEP
- · Fully integrated internal oscillators require no external components
- · All instructions executed in one or two instruction cycles
- Table read instructions
- 63 powerful instructions
- 4-level subroutine nesting
- · Bit manipulation instruction

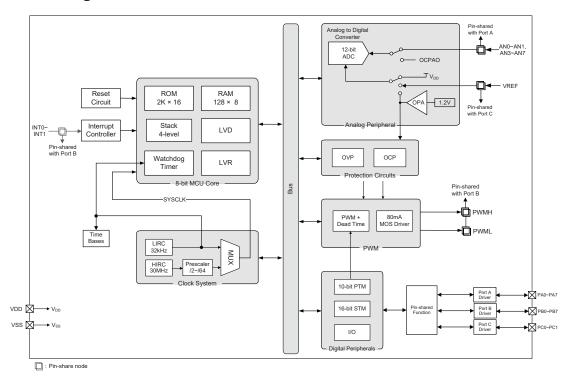
Peripheral Features

- Flash Program Memory: 2K×16
- Data Memory: 128×8
- Watchdog Timer function
- Up to 18 bidirectional I/O lines
- Two pin-shared external interrupts
- Two Timer Modules for time measurement, input capture, compare match output or PWM output or single pulse output function
- · Complementary PWM output with dead time
- Over current protection (OCP) with interrupt
- Over voltage protection (OVP) with interrupt
- 7 external channel 12-bit resolution A/D converter with an internal reference voltage V_{VR}
- Dual Time-Base functions for generation of fixed time interrupt signals
- · Low voltage reset function
- · Low voltage detect function
- Package types: 16-pin NSOP and 20-pin SSOP

Rev. 1.10 6 November 11, 2019

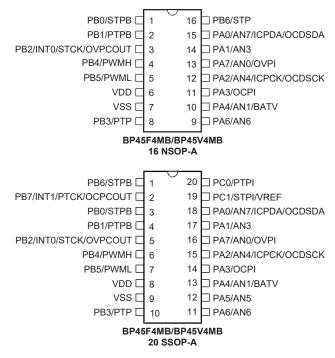
General Description

The device is a Flash Memory 8-bit high performance RISC architecture microcontroller, specifically designed for Power Bank applications. Offering users the convenience of Flash Memory multi-programming features, the device also includes a wide range of functions and features. Other memory includes an area of RAM Data Memory.


Analog features include a multi-channel 12-bit A/D converter. Two extremely flexible Timer Modules provide timing, pulse generation and PWM generation functions. Protective features such as an internal Watchdog Timer, Low Voltage Reset and Low Voltage Detector coupled with excellent noise immunity and ESD protection ensure that reliable operation is maintained in hostile electrical environments.

The device also includes fully integrated high and low speed oscillators which require no external components for their implementation. The ability to operate and switch dynamically between a range of operating modes using different clock sources gives users the ability to optimize microcontroller operation and minimize power consumption.

The inclusion of flexible I/O programming features, Time-Base functions along with many other features ensure that the device will find excellent use in different power bank applications.


Circuitry specific to Power Bank applications is also fully integrated within the device. These include functions such as over voltage protection and over current protection. These features combine to ensure that a minimum of external components is required to implement Power Bank applications, providing the benefits of reduced component counts and reduced circuit board areas.

Block Diagram

Pin Assignment

Note: 1. If the pin-shared pin functions have multiple outputs simultaneously, the desired pin-shared function is determined by the corresponding software control bits.

- 2. The OCDSDA and OCDSCK pins are supplied for the OCDS dedicated pins and as such only available for the BP45V4MB device which is the OCDS EV chip for the BP45F4MB device.
- 3. For the less pin count package type there will be unbounded pins which should be properly configured to avoid unwanted power consumption resulting from floating input conditions. Refer to the "Standby Current Considerations" and "Input/Output Ports" sections.

Pin Description

The function of each pin is listed in the following table, however the details behind how each pin is configured is contained in other sections of the datasheet. As each Pin Description table shows the situation for the package with the most pins, not all pins in the tables will be available on smaller package sizes.

Pin Name	Function	OPT	I/T	O/T	Description
PA0/AN7/ICPDA/	PA0	PAWU PAPU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
OCDSDA			AN	_	A/D converter external input channel 7
ICPDA		_	ST	CMOS	ICP data/address pin
	OCDSDA	_	ST	CMOS	OCDS data/address pin, for EV chip only
PA1/AN3	PA1	PAWU PAPU PAS0	APU ST CMOS General purpose I/O. Register enabled pull-up		General purpose I/O. Register enabled pull-up and wake-up
	AN3	PAS0	AN	_	A/D converter external input channel 3

Rev. 1.10 8 November 11, 2019

Pin Name	Function	ОРТ	I/T	O/T	Description		
PA2/AN4/ICPCK/	PA2	PAWU PAPU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up		
OCDSCK	AN4	PAS0	AN	_	A/D converter external input channel 4		
	ICPCK	_	ST	_	ICP clock pin		
	OCDSCK	_	ST	_	OCDS clock pin, for EV chip only		
PA3/OCPI	PA3	PAWU PAPU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up		
	OCPI	PAS0	AN	_	OCP input		
PA4/AN1/BATV	PA4	PAWU PAPU PAS1	ST	CMOS	OS General purpose I/O. Register enabled pull-up and wake-		
	AN1	PAS1	AN	_	A/D converter external input channel 1		
	BATV	PAS1	AN	_	A/D converter external input channel		
PA5/AN5	PA5	PAWU PAPU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up		
	AN5	PAS1	AN	_	A/D converter external input channel 5		
PA6/AN6	PA6	PAWU PAPU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up		
	AN6	PAS1	AN	_	A/D converter external input channel 6		
PA7/AN0/OVPI	PA7	PAWU PAPU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up		
ATANOJOVIII	AN0	PAS1	AN	_	A/D converter external input channel 0		
	OVPI	PAS1	AN	_	OVP input		
PB0/STPB	PB0	PBPU PBS0	ST	CMOS	General purpose I/O. Register enabled pull-up		
	STPB	PBS0	_	CMOS	STM inverting output		
PB1/PTPB	PB1	PBPU PBS0	ST		General purpose I/O. Register enabled pull-up		
	PTPB	PBS0	_	CMOS	PTM inverting output		
	PB2	PBPU PBS0	ST	CMOS	General purpose I/O. Register enabled pull-up		
PB2/INT0/STCK/ OVPCOUT	INT0	INTEG INTC0 PBS0	ST	_	External Interrupt 0		
	STCK	PBS0	ST		STM clock input		
	OVPCOUT	PBS0	_	CMOS	OVP comparator output (before debounce)		
PB3/PTP	PB3	PBPU PBS0	ST	CMOS	General purpose I/O. Register enabled pull-up		
	PTP	PBS0		CMOS	PTM output		
PB4/PWMH	PB4	PBPU PBS1	ST	CMOS	General purpose I/O. Register enabled pull-up		
	PWMH	PBS1	_	CMOS	PWM output		
PB5/PWML	PB5	PBPU ST CMOS General purpose I/O. Register enabled pull-up		General purpose I/O. Register enabled pull-up			
	PWML	PBS1	_	CMOS	Complementary PWM output		
PB6/STP	PB6	PBPU PBS1	ST	CMOS	1 1 0 1 1		
	STP	PBS1	_	CMOS	STM output		

Pin Name	Function	ОРТ	I/T	O/T	Description
	PB7	PBPU PBS1	ST	CMOS	General purpose I/O. Register enabled pull-up
PB7/INT1/PTCK/ OCPCOUT	INT1	INTEG INTC1 PBS1	ST	_	External Interrupt 1
	PTCK	PBS1	ST	_	PTM clock input
OCPCO		PBS1	_	CMOS	OCP comparator output (before debounce)
PC0/PTPI	PC0	PCPU	ST	CMOS	General purpose I/O. Register enabled pull-up
PC0/F1F1	PTPI	_	ST	_	PTM capture input
DOLLOTPIN (DEE	PC1	PCPU PCS0	ST	CMOS	General purpose I/O. Register enabled pull-up
PC1/STPI/VREF	STPI	PCS0	ST	_	STM capture input
	VREF	PCS0	AN	_	ADC/OCP/OVP external reference voltage input
VDD	_	_	PWR	_	Positive power supply
VSS	_	_	PWR	_	Negative power supply

Legend: I/T: Input type;

OPT: Optional by register option;

ST: Schmitt Trigger input; CMOS: CMOS output;

AN: Analog signal.

Absolute Maximum Ratings

Supply Voltage	V _{SS} -0.3V to 6.0V
Input Voltage	V_{SS} -0.3V to V_{DD} +0.3V
Storage Temperature	-50°C to 125°C
Operating Temperature	-40°C to 85°C
I _{OH} Total	80mA
I _{OL} Total	80mA
Total Power Dissipation	500mW

O/T: Output type;

PWR: Power;

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of the device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Rev. 1.10 10 November 11, 2019

D.C. Characteristics

For data in the following tables, note that factors such as oscillator type, operating voltage, operating frequency, pin load conditions, temperature and program instruction type, etc., can all exert an influence on the measured values.

Operating Voltage Characteristics

Ta=-40°C~85°C

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	Operating Voltage LIBC	f _{SYS} =f _{HIRC} /4=7.5MHz	2.5	_	5.5	
V_{DD}	Operating Voltage – HIRC	f _{SYS} =f _{HIRC} /2=15MHz	4.5	_	5.5	V
	Operating Voltage – LIRC	f _{SYS} =32kHz	2.2	_	5.5	

Operating Current Characteristics

Ta=25°C, unless otherwise specified.

Symbol	Operating Mode		Test Conditions	Min.	Тур.	Max.	Max. @85°C	Unit
Symbol		V _{DD}	Conditions	WIIII.				Unit
		2.2V		_	8	16	16	
SI	SLOW Mode – LIRC	3V	f _{sys} =32kHz	_	10	20	20	μA
		5V		_	30	50	50	
I _{DD}	FAST Mode – HIRC	2.5V	f _{SYS} =f _{HIRC} /4=7.5MHz	_	1.5	3.0	3.0	
		3V		_	1.8	3.5	3.5	ъъ Л
		5V		_	3	6	6	mA
		5V	f _{SYS} =f _{HIRC} /2=15MHz	_	4	8	8	

Note: When using the characteristic table data, the following notes should be taken into consideration:

- 1. Any digital inputs are setup in a non-floating condition.
- 2. All measurements are taken under conditions of no load and with all peripherals in an off state.
- 3. There are no DC current paths.
- 4. All Operating Current values are measured using a continuous NOP instruction program loop.

Standby Current Characteristics

Ta=-40°C~85°C

Symbol	Standby Mode		Test Conditions	Min.	Тур.	Max.	Unit
	Standby Wode	V _{DD}	Conditions	IVIIII.	тур.	IVIAX.	Ullit
		2.2V		_	1	3	
SLEEP Mode	3V	WDT on	_	3	5	μA	
	5V		_	5	10		
		2.2V	f _{SUB} on	_	1.0	1.5	μΑ
ļ.	IDLE0 Mode – LIRC	3V		_	2.5	4.0	
I _{STB}		5V		_	8	10	
		2.5V		_	1.5	3.0	
	IDLE1 Mode – HIRC	3V	f _{SUB} on, f _{SYS} =f _{HIRC} /4=7.5MHz	_	1.8	3.5	^
	IDLE I WOUE - HIKC	5V		_	3	6	mA
		5V	f _{SYS} =f _{HIRC} /2=15MHz	_	4	8	

Note: When using the characteristic table data, the following notes should be taken into consideration:

- 1. Any digital inputs are setup in a non-floating condition.
- 2. All measurements are taken under conditions of no load and with all peripherals in an off state.
- 3. There are no DC current paths.
- 4. All Standby Current values are taken after a HALT instruction execution thus stopping all instruction execution.

Rev. 1.10 11 November 11, 2019

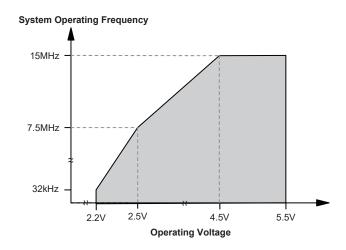
A.C. Characteristics

For data in the following tables, note that factors such as oscillator type, operating voltage, operating frequency and temperature etc., can all exert an influence on the measured values.

High Speed Internal Oscillator - HIRC - Frequency Accuracy

During the program writing operation the writer will trim the HIRC oscillator at a user selected HIRC frequency and user selected voltage of 5V.

Symbol	Parameter		Test Conditions	Min.	Tren	Mey	I Imia
		V _{DD}	Condition	IVIIII.	Тур.	Max.	Unit
		5V	Ta=25°C, f _{SYS} =f _{HIRC} /4=7.5MHz	-2%	30	+2%	
f _{HIRC} 30MHz Writer Trimmed HIRC Frequency	5V	Ta=-40°C~85°C, f _{SYS} =f _{HIRC} /4=7.5MHz	-7%	30	+7%	MHz	
	Troquency	2.5V~ 5.5V	Ta=-40°C~85°C f _{SYS} =f _{HIRC} /4=7.5MHz	-18%	30	+18%	


Note: 1. The 5V values for V_{DD} are provided as this is the fixed voltage at which the HIRC frequency is trimmed by the writer.

2. The row below the 5V trim voltage row is provided to show the values for the full V_{DD} range operating voltage. It is recommended that the trim voltage is fixed at 5V for application voltage ranges from 2.2V to 5.5V.

Low Speed Internal Oscillator Characteristics - LIRC

Symbol Paramete	Davamatav	Test Conditions			Tim	May	I Imit
	Parameter	V _{DD}	Temp.	Min.	Тур.	Max.	Unit
		5V	25°C	25.6	32.0	38.4	
f _{LIRC}	LIRC Frequency	2.2V~5.5V	25°C	12.8	32.0	41.6	kHz
		2.20~5.50	-40°C~85°C	8	32	60	
t _{START}	LIRC Start Up Time	_	_	_	_	100	μs

Operating Frequency Characteristic Curves

Rev. 1.10 12 November 11, 2019

System Start Up Time Characteristics

Ta=-40°C~85°C

Symbol	Parameter		Test Conditions	Min.	Tun	Max.	Unit
Symbol	Farameter	V _{DD}	Conditions	IVIIII.	Тур.	IVIAX.	Ullit
	System Start-up Time	_	f _{SYS} =f _H ~f _H /64, f _H =f _{HIRC}	_	16	_	t _{HIRC}
	Wake-up from Condition where f _{SYS} is off	_	f _{SYS} =f _{SUB} =f _{LIRC}	_	2	_	t _{LIRC}
	System Start-up Time	_	$f_{SYS}=f_H\sim f_H/64$, $f_H=f_{HIRC}$	_	2	3	t _H
tsst	Wake-up from Condition where f _{SYS} is on	_	f _{SYS} =f _{SUB} =f _{LIRC}	_	2	3	t _{SUB}
	System Speed Switch Time FAST to SLOW Mode or SLOW to FAST Mode	_	$f_{\text{HIRC}} \text{switches from off} \to \text{on}$	14	16	18	t _{HIRC}
	System Reset Delay Time Reset Source from Power-on reset or LVR Hardware Reset	_	RR _{POR} =5V/ms	25	50	150	ms
t _{RSTD}	System Reset Delay Time LVRC/WDTC Software Reset	_	_				
	System Reset Delay Time Reset Source from WDT Overflow		_	8.3	16.7	50.0	ms
tsreset	Minimum Software Reset Width to Reset		_	45	90	375	μs

- Note: 1. For the System Start-up time values, whether f_{SYS} is on or off depends upon the mode type and the chosen f_{SYS} system oscillator. Details are provided in the System Operating Modes section.
 - 2. The time units, shown by the symbols t_{HIRC} etc. are the inverse of the corresponding frequency values as provided in the frequency tables. For example $t_{HIRC} = 1/f_{HIRC}$, $t_{SYS} = 1/f_{SYS}$ etc.
 - 3. If the LIRC is used as the system clock and if it is off when in the SLEEP Mode, then an additional LIRC start up time, tstart, as provided in the LIRC frequency table, must be added to the tsst time in the table above.
 - 4. The System Speed Switch Time is effectively the time taken for the newly activated oscillator to start up.

Input/Output Characteristics

Ta=-40°C~85°C

Councile of	Down-ston		Test Conditions	Min	T	Man	I I m i A
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
VII	Input Low Voltage for I/O Dorte	5V	_	0	_	1.5	V
VIL	Input Low Voltage for I/O Ports	_	_	0	_	0.2V _{DD}	V
VIH	Input High Voltage for I/O Ports	5V	_	3.5	_	5.0	V
VIH	Input right voltage for 1/O Forts	_	_	0.8V _{DD}	_	V_{DD}	V
I _{LEAK}	Input Leakage Current	5V	V _{IN} =V _{DD} or V _{IN} =V _{SS}	_	_	±1	μΑ
B	Register Controlled Pull-high Resistance for	3V	_	20	60	100	kΩ
R _{PH1}	I/O Ports (1)	5V	_	10	30	50	K12
R _{PH2}	Internal Pull-high Resistance for PB3 and	3V	_	20	30	40	kΩ
TPH2	PB4 ⁽²⁾	5V	_	20	30	40	K12
Rei	Internal Pull-low Resistance for PB5 (3)	3V	_	20	30	40	kΩ
KPL	Internal Full-low Resistance for FB3 (7)	5V	_	20	30	40	K12
	Sink Current for I/O Pins except PB4 and	3V	V _{OI} = 0.1V _{DD}	16	32	_	mA
 ,	PB5	5V	VOL-U.IVDD	32	65	_	IIIA
loL	Sink Current for PB4 and PB5	3V	Voi =0.1Vpp	16	32	_	mA
	Silik Culterit for FB4 and FB5	5V	VOL-U.IVDD	40	80	_	IIIA
	Source Current for I/O Pins	3V	V _{OH} =0.9V _{DD}	-4	-8	_	mΛ
	except PB4 and PB5	5V	VOH-U.9VDD	-8	-16	_	mA
Іон	Source Current for PB4 and PB5	3V	V _{OH} =0.9V _{DD}	-16	-32	_	m A
	Source Current for FB4 and FB5	5V	VOH-U.SVDD	-40	-80	_	mA

Cumbal	Devenueton		Test Conditions	Min	Tim	Max	Unit
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	. Max.	Unit
t _{TCK}	xTM Clock Input Pin Minimum Pulse Width	_	_	0.3	_	_	μs
t _{TPI}	xTM Capture Input Pin Minimum Pulse Width	_	_	0.3	_	_	μs
t _{INT}	External Interrupt Minimum Pulse Width	_	_	10	_	_	μs

- Note: 1. The R_{PHI} internal pull high resistance value is calculated by connecting to ground and enabling the input pin with a register controlled pull-high resistor and then measuring the pin current at the specified supply voltage level. Dividing the voltage by this measured current provides the R_{PHI} value.
 - 2. The R_{PH2} internal pull high resistance value is calculated by connecting to ground and enabling input pin without R_{PH1} pull-high resistor and then measuring the pin current at the specified supply voltage level. Dividing the voltage by this measured current provides the R_{PH2} value.
 - 3. The R_{PL} internal pull low resistance value is calculated by connecting to V_{DD} and enabling input pin without pull-high resistor and then measuring the pin current at the specified supply voltage level. Dividing the voltage by this measured current provides the R_{PL} value.

Memory Characteristics

Ta=-40°C~85°C, unless otherwise specified.

Cumbal	Parameter		Test Conditions	Min	Tim	May	Unit
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Operating Voltage for Read/Write	_	_	V_{DDmin}	_	V_{DDmax}	V
Flash Pro	ogram Memory						
t _{DEW}	Erase/Write Time	5V	_	_	2	3	ms
E _P	Cell Endurance	_	_	10K	_	_	E/W
t _{RETD}	ROM Data Retention Time	_	Ta=25°C	_	40	_	Year
RAM Dat	a Memory						
V _{DR}	RAM Data Retention Voltage	_	Device in SLEEP Mode	1	_	_	V

LVR/LVD Electrical Characteristics

Ta=-40°C~85°C

Coursels al	Parameter		Test Conditions	Min	T	Mari	Unit
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
V _{LVR}	Low Voltage Reset Voltage	—	LVR enable, voltage select 2.55V	-5%	2.55	+5%	V
		—	LVD enable, voltage select 2.0V		2.0		
		_	LVD enable, voltage select 2.2V		2.2		
		_	LVD enable, voltage select 2.4V		2.4		
,,	Low Voltage Detection Voltage	_	LVD enable, voltage select 2.7V	-5%	2.7	+5%	V
V _{LVD}	Low Voltage Detection Voltage	_	LVD enable, voltage select 3.0V	-5%	3.0	+5%	V
		_	LVD enable, voltage select 3.3V		3.3		
		_	LVD enable, voltage select 3.6V		3.6		
		_	LVD enable, voltage select 4.0V		4.0		
		3V	LVD enable, LVR enable,	_	_	20	
ļ.	Operating Current	5V	VBGEN=0	_	20	25	
ILVRLVDBG	Operating Current	3V	LVD enable, LVR enable,	_	_	25	μA
		5V	VBGEN=1	_	25	30	
	LV/DO Stable Time	_	For LVR enable, VBGEN=0, LVD off → on	_	_	18	μs
t _{LVDS}	LVDO Stable Time	_	For LVR disable, VBGEN=0, LVD off → on	_	_	150	μs

Rev. 1.10 14 November 11, 2019

Symbol	Domenton		Test Conditions	Min.	Tim	Max.	Unit
Symbol	Parameter	V _{DD}	Conditions	IVIIII.	Тур.	IVIAX.	Ullit
t _{LVR}	Minimum Low Voltage Width to Reset	_	_	140	600	1000	μs
t _{LVD}	Minimum Low Voltage Width to Interrupt	_	_	40	150	320	μs
I _{LVR}	Additional Current for LVR Enable	_	LVD disable, VBGEN=0	_	_	24	μΑ
I _{LVD}	Additional Current for LVD Enable	_	LVR disable, VBGEN=0	_	_	24	μΑ

A/D Converter Electrical Characteristics

Ta=-40°C~85°C

Cymphol	Borometer		Test Conditions	Min.	Tren	May	Unit
Symbol	Parameter	V _{DD}	Conditions	Wiin.	Тур.	Max.	Unit
V _{DD}	A/D Converter Operating Voltage	_	_	2.2	_	5.5	V
V _{ADI}	A/D Converter Input Voltage	_	_	0	_	V _{REF}	V
V _{REF}	A/D Converter Reference Voltage	_	_	2	_	V_{DD}	V
N _R	A/D Converter Resolution	_	_	_	_	12	Bit
DNL	Differential Non-linearity	_	V _{REF} =V _{DD} , t _{ADCK} =0.5µs	-3	_	+3	LSB
INL	Integral Non-linearity	_	V _{REF} =V _{DD} , t _{ADCK} =0.5μs	-4	_	+4	LSB
		2.2V		_	300	420	
I _{ADC}	Additional Current for A/D Converter Enable	3V	No load (tadck=0.5µs)	_	340	500	μΑ
	Lilable	5V		_	500	700	
tadck	Clock Period	_	_	0.5	_	10.0	μs
t _{ON2ST}	A/D Converter On-to-start Time	_	_	4	_	_	μs
t _{ADS}	Sampling Time	_	_	_	4	_	t _{ADCK}
t _{ADC}	Conversion Time (Include A/D Sample and Hold Time)	_	_	_	16	_	tadck
V _{VR}	OPA Output Voltage	2.55V~ 5.5V	_	-1%	2.4	+1%	V
_	The Owner of DATY D4 and DATY D0	3V	_	2	4	6	1.0
R _{BATV}	The Sum of BATV_R1 and BATV_R2	5V	_	2	4	6	kΩ
DD	The Detic of DATY DA/DATY DO	3V	_	-1%	1:1	+1%	
RR _{BATV}	The Ratio of BATV_R1/BATV_R2	5V	_	-1%	1:1	+1%	_
Б	The Sum of OVP_R1, OVP_R2 and	3V	_	1.5	3.0	4.5	kΩ
Rovp	OVP_R3	5V	_	1.5	3.0	4.5	KQ2
DD.	The Ratio of (OVP_R1+ OVP_R2)/	3V	_	-2.5%	2:1	+2.5%	
RR _{OVP}	OVP_R3	5V	_	-2.5%	2:1	+2.5%	_

Over Voltage Protection Electrical Characteristics

Ta=-40°C~85°C

Council of	Parameter		Test Conditions	Min.	T	Max.	Unit
Symbol	Parameter	V _{DD}	Conditions	Wiin.	Тур.	wax.	Unit
V _{REF}	DAC Reference Voltage	3V	OVPVRS[1:0]=01B	2	_	V _{DD}	V
V KEF	DAC Reference voltage	5V	OVI VIXO[1.0]=01B	2	_	V _{DD}	V
love	Operating Current	3V	OVPEN=1, DAC V _{REF} =2.5V	_	_	350	μΑ
TOVP	Operating Current	5V	OVECIN-1, DAG VREF-2.3V	_	280	400	μΑ
Vos	Input Offset Voltage	3V	With calibration	-2	_	2	mV
Vos	Input Onset Voltage	5V	With Calibration	-2	_	2	IIIV
V _{HYS}	Hyatarasia	3V	_	10	40	60	mV
VHYS	Hysteresis	5V	_	10	40	60	IIIV
V _{CM}	Common Mode Voltage Range	3V	_	Vss	_	V _{DD} -1.4	V
VCM	Common wode voltage Nange	5V	_	Vss	_	V _{DD} -1.4	V
Ro	R2R Output Resistance	3V	_	_	10	_	kΩ
Ku	RZR Output Resistance	5V	_	_	10	_	K12
DNL	Differential Non-linearity	3V	DAC VREE=VDD	-1.5	_	+1.5	LSB
DINL	Differential Non-linearity	5V	DAC VREF-VDD	-1	_	+1	LOD
INL	Integral Non-linearity	3V	DAC VREE=VDD	-2	_	+2	LSB
IINL	Integral Non-lineality	5V	DAC VREF-VDD	-1.5	_	+1.5	LOD
		3V	OVPDA=10000000B DAC V _{REF} =V _{DD} , OVPCHY=0 OVP Input=0.1V~1.6V	_	1.0	1.8	μs
t _{RP}	OVP Response Time	5V	OVPDA=10110011B OVPDEB[2:0]=000B DAC V _{REF} =V _{DD} , OVPCHY=0 OVP Input=2.1V~3.6V	_	1.0	1.8	μs

Over Current Protection Electrical Characteristics

Ta=-40°C~85°C

Cumbal	Dovomotor		Test Conditions	Min.	Tren	Max.	Unit
Symbol	Parameter	V _{DD}	Conditions	IVIIII.	Тур.	IVIAX.	Unit
V _{REF}	DAC Deference Veltage	3V	OCD\/DC[4:0]=04B	2	_	V _{DD}	V
V REF	DAC Reference Voltage	5V	OCPVRS[1:0]=01B	2	_	V _{DD}	\ \ \
I _{OCP}	OCP Operating Current	3V	OCPEN[1:0]=01B OCPVRS[1:0]=10B	_	300	500	μA
ТОСР	OUP Operating Current	5V	OCPCHY=1, G[2:0]=000B	_	450	600	μΑ
		3V	Without calibration	-15	_	15	
.,	Comparator Input Officet Voltage	5V	(OCPCOF[4:0]=10000B)	-15	_	15	mV
V _{OS_CMP}	Comparator Input Offset Voltage	3V	With calibration	-2	_	2	IIIV
		5V	Willi Calibration	-2	_	2	
.,	Llustaracia	3V	_	10	40	60	mV
V _{HYS}	Hysteresis	5V	_	10	40	60	IIIV
.,	Comparator Common Mode	3V	_	V _{SS}	_	V _{DD} -1.4	V
V _{СМ_СМР}	Voltage Range	5V	_	Vss	_	V _{DD} -1.4	V
		3V	Without calibration	-15	_	15	
.,	ODA Innut Offset Voltage	5V	(OCPOOF [5:0]=100000B)	-15	_	15	mV
V _{OS_OPA}	OPA Input Offset Voltage	3V	With calibration	-2	_	2	1110
		5V	with calibration	-2	_	2	

Rev. 1.10 16 November 11, 2019

Cumbal	Parameter		Test Conditions	Min.	Tren	Max.	Unit
Symbol	Parameter	V _{DD}	Conditions	IVIIII.	Тур.	wax.	Unit
V	OPA Common Mode Voltage	3V	_	Vss	_	V _{DD} -1.4	V
V _{CM_OPA}	Range	5V	_	Vss	_	V _{DD} -1.4	V
Vor	OPA Maximum Output Voltage	3V	_	Vss+0.1	_	V _{DD} -0.1	V
VOR	Range	5V	_	Vss+0.1	_	V _{DD} -0.1	\ \
Ga	DCA Cain Acquirect	3V	All goin	-5	_	5	%
Ga	PGA Gain Accuracy	5V	All gain	-5	_	5	70
Ro	D2D Output Decistance	3V	_	_	10	_	kΩ
RO	R2R Output Resistance	5V	_	_	10	_	K12
DNL	Differential New linearity	3V	DAC VREE=VDD	-1.5	_	+1.5	LSB
DINL	Differential Non-linearity	5V	DAC V _{REF} -V _{DD}	-1	_	+1	LOD
INL	Integral New linearity	3V	DAC VREE=VDD	-2	_	+2	LSB
IINL	Integral Non-linearity	5V	DAC VREF-VDD	-1.5	_	+1.5	LOD

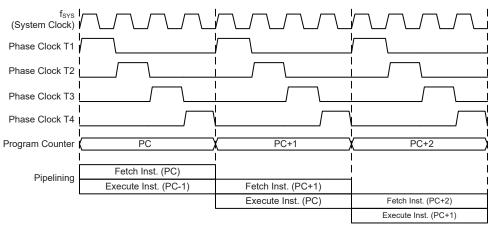
Power-on Reset Characteristics

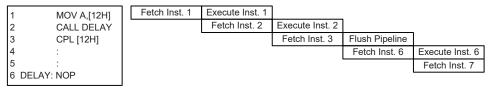
Ta=-40°C~85°C

Cumbal	Dovometer		Test Conditions	Min.	Tim	Max.	I Imié
Symbol	Parameter	V _{DD}	Conditions	WIIII.	Тур.	iviax.	Unit
V _{POR}	V _{DD} Start Voltage to Ensure Power-on Reset	_	_	_	_	100	mV
RR _{POR}	V _{DD} Rising Rate to Ensure Power-on Reset	_	_	0.035	_	_	V/ms
t _{POR}	Minimum Time for V_{DD} Stays at V_{POR} to Ensure Power-on Reset	_	_	1	_	_	ms

System Architecture

A key factor in the high-performance features of the Holtek range of microcontrollers is attributed to their internal system architecture. The device takes advantage of the usual features found within RISC microcontrollers providing increased speed of operation and enhanced performance. The pipelining scheme is implemented in such a way that instruction fetching and instruction execution are overlapped, hence instructions are effectively executed in one cycle, with the exception of branch or call instructions which need one more cycle. An 8-bit wide ALU is used in practically all instruction set operations, which carries out arithmetic operations, logic operations, rotation, increment, decrement, branch decisions, etc. The internal data path is simplified by moving data through the Accumulator and the ALU. Certain internal registers are implemented in the Data Memory and can be directly or indirectly addressed. The simple addressing methods of these registers along with additional architectural features ensure that a minimum of external components is required to provide a functional I/O and A/D control system with maximum reliability and flexibility. This makes the device suitable for low-cost, high-volume production for controller applications.


Rev. 1.10 November 11, 2019


Clocking and Pipelining

The main system clock, derived from either an HIRC or LIRC oscillator is subdivided into four internally generated non-overlapping clocks, T1~T4. The Program Counter is incremented at the beginning of the T1 clock during which time a new instruction is fetched. The remaining T2~T4 clocks carry out the decoding and execution functions. In this way, one T1~T4 clock cycle forms one instruction cycle. Although the fetching and execution of instructions takes place in consecutive instruction cycles, the pipelining structure of the microcontroller ensures that instructions are effectively executed in one instruction cycle. The exception to this are instructions where the contents of the Program Counter are changed, such as subroutine calls or jumps, in which case the instruction will take one more instruction cycle to execute.

For instructions involving branches, such as jump or call instructions, two machine cycles are required to complete instruction execution. An extra cycle is required as the program takes one cycle to first obtain the actual jump or call address and then another cycle to actually execute the branch. The requirement for this extra cycle should be taken into account by programmers in timing sensitive applications.

System Clocking and Pipelining

Instruction Fetching

Program Counter

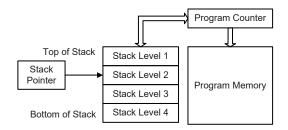
During program execution, the Program Counter is used to keep track of the address of the next instruction to be executed. It is automatically incremented by one each time an instruction is executed except for instructions, such as "JMP" or "CALL" that demand a jump to a non-consecutive Program Memory address. Only the lower 8 bits, known as the Program Counter Low Register, are directly addressable by the application program.

When executing instructions requiring jumps to non-consecutive addresses such as a jump instruction, a subroutine call, interrupt or reset, etc., the microcontroller manages program control by loading the required address into the Program Counter. For conditional skip instructions, once the condition has been met, the next instruction, which has already been fetched during the present instruction execution, is discarded and a dummy cycle takes its place while the correct instruction is obtained.

Rev. 1.10 18 November 11, 2019

Program Counter						
Program Counter High Byte	PCL Register					
PC10~PC8	PCL7~PCL0					

Program Counter


The lower byte of the Program Counter, known as the Program Counter Low register or PCL, is available for program control and is a readable and writeable register. By transferring data directly into this register, a short program jump can be executed directly; however, as only this low byte is available for manipulation, the jumps are limited to the present page of memory that is 256 locations. When such program jumps are executed it should also be noted that a dummy cycle will be inserted. Manipulating the PCL register may cause program branching, so an extra cycle is needed to pre-fetch.

Stack

This is a special part of the memory which is used to save the contents of the Program Counter only. The stack, organized into 4 levels, is neither part of the data nor part of the program space, and is neither readable nor writeable. The activated level is indexed by the Stack Pointer, and is neither readable nor writeable. At a subroutine call or interrupt acknowledge signal, the contents of the Program Counter are pushed onto the stack. At the end of a subroutine or an interrupt routine, signaled by a return instruction, RET or RETI, the Program Counter is restored to its previous value from the stack. After a device reset, the Stack Pointer will point to the top of the stack.

If the stack is full and an enabled interrupt takes place, the interrupt request flag will be recorded but the acknowledge signal will be inhibited. When the Stack Pointer is decremented, by RET or RETI, the interrupt will be serviced. This feature prevents stack overflow allowing the programmer to use the structure more easily. However, when the stack is full, a CALL subroutine instruction can still be executed which will result in a stack overflow. Precautions should be taken to avoid such cases which might cause unpredictable program branching.

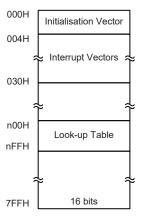
If the stack is overflow, the first Program Counter save in the stack will be lost.

Arithmetic and Logic Unit – ALU

The arithmetic-logic unit or ALU is a critical area of the microcontroller that carries out arithmetic and logic operations of the instruction set. Connected to the main microcontroller data bus, the ALU receives related instruction codes and performs the required arithmetic or logical operations after which the result will be placed in the specified register. As these ALU calculation or operations may result in carry, borrow or other status changes, the status register will be correspondingly updated to reflect these changes. The ALU supports the following functions:

- Arithmetic operations: ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA
- Logic operations: AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA
- Rotation: RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC
- Increment and Decrement: INCA, INC, DECA, DEC
- Branch decision: JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI

Rev. 1.10 19 November 11, 2019



Flash Program Memory

The Program Memory is the location where the user code or program is stored. For the device the Program Memory is Flash type, which means it can be programmed and re-programmed a large number of times, allowing the user the convenience of code modification on the same device. By using the appropriate programming tools, the Flash device offer users the flexibility to conveniently debug and develop their applications while also offering a means of field programming and updating.

Structure

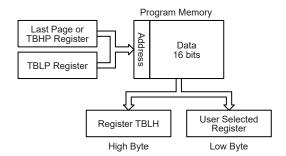
The Program Memory has a capacity of $2K \times 16$ bits. The Program Memory is addressed by the Program Counter and also contains data, table information and interrupt entries. Table data, which can be set in any location within the Program Memory, is addressed by a separate table pointer register.

Program Memory Structure

Special Vectors

Within the Program Memory, certain locations are reserved for the reset and interrupts. The location 000H is reserved for use by the device reset for program initialisation. After a device reset is initiated, the program will jump to this location and begin execution.

Look-up Table


Any location within the Program Memory can be defined as a look-up table where programmers can store fixed data. To use the look-up table, the table pointer must first be configured by placing the address of the look up data to be retrieved in the table pointer registers, TBLP and TBHP. These registers define the total address of the look-up table.

After setting up the table pointer, the table data can be retrieved from the Program Memory using the "TABRD [m]" or "TABRDL[m]" instructions respectively. When the instruction is executed, the lower order table byte from the Program Memory will be transferred to the user defined Data Memory register [m] as specified in the instruction. The higher order table data byte from the Program Memory will be transferred to the TBLH special register. Any unused bits in this transferred higher order byte will be read as "0".

Rev. 1.10 20 November 11, 2019

The accompanying diagram illustrates the addressing data flow of the look-up table.

Table Program Example

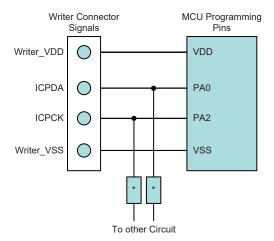
The following example shows how the table pointer and table data is defined and retrieved from the microcontrollers. This example uses raw table data located in the Program Memory which is stored there using the ORG statement. The value at this ORG statement is "700H" which refers to the start address of the last page within the 2K Program Memory of the device. The table pointer low byte register is set here to have an initial value of "06H". This will ensure that the first data read from the data table will be at the Program Memory address "706H" or 6 locations after the start of the last page. Note that the value for the table pointer is referenced to the specific address pointed by the TBLP and TBHP registers if the "TABRD [m]" instruction is being used. The high byte of the table data which in this case is equal to zero will be transferred to the TBLH register automatically when the "TABRD [m]" instruction is executed.

Because the TBLH register is a read-only register and cannot be restored, care should be taken to ensure its protection if both the main routine and Interrupt Service Routine use table read instructions. If using the table read instructions, the Interrupt Service Routines may change the value of the TBLH and subsequently cause errors if used again by the main routine. As a rule it is recommended that simultaneous use of the table read instructions should be avoided. However, in situations where simultaneous use cannot be avoided, the interrupts should be disabled prior to the execution of any main routine table-read instructions. Note that all table related instructions require two instruction cycles to complete their operation.

Table Read Program Example

```
tempreg1 db ?
                  ; temporary register #1
                  ; temporary register #2
tempreg2 db ?
mov a,06h
                   ; initialise low table pointer - note that this address is referenced
mov tblp,a
                   ; to the last page or the page that tbhp pointed
mov a,07h
                   ; initialise high table pointer
mov tbhp, a
tabrd tempreg1
                  ; transfers value in table referenced by table pointer,
                  ; data at program memory address F06H transferred to tempreg1 and TBLH
                  ; reduce value of table pointer by one
dec tblp
                   ; transfers value in table referenced by table pointer,
tabrd tempreg2
                   ; data at program memory address FO5H transferred to tempreg2 and TBLH
                   ; in this example the data 1AH is transferred to tempreg1 and data OFH to
                   ; register tempreg2
                   ; the value 00H will be transferred to the high byte register TBLH
org 700h
                   ; sets initial address of program memory
dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
```


In Circuit Programming - ICP


The provision of Flash type Program Memory provides the user with a means of convenient and easy upgrades and modifications to their programs on the same device.

As an additional convenience, Holtek has provided a means of programming the microcontrollers in-circuit using a 4-pin interface. This provides manufacturers with the possibility of manufacturing their circuit boards complete with a programmed or un-programmed microcontroller, and then programming or upgrading the program at a later stage. This enables product manufacturers to easily keep their manufactured products supplied with the latest program releases without removal and reinsertion of the device.

Holtek Writer Pins	MCU Programming Pins	Pin Description
ICPDA	PA0	Programming serial data/address
ICPCK	PA2	Programming clock
VDD	VDD	Power supply
VSS	VSS	Ground

The program memory can be programmed serially in-circuit using this 4-wire interface. Data is downloaded and uploaded serially on a single pin with an additional line for the clock. Two additional lines are required for the power supply. The technical details regarding the in-circuit programming of the device is beyond the scope of this document and will be supplied in supplementary literature.

During the programming process, the user must take care of the ICPDA and ICPCK pins for data and clock programming purposes to ensure that no other outputs are connected to these two pins.

Note: * may be resistor or capacitor. The resistance of * must be greater than $1k\Omega$ or the capacitance of * must be less than 1nF.

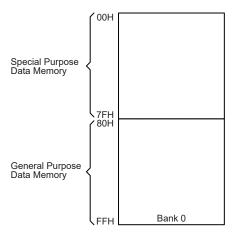
On-Chip Debug Support - OCDS

There is an EV chip named BP45V4MB which is used to emulate the BP45F4MB device. The EV chip device also provides an "On-Chip Debug" function to debug the real MCU device during the development process. The EV chip and the real MCU device are almost functionally compatible except for "On-Chip Debug" function. Users can use the EV chip device to emulate the real chip device behavior by connecting the OCDSDA and OCDSCK pins to the Holtek HT-IDE development tools. The OCDSDA pin is the OCDS Data/Address input/output pin while the OCDSCK pin is the OCDS clock input pin. When users use the EV chip for debugging, other functions which are shared with the OCDSDA and OCDSCK pins in the device will have no effect in the EV chip. However, the two OCDS pins which are pin-shared with the ICP programming pins are still used

Rev. 1.10 22 November 11, 2019

as the Flash Memory programming pins for ICP. For more detailed OCDS information, refer to the corresponding document named "Holtek e-Link for 8-bit MCU OCDS User's Guide".

Holtek e-Link Pins	EV Chip Pins	Pin Description
OCDSDA	OCDSDA	On-chip debug support data/address input/output
OCDSCK	OCDSCK	On-chip debug support clock input
VDD	VDD	Power supply
VSS	VSS	Ground


Data Memory

The Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location where temporary information is stored.

Structure

Categorised into two types, the first of these is an area of RAM, known as the Special Function Data Memory. These registers have fixed locations and are necessary for correct operation of the device. Many of these registers can be read from and written to directly under program control, however, some remain protected from user manipulation. The second area of Data Memory is known as the General Purpose Data Memory, which is reserved for general purpose use. All locations within this area are read and write accessible under program control.

The start address of the Data Memory for the device is 00H. The address range of the Special Purpose Data Memory for the device is from 00H to 7FH while the address range of the General Purpose Data Memory is from 80H to FFH.

Data Memory Structure

General Purpose Data Memory

All microcontroller programs require an area of read/write memory where temporary data can be stored and retrieved for use later. It is this area of RAM memory that is known as General Purpose Data Memory. This area of Data Memory is fully accessible by the user programing for both reading and writing operations. By using the bit operation instructions individual bits can be set or reset under program control giving the user a large range of flexibility for bit manipulation in the Data Memory.

Rev. 1.10 23 November 11, 2019

Special Purpose Data Memory

This area of Data Memory is where registers, necessary for the correct operation of the microcontroller, are stored. Most of the registers are both readable and writeable but some are protected and are readable only, the details of which are located under the relevant Special Function Register section. Note that for locations that are unused, any read instruction to these addresses will return the value "00H".

	Pank 0		Ponk 0
00H	Bank 0 IAR0	40H	Bank 0 OCPDA
01H	MP0	41H	OCPOCAL
02H	IAR1	42H	OCPCCAL
03H	MP1	43H	OOI OO/IL
04H	IVII I	44H	
05H	ACC	45H	
06H	PCL	46H	
07H	TBLP	47H	
08H	TBLH	48H	
09H	TBHP	49H	
0AH	STATUS	4AH	
0BH	01/1100	4BH	
0CH		4CH	
0DH		4DH	
0EH		4EH	
0FH	RSTFC	4FH	
10H	PB	50H	INTC0
11H	PBC	51H	INTC1
12H	PBPU	52H	INTC2
13H	WDTC	53H	INTC3
14H	PA	54H	PAS0
15H	PAC	55H	PAS1
16H	PAPU	56H	FAST
17H	PAWU	57H	
18H	LVRC	58H	
19H	LVDC	59H	INTEG
1AH	LVDO	5AH	PBS0
1BH		5BH	PBS1
1CH		5CH	PCS0
1DH	TB0C	5DH	F 030
1EH	TB1C	5EH	PTMC0
1FH	STMC0	5FH	PTMC1
20H	STMC1	60H	PTMDL
21H	STMDL	61H	PTMDH
22H	STMDH	62H	PTMAL
23H	STMAL	63H	PTMAH
24H	STMAH	64H	PTMRPL
25H	STMRP	65H	PTMRPH
26H	PC	66H	PSC0R
27H	PCC	67H	PSC1R
28H	PCPU	68H	
29H	CPR	69H	
2AH	OCVPC	6AH	
2BH	00110	6BH	
2CH		6CH	
2DH		6DH	
2EH		6EH	
2FH	SCC	6FH	
30H	HIRCC	70H	
31H		71H	
32H		72H	
33H		73H	
34H		74H	
35H		75H	
36H	SADOL	76H	
37H	SADOH	77H	
38H	SWS0	78H	
39H	SADC0	79H	
ЗАН	SADC1	7AH	
3BH	OVPC0	7BH	
3CH	OVPC1	7CH	
3DH	OVPDA	7DH	
3EH	OCPC0	7EH	
3FH	OCPC1	7EH	
		'	
	: Unused, read as	s 00H	

Special Purpose Data Memory

Rev. 1.10 24 November 11, 2019

Special Function Register Description

Most of the Special Function Register details will be described in the relevant functional section; however several registers require a separate description in this section.

Indirect Addressing Registers - IAR0, IAR1

The Indirect Addressing Registers, IAR0 and IAR1, although having their locations in normal RAM register space, do not actually physically exist as normal registers. The method of indirect addressing for RAM data manipulation uses these Indirect Addressing Registers and Memory Pointers, in contrast to direct memory addressing, where the actual memory address is specified. Actions on the IAR0 and IAR1 registers will result in no actual read or write operation to these registers but rather to the memory location specified by their corresponding Memory Pointers, MP0 or MP1. Acting as a pair, IAR0 and MP0 can together access data only from Bank 0 while the IAR1 register together with the MP1 register pair can access data from any Data Memory Bank. As the Indirect Addressing Registers are not physically implemented, reading the Indirect Addressing Registers will return a result of "00H" and writing to the registers will result in no operation.

Memory Pointers - MP0, MP1

Two Memory Pointers, known as MP0 and MP1 are provided. These Memory Pointers are physically implemented in the Data Memory and can be manipulated in the same way as normal registers providing a convenient way with which to address and track data. When any operation to the relevant Indirect Addressing Registers is carried out, the actual address that the microcontroller is directed to is the address specified by the related Memory Pointer. MP0, together with Indirect Addressing Register, IAR0, are used to access data from Bank 0, while MP1 and IAR1 are used to access data from all banks. Direct Addressing can be used in Bank 0, all other banks must be addressed indirectly using MP1 and IAR1.

The following example shows how to clear a section of four Data Memory locations already defined as locations adres1 to adres4.

Indirect Addressing Program Example

```
data .section 'data'
adres1 db?
adres2 db?
adres3 db?
adres4 db?
       db?
block
code .section at 0 'code'
org 00h
start:
                            ; set size of block
    mov a, 04h
    mov block, a
    mov a, offset adres1
                           ; Accumulator loaded with first RAM address
    mov MPO, a
                             ; set memory pointer with first RAM address
loop:
     clr IAR0
                             ; clear the data at address defined by MPO
     inc MP0
                             ; increase memory pointer
     sdz block
                             ; check if last memory location has been cleared
     jmp loop
continue:
```

The important point to note here is that in the examples shown above, no reference is made to specific Data Memory addresses.

Accumulator - ACC

The Accumulator is central to the operation of any microcontroller and is closely related with operations carried out by the ALU. The Accumulator is the place where all intermediate results from the ALU are stored. Without the Accumulator it would be necessary to write the result of each calculation or logical operation such as addition, subtraction, shift, etc., to the Data Memory resulting in higher programming and timing overheads. Data transfer operations usually involve the temporary storage function of the Accumulator; for example, when transferring data between one user-defined register and another, it is necessary to do this by passing the data through the Accumulator as no direct transfer between two registers is permitted.

Program Counter Low Register - PCL

To provide additional program control functions, the low byte of the Program Counter is made accessible to programmers by locating it within the Special Purpose area of the Data Memory. By manipulating this register, direct jumps to other program locations are easily implemented. Loading a value directly into this PCL register will cause a jump to the specified Program Memory location, however, as the register is only 8-bit wide, only jumps within the current Program Memory page are permitted. When such operations are used, note that a dummy cycle will be inserted.

Look-up Table Registers - TBLP, TBHP, TBLH

These three special function registers are used to control operation of the look-up table which is stored in the Program Memory. TBLP and TBHP are the table pointers and indicate the location where the table data is located. Their value must be set before any table read commands are executed. Their value can be changed, for example using the "INC" or "DEC" instructions, allowing for easy table data pointing and reading. TBLH is the location where the high order byte of the table data is stored after a table read data instruction has been executed. Note that the lower order table data byte is transferred to a user defined location.

Status Register - STATUS

This 8-bit register contains the zero flag (Z), carry flag (C), auxiliary carry flag (AC), overflow flag (OV), power down flag (PDF), and watchdog time-out flag (TO). These arithmetic/logical operation and system management flags are used to record the status and operation of the microcontroller.

With the exception of the TO and PDF flags, bits in the status register can be altered by instructions like most other registers. Any data written into the status register will not change the TO or PDF flag. In addition, operations related to the status register may give different results due to the different instruction operations. The TO flag can be affected only by a system power-up, a WDT time-out or by executing the "CLR WDT" or "HALT" instruction. The PDF flag is affected only by executing the "HALT" or "CLR WDT" instruction or during a system power-up.

The Z, OV, AC and C flags generally reflect the status of the latest operations.

- C is set if an operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate through carry instruction.
- AC is set if an operation results in a carry out of the low nibbles in addition, or no borrow from the high nibble into the low nibble in subtraction; otherwise AC is cleared.
- Z is set if the result of an arithmetic or logical operation is zero; otherwise Z is cleared.
- OV is set if an operation results in a carry into the highest-order bit but not a carry out of the highest-order bit, or vice versa; otherwise OV is cleared.

Rev. 1.10 26 November 11, 2019

- PDF is cleared by a system power-up or executing the "CLR WDT" instruction. PDF is set by executing the "HALT" instruction.
- TO is cleared by a system power-up or executing the "CLR WDT" or "HALT" instruction. TO is set by a WDT time-out.

In addition, on entering an interrupt sequence or executing a subroutine call, the status register will not be pushed onto the stack automatically. If the contents of the status registers are important and if the subroutine can corrupt the status register, precautions must be taken to correctly save it.

STATUS Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	TO	PDF	OV	Z	AC	С
R/W	_	_	R	R	R/W	R/W	R/W	R/W
POR	_	_	0	0	Х	х	Х	х

"x": Unknown

Bit 7~6 Unimplemented, read as "0"

Bit 5 TO: Watchdog time-out flag

0: After power up or executing the "CLR WDT" or "HALT" instruction

1: A watchdog time-out occurred

Bit 4 **PDF**: Power down flag

0: After power up or executing the "CLR WDT" instruction

1: By executing the "HALT" instruction

Bit 3 **OV**: Overflow flag

0: No overflow

1: An operation results in a carry into the highest-order bit but not a carry out of the highest-order bit or vice versa.

Bit 2 Z: Zero flag

0: The result of an arithmetic or logical operation is not zero

1: The result of an arithmetic or logical operation is zero

Bit 1 AC: Auxiliary flag

0: No auxiliary carry

1: An operation results in a carry out of the low nibbles in addition, or no borrow from the high nibble into the low nibble in subtraction

Bit 0 C: Carry flag

0: No carry-out

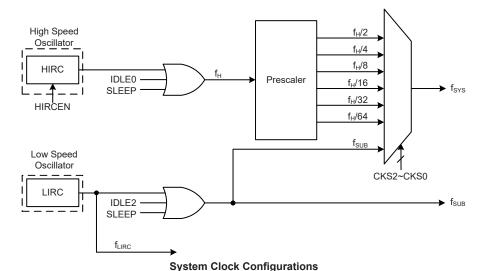
1: An operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation

The "C" flag is also affected by a rotate through carry instruction.

Oscillators

Various oscillator options offer the user a wide range of functions according to their various application requirements. The flexible features of the oscillator functions ensure that the best optimisation can be achieved in terms of speed and power saving. Oscillator operations are selected through the relevant control registers.

Oscillator Overview


In addition to being the source of the main system clock the oscillators also provide clock sources for the Watchdog Timer and Time Base Interrupt. The fully integrated internal oscillators, requiring no external components, are provided to form a wide range of both fast and slow system oscillators. The higher frequency oscillator provides higher performance but carry with it the disadvantage of higher power requirements, while the opposite is of course true for the lower frequency oscillator. With the capability of dynamically switching between fast and slow system clock, the device has the flexibility to optimize the performance/power ratio, a feature especially important in power sensitive portable applications.

Туре	Name	Frequency
Internal High Speed RC	HIRC	30MHz
Internal Low Speed RC	LIRC	32kHz

Oscillator Types

System Clock Configurations

There are two oscillator sources, one high speed oscillator and one low speed oscillator. The high speed system clock is sourced from the internal 30MHz RC oscillator, HIRC. The low speed oscillator is the internal 32kHz RC oscillator, LIRC. Selecting whether the low or high speed oscillator is used as the system oscillator is implemented using the CKS2~CKS0 bits in the SCC register and the system clock can be dynamically selected.

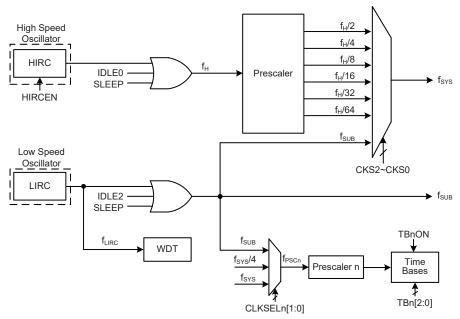
Internal High Speed RC Oscillator - HIRC

The internal RC oscillator is a fully integrated system oscillator requiring no external components. The internal high speed RC oscillator has a fixed frequency of 30MHz. Device trimming during the manufacturing process and the inclusion of internal frequency compensation circuits are used to ensure that the influence of the power supply voltage, temperature and process variations on the oscillation frequency are minimised.

Rev. 1.10 28 November 11, 2019

Internal 32kHz Oscillator - LIRC

The Internal 32kHz System Oscillator is a fully integrated low frequency RC oscillator with a typical frequency of 32kHz, requiring no external components for its implementation.


Operating Modes and System Clocks

Present day applications require that their microcontrollers have high performance but often still demand that they consume as little power as possible, conflicting requirements that are especially true in battery powered portable applications. The fast clocks required for high performance will by their nature increase current consumption and of course vice versa, lower speed clocks reduce current consumption. As Holtek has provided the device with both high and low speed clock sources and the means to switch between them dynamically, the user can optimise the operation of their microcontroller to achieve the best performance/power ratio.

System Clocks

The device has many different clock sources for both the CPU and peripheral function operation. By providing the user with a wide range of clock options using register programming, a clock system can be configured to obtain maximum application performance.

The main system clock can come from either a divided version of the high speed system oscillator with a range of $f_H/2\sim f_H/64$ or a low frequency, f_{SUB} , source, and is selected using the CKS2 \sim CKS0 bits in the SCC register. The high speed system clock is sourced from the HIRC oscillator. The low speed system clock source is sourced from the LIRC oscillator.

Device Clock Configurations

Note: When the system clock source f_{SVS} is switched to f_{SUB} from f_H , the high speed oscillator will stop to conserve the power or continue to oscillate to provide the clock source, $f_H/2\sim f_H/64$, for peripheral circuit to use, which is determined by configuring the corresponding high speed oscillator enable control bit.

System Operation Modes

There are six different modes of operation for the microcontrollers, each one with its own special characteristics and which can be chosen according to the specific performance and power requirements of the application. There are two modes allowing normal operation of the microcontroller, the FAST Mode and SLOW Mode. The remaining four modes, the SLEEP, IDLE0, IDLE1 and IDLE2 Mode are used when the microcontroller CPU is switched off to conserve power.

Operation	CPU	Register Setting				£	£	
Mode	CPU	FHIDEN	FSIDEN	CKS2~CKS0	f sys	fн	f suB	f _{LIRC}
FAST	On	Х	х	001~110	f _H /2~f _H /64	On	On	On
SLOW	On	Х	х	111	f _{SUB}	On/Off (1)	On	On
IDLE0	Off	0	1	001~110	Off	Off	On	On
IDLEO	Oii		1	111	On	Oll		
IDLE1	Off	1	1	XXX	On	On	On	On
IDLE2	Off	1	0	001~110	On	On	Off	On
IDLEZ		'	U	111	Off	On	Oll	On
SLEEP	Off	0	0	XXX	Off	Off	Off	On (2)

"x": Don't care

Note: 1. The f_H clock will be switched on or off by configuring the corresponding oscillator enable bit in the SLOW mode.

2. The f_{LIRC} clock is switched on as the WDT function is always enabled.

FAST Mode

This is one of the main operating modes where the microcontrollers have all of their functions operational and where the system clock is provided by the high speed oscillator. This mode operates allowing the microcontrollers to operate normally with a clock source which will come from the high speed oscillator, HIRC. The high speed oscillator will however first be divided by a ratio ranging from 2 to 64, the actual ratio being selected by the CKS2~CKS0 bits in the SCC register. Although a high speed oscillator is used, running the microcontrollers at a divided clock ratio reduces the operating current.

SLOW Mode

This is also a mode where the microcontroller operates normally although now with a slower speed clock source. The clock source used will be from f_{SUB} , which is derived from the LIRC oscillator.

SLEEP Mode

The SLEEP Mode is entered when a HALT instruction is executed and when the FHIDEN and FSIDEN bit are low. In the SLEEP mode the CPU will be stopped. The f_{SUB} clock provided to the peripheral function will also be stopped, too. However the f_{LIRC} clock can continues to operate as the WDT function is always enabled.

IDLE0 Mode

The IDLE0 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the SCC register is low and the FSIDEN bit in the SCC register is high. In the IDLE0 Mode the CPU will be switched off but the low speed oscillator will be turned on to drive some peripheral functions.

IDLE1 Mode

The IDLE1 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the SCC register is high and the FSIDEN bit in the SCC register is high. In the IDLE1 Mode the CPU will be switched off but both the high and low speed oscillators will be turned on to provide a clock source to keep some peripheral functions operational.

Rev. 1.10 30 November 11, 2019

IDLE2 Mode

The IDLE2 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the SCC register is high and the FSIDEN bit in the SCC register is low. In the IDLE2 Mode the CPU will be switched off but the high speed oscillator will be turned on to provide a clock source to keep some peripheral functions operational.

Control Registers

The SCC and HIRCC registers are used to control the system clock and the corresponding oscillator configurations.

Register				В	it			
Name	7	6	5	4	3	2	1	0
SCC	CKS2	CKS1	CKS0	_	_	_	FHIDEN	FSIDEN
HIRCC	_	_	_	_	_	_	HIRCF	HIRCEN

System Operating Mode Control Register List

SCC Register

Bit	7	6	5	4	3	2	1	0
Name	CKS2	CKS1	CKS0	_	_	_	FHIDEN	FSIDEN
R/W	R/W	R/W	R/W	_	_	_	R/W	R/W
POR	0	1	0	_	_	_	0	0

Bit 7~5 CKS2~CKS0: System clock selection

000: Reserved, cannot be used

 $\begin{array}{c} 001\colon f_{H}/2 \\ 010\colon f_{H}/4 \\ 011\colon f_{H}/8 \\ 100\colon f_{H}/16 \\ 101\colon f_{H}/32 \\ 110\colon f_{H}/64 \\ 111\colon f_{SUB} \end{array}$

These three bits are used to select which clock is used as the system clock source. In addition to the system clock source directly derived from f_{SUB} , a divided version of the high speed system oscillator can also be chosen as the system clock source.

Bit 4~2 Unimplemented, read as "0"

Bit 1 FHIDEN: High frequency oscillator control when CPU is switched off

0: Disable 1: Enable

This bit is used to control whether the high speed oscillator is activated or stopped when the CPU is switched off by executing a "HALT" instruction.

Bit 0 FSIDEN: Low frequency oscillator control when CPU is switched off

0: Disable 1: Enable

This bit is used to control whether the low speed oscillator is activated or stopped when the CPU is switched off by executing a "HALT" instruction.

Rev. 1.10 31 November 11, 2019

HIRCC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	HIRCF	HIRCEN
R/W	_	_	_	_	_	_	R	R/W
POR	_	_	_	_	_	_	0	1

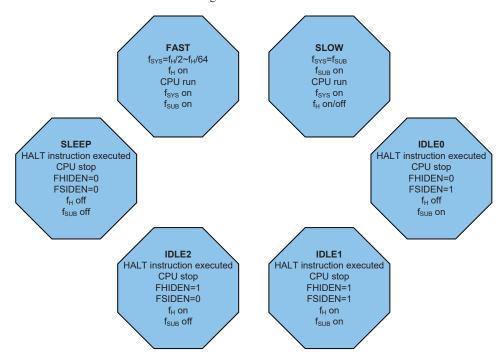
Bit 7~2 Unimplemented, read as "0"

Bit 1 HIRCF: HIRC oscillator stable flag

0: HIRC unstable 1: HIRC stable

This bit is used to indicate whether the HIRC oscillator is stable or not. When the HIRCEN bit is set to 1 to enable the HIRC oscillator, the HIRCF bit will first be

cleared to 0 and then set to 1 after the HIRC oscillator is stable.


Bit 0 HIRCEN: HIRC oscillator enable control

0: Disable 1: Enable

Operating Mode Switching

The device can switch between operating modes dynamically allowing the user to select the best performance/power ratio for the present task in hand. In this way microcontroller operations that do not require high performance can be executed using slower clocks thus requiring less operating current and prolonging battery life in portable applications.

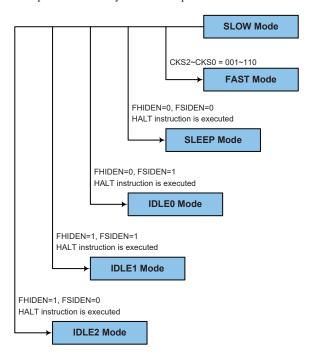
In simple terms, mode switching between the FAST Mode and SLOW Mode is executed using the CKS2~CKS0 bits in the SCC register while mode switching from the FAST/SLOW Modes to the SLEEP/IDLE Modes is executed via the HALT instruction. When a HALT instruction is executed, whether the device enters the IDLE Mode or the SLEEP Mode is determined by the condition of the FHIDEN and FSIDEN bits in the SCC register.


Rev. 1.10 32 November 11, 2019

FAST Mode to SLOW Mode Switching

When running in the FAST Mode, which uses the high speed system oscillator, and therefore consumes more power, the system clock can switch to run in the SLOW Mode by set the CKS2~CKS0 bits to "111" in the SCC register. This will then use the low speed system oscillator which will consume less power. Users may decide to do this for certain operations which do not require high performance and can subsequently reduce power consumption.

The SLOW Mode system clock is sourced from the LIRC oscillator and therefore requires this oscillator to be stable before full mode switching occurs.



SLOW Mode to FAST Mode Switching

In the SLOW mode the system clock is derived from f_{SUB} . When system clock is switched back to the FAST mode from f_{SUB} , the CKS2~CKS0 bits should be set to "001"~"110" and then the system clock will respectively be switched to $f_H/2\sim f_H/64$.

However, if f_H is not used in the SLOW mode and thus switched off, it will take some time to reoscillate and stabilise when switching to the FAST mode from the SLOW Mode. This is monitored using the HIRCF bit in the HIRCC register. The time duration required for the high speed system oscillator stabilisation is specified in the System Start Up Time Characteristics.

Entering the SLEEP Mode

There is only one way for the device to enter the SLEEP Mode and that is to execute the "HALT" instruction in the application program with both the FHIDEN and FSIDEN bits in the SCC register equal to "0". In this mode all the clocks and functions will be switched off except the WDT function. When this instruction is executed under the conditions described above, the following will occur:

- The system clock will be stopped and the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting as the WDT function is always enabled.

Entering the IDLE0 Mode

There is only one way for the device to enter the IDLE0 Mode and that is to execute the "HALT" instruction in the application program with the FHIDEN bit in the SCC register equal to "0" and the FSIDEN bit in the SCC register equal to "1". When this instruction is executed under the conditions described above, the following will occur:

• The f_H clock will be stopped and the application program will stop at the "HALT" instruction, but the f_{SUB} clock will be on.

Rev. 1.10 34 November 11, 2019

- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting as the WDT function is always enabled.

Entering the IDLE1 Mode

There is only one way for the device to enter the IDLE1 Mode and that is to execute the "HALT" instruction in the application program with both the FHIDEN and FSIDEN bits in the SCC register equal to "1". When this instruction is executed under the conditions described above, the following will occur:

- The f_H and f_{SUB} clocks will be on but the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting as the WDT function is always enabled.

Entering the IDLE2 Mode

There is only one way for the device to enter the IDLE2 Mode and that is to execute the "HALT" instruction in the application program with the FHIDEN bit in the SCC register equal to "1" and the FSIDEN bit in the SCC register equal to "0". When this instruction is executed under the conditions described above, the following will occur:

- The f_H clock will be on but the f_{SUB} clock will be off and the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.
- · The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting as the WDT function is always enabled.

Standby Current Considerations

As the main reason for entering the SLEEP or IDLE Mode is to keep the current consumption of the device to as low a value as possible, perhaps only in the order of several micro-amps except in the IDLE1 and IDLE2 Mode, there are other considerations which must also be taken into account by the circuit designer if the power consumption is to be minimised. Special attention must be made to the I/O pins on the device. All high-impedance input pins must be connected to either a fixed high or low level as any floating input pins could create internal oscillations and result in increased current consumption. This also applies to the device which has different package types, as there may be unbonded pins. These must either be set as outputs or if set as inputs must have pull-high resistors connected.

Care must also be taken with the loads, which are connected to I/O pins, which are set as outputs. These should be placed in a condition in which minimum current is drawn or connected only to external circuits that do not draw current, such as other CMOS inputs. Also note that additional standby current will also be required if the LIRC oscillator has enabled.

In the IDLE1 and IDLE2 Mode the high speed oscillator is on, if the peripheral function clock source is derived from the high speed oscillator, the additional standby current will also be perhaps in the order of several hundred micro-amps.

Rev. 1.10 35 November 11, 2019

Wake-up

To minimise power consumption the device can enter the SLEEP or any IDLE Mode, where the CPU will be switched off. However, when the device is woken up again, it will take a considerable time for the original system oscillator to restart, stabilise and allow normal operation to resume.

After the system enters the SLEEP or IDLE Mode, it can be woken up from one of various sources listed as follows:

- · An external falling edge on Port A
- · A system interrupt
- · A WDT overflow

When the device executes the "HALT" instruction, it will enter the IDLE or SLEEP mode and the PDF flag will be set to 1. The PDF flag will be cleared to 0 if the device experiences a system power-up or executes the clear Watchdog Timer instruction. If the system is woken up by a WDT overflow, a Watchdog Timer reset will be initiated and the TO flag will be set to 1. The TO flag is set if a WDT time-out occurs and causes a wake-up that only resets the Program Counter and Stack Pointer, other flags remain in their original status.

Each pin on Port A can be set using the PAWU register to permit a negative transition on the pin to wake-up the system. When a pin wake-up occurs, the program will resume execution at the instruction following the "HALT" instruction. If the system is woken up by an interrupt, then two possible situations may occur. The first is where the related interrupt is disabled or the interrupt is enabled but the stack is full, in which case the program will resume execution at the instruction following the "HALT" instruction. In this situation, the interrupt which woke up the device will not be immediately serviced, but will rather be serviced later when the related interrupt is finally enabled or when a stack level becomes free. The other situation is where the related interrupt is enabled and the stack is not full, in which case the regular interrupt response takes place. If an interrupt request flag is set high before entering the SLEEP or IDLE Mode, the wake-up function of the related interrupt will be disabled.

Watchdog Timer

The Watchdog Timer is provided to prevent program malfunctions or sequences from jumping to unknown locations, due to certain uncontrollable external events such as electrical noise.

Watchdog Timer Clock Source

The Watchdog Timer clock source is provided by the internal clock, f_{LIRC} which is sourced from the LIRC oscillator. The LIRC internal oscillator has an approximate frequency of 32kHz and this specified internal clock period can vary with V_{DD} , temperature and process variations. The Watchdog Timer source clock is then subdivided by a ratio of 2^8 to 2^{18} to give longer timeouts, the actual value being chosen using the WS2~WS0 bits in the WDTC register.

Watchdog Timer Control Register

A single register, WDTC, controls the required time-out period, the WDT enable operation as well as the MCU reset operation.

Rev. 1.10 36 November 11, 2019

WDTC Register

Bit	7	6	5	4	3	2	1	0
Name	WE4	WE3	WE2	WE1	WE0	WS2	WS1	WS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	1	0	1	0	0	1	1

Bit 7~3 **WE4~WE0**: WDT function software control

01010/10101: Enable Other values: MCU reset

When these bits are changed to any other values due to environmental noise the microcontroller will be reset; this reset operation will be activated after a delay time, t_{SRESET}, and the WRF bit in the RSTFC register will be set high.

Bit 2~0 WS2~WS0: WDT time-out period selection

000: 28/f_{LIRC} 001: 2¹⁰/f_{LIRC} 010: 2¹²/f_{LIRC} 011: 2¹⁴/f_{LIRC} 100: 2¹⁵/f_{LIRC} 101: 2¹⁶/f_{LIRC} 110: 2¹⁷/f_{LIRC} 111: 2¹⁸/f_{LIRC}

These three bits determine the division ratio of the Watchdog Timer source clock, which in turn determines the timeout period.

RSTFC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	LVRF	LRF	WRF
R/W	_	_	_	_	_	R/W	R/W	R/W
POR	_	_	_	_	_	Х	0	0

"x": Unknown

Bit 7~3 Unimplemented, read as "0"

Bit 2 LVRF: LVR function reset flag

Refer to the Low Voltage Reset section.

Bit 1 LRF: LVR control register software reset flag

Refer to the Low Voltage Reset section.

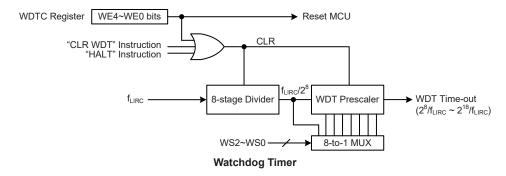
Bit 0 WRF: WDT control register software reset flag

0: Not occurred 1: Occurred

This bit is set to 1 by the WDT control register software reset and cleared by the application program. Note that this bit can only be cleared to 0 by the application program.

Watchdog Timer Operation

The Watchdog Timer operates by providing a device reset when its timer overflows. This means that in the application program and during normal operation the user has to strategically clear the Watchdog Timer before it overflows to prevent the Watchdog Timer from executing a reset. This is done using the clear watchdog instruction. If the program malfunctions for whatever reason, jumps to an unknown location, or enters an endless loop, the clear instruction will not be executed in the correct manner, in which case the Watchdog Timer will overflow and reset the device. There are five bits, WE4~WE0, in the WDTC register to offer the enable control and reset control of the Watchdog Timer. The WDT function will be enabled if the WE4~WE0 bits are equal to 01010B or 10101B. If the WE4~WE0 bits are set to any other values, other than 01010B and 10101B, it will reset the device after a delay time, t_{SRESET}. After power on these bits will have a value of 01010B.


WE4~WE0 Bits	WDT Function
01010B or 10101B	Always enable
Any other value	MCU reset

Watchdog Timer Function Control

Under normal program operation, a Watchdog Timer time-out will initialise a device reset and set the status bit TO. However, if the system is in the SLEEP or IDLE Mode, when a Watchdog Timer time-out occurs, the TO bit in the status register will be set and only the Program Counter and Stack Pointer will be reset. Three methods can be adopted to clear the contents of the Watchdog Timer. The first is a WDTC software reset, which means a certain value except 01010B and 10101B written into the WE4~WE0 bits, the second is using the Watchdog Timer software clear instruction, the third is via a HALT instruction.

There is only one method of using software instruction to clear the Watchdog Timer. That is to use the single "CLR WDT" instruction to clear the WDT.

The maximum time-out period is when the 2¹⁸ division ratio is selected. As an example, with a 32kHz LIRC oscillator as its source clock, this will give a maximum watchdog period of around 8 seconds for the 2¹⁸ division ratio, and a minimum timeout of 8ms for the 2⁸ division ration.

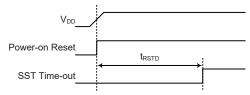
Reset and Initialisation

A reset function is a fundamental part of any microcontroller ensuring that the device can be set to some predetermined condition irrespective of outside parameters. The most important reset condition is after power is first applied to the microcontrollers. In this case, internal circuitry will ensure that the microcontrollers, after a short delay, will be in a well-defined state and ready to execute the first program instruction. After this power-on reset, certain important internal registers will be set to defined states before the program commences. One of these registers is the Program Counter, which will be reset to zero forcing the microcontroller to begin program execution from the lowest Program Memory address.

Another reset exists in the form of a Low Voltage Reset, LVR, where a full reset is implemented in situations where the power supply voltage falls below a certain threshold. Another type of reset is when the Watchdog Timer overflows and resets the microcontroller. All types of reset operations result in different register conditions being setup.

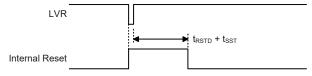
Reset Functions

There are several ways in which a microcontroller reset can occur through events occurring internally.


Power-on Reset

The most fundamental and unavoidable reset is the one that occurs after power is first applied to the microcontrollers. As well as ensuring that the Program Memory begins execution from the first memory address, a power-on reset also ensures that certain other registers are preset to known

Rev. 1.10 38 November 11, 2019


conditions. All the I/O port and port control registers will power up in a high condition ensuring that all pins will be first set to inputs.

Power-on Reset Timing Chart

Low Voltage Reset - LVR

The microcontroller contains a low voltage reset circuit in order to monitor the supply voltage of the device and provides an MCU reset should the value fall below a certain predefined level. The LVR function is always enabled in the FAST/SLOW mode with a specific LVR voltage V_{LVR} . If the supply voltage of the device drops to within a range of $0.9V\sim V_{LVR}$ such as might occur when changing the battery in battery powered applications, the LVR will automatically reset the device internally and the LVRF bit in the RSTFC register will also be set high. For a valid LVR signal, a low supply voltage, i.e., a voltage in the range between $0.9V\sim V_{LVR}$ must exist for a time greater than that specified by t_{LVR} in the LVR/LVD characteristics. If the low supply voltage state does not exceed this value, the LVR will ignore the low supply voltage and will not perform a reset function. If the LVS7~LVS0 bits are set to the values specified in the LVRC register, the LVR function is enabled with a fixed LVR voltage of 2.55V. If the LVS7~LVS0 bits are changed to some different values by environmental noise, the LVR will reset the device after a delay time, t_{SRESET} . When this happens, the LRF bit in the RSTFC register will be set high. After power on the register will have the value of 01010101B. Note that the LVR function will be automatically disabled when the device enters the IDLE or SLEEP mode.

Low Voltage Reset Timing Chart

LVRC Register

Bit	7	6	5	4	3	2	1	0
Name	LVS7	LVS6	LVS5	LVS4	LVS3	LVS2	LVS1	LVS0
R/W								
POR	0	1	0	1	0	1	0	1

Bit 7~0 LVS7~LVS0: LVR voltage select control

01010101: 2.55V 00110011: 2.55V 10011001: 2.55V 10101010: 2.55V

Any other value: MCU reset - register is reset to POR value

When an actual low voltage condition occurs, as specified above, an MCU reset will be generated. The reset operation will be activated after the low voltage condition keeps more than a t_{LVR} time. In this situation the register contents will remain the same after such a reset occurs.

Any register value, other than the four defined register values above, will also result in the generation of an MCU reset. The reset operation will be activated after a delay time, t_{SRESET}. However in this situation the register contents will be reset to the POR value.

Rev. 1.10 39 November 11, 2019

RSTFC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	LVRF	LRF	WRF
R/W	_	_	_	_	_	R/W	R/W	R/W
POR	_	_	_	_	_	х	0	0

"x": Unknown

Bit 7~3 Unimplemented, read as "0"

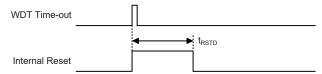
Bit 2 LVRF: LVR function reset flag

0: Not occurred 1: Occurred

This bit is set high when a specific low voltage reset situation condition occurs. This bit can only be cleared to zero by the application program.

Bit 1 LRF: LVR control register software reset flag

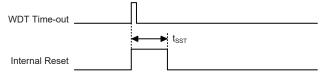
0: Not occurred 1: Occurred


This bit is set high if the LVRC register contains any non-defined LVRC register values. This in effect acts like a software-reset function. This bit can only be cleared to zero by the application program.

Bit 0 WRF: WDT control register software reset flag

Refer to the Watchdog Timer Control Register section.

Watchdog Time-out Reset during Normal Operation


When the Watchdog time-out Reset during normal operations in the FAST or SLOW mode occurs, the Watchdog time-out flag TO will be set to "1".

WDT Time-out Reset during Normal Operation Timing Chart

Watchdog Time-out Reset during SLEEP or IDLE Mode

The Watchdog time-out Reset during SLEEP or IDLE Mode is a little different from other kinds of reset. Most of the conditions remain unchanged except that the Program Counter and the Stack Pointer will be cleared to "0" and the TO flag will be set to "1". Refer to the System Start Up Time Characteristics for t_{SST} details.

WDT Time-out Reset during SLEEP or IDLE Mode Timing Chart

Reset Initial Conditions

The different types of reset described affect the reset flags in different ways. These flags, known as PDF and TO are located in the status register and are controlled by various microcontroller operations, such as the SLEEP or IDLE Mode function or Watchdog Timer. The reset flags are shown in the table:

Rev. 1.10 40 November 11, 2019

то	PDF	Reset Conditions
0	0	Power-on reset
u	u	LVR reset during FAST or SLOW Mode operation
1	u	WDT time-out reset during FAST or SLOW Mode operation
1	1	WDT time-out reset during IDLE or SLEEP Mode operation

"u": Unchanged

The following table indicates the way in which the various components of the microcontroller are affected after a power-on reset occurs.

Item	Condition After Reset
Program Counter	Reset to zero
Interrupts	All interrupts will be disabled
WDT, Time Bases	Cleared after reset, WDT begins counting
Timer Modules	All Timer Modules will be turned off
Input/Output Ports	I/O ports will be set as inputs
Stack Pointer	Stack Pointer will point to the top of the stack

The different kinds of resets all affect the internal registers of the microcontroller in different ways. To ensure reliable continuation of normal program execution after a reset occurs, it is important to know what condition the microcontroller is in after a particular reset occurs. The following table describes how each type of reset affects each of the microcontroller internal registers.

Register	Power on Reset	WDT Time-out (Normal Operation)	WDT Time-out (IDLE/SLEEP)
IAR0	xxxx xxxx	uuuu uuuu	uuuu uuuu
MP0	xxxx xxxx	uuuu uuuu	uuuu uuuu
IAR1	xxxx xxxx	uuuu uuuu	uuuu uuuu
MP1	xxxx xxxx	uuuu uuuu	uuuu uuuu
ACC	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	0000 0000	0000 0000	0000 0000
TBLP	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLH	xxxx xxxx	uuuu uuuu	uuuu uuuu
ТВНР	x x x	u u u	u u u
STATUS	00 xxxx	1u uuuu	11 uuuu
RSTFC	x 0 0	u u u	u u u
PB	1111 1111	1111 1111	uuuu uuuu
PBC	1111 1111	1111 1111	uuuu uuuu
PBPU	0000 0000	0000 0000	uuuu uuuu
WDTC	0101 0011	0101 0011	uuuu uuuu
PA	1111 1111	1111 1111	uuuu uuuu
PAC	1111 1111	1111 1111	uuuu uuuu
PAPU	0000 0000	0000 0000	uuuu uuuu
PAWU	0000 0000	0000 0000	uuuu uuuu
LVRC	0101 0101	0101 0101	uuuu uuuu
LVDC	00 0000	00 0000	uu uuuu
TB0C	0000	0000	uuuu
TB1C	0000	0000	uuuu
STMC0	0000 0	0000 0	uuuu u
STMC1	0000 0000	0000 0000	uuuu uuuu
STMDL	0000 0000	0000 0000	uuuu uuuu
STMDH	0000 0000	0000 0000	uuuu uuuu

Rev. 1.10 41 November 11, 2019

Register	Power on Reset	WDT Time-out (Normal Operation)	WDT Time-out (IDLE/SLEEP)
STMAL	0000 0000	0000 0000	uuuu uuuu
STMAH	0000 0000	0000 0000	uuuu uuuu
STMRP	0000 0000	0000 0000	uuuu uuuu
PC	11	11	u u
PCC	11	11	u u
PCPU	0 0	0 0	u u
CPR	0000 0000	0000 0000	uuuu uuuu
OCVPC	1000	1000	uuuu
SCC	01000	01000	u u u u u
HIRCC	0 1	0 1	u u
SADOL	x x x x	x x x x	uuuu (ADRFS=0) uuuu uuuu (ADRFS=1)
CAROLL			uuuu uuuu (ADRFS=0)
SADOH	XXXX XXXX	XXXX XXXX	uuuu (ADRFS=1)
SWS0	0 0000	0 0000	u uuuu
SADC0	0000 -000	0000 -000	uuuu -uuu
SADC1	00 0000	00 0000	uu uuuu
OVPC0	0000 0000	0000 0000	uuuu uuuu
OVPC1	0001 0000	0001 0000	uuuu uuuu
OVPDA	0000 0000	0000 0000	uuuu uuuu
OCPC0	0000 00	0000 00	uuuu uu
OCPC1	00 0000	00 0000	uu uuuu
OCPDA	0000 0000	0000 0000	uuuu uuuu
OCPOCAL	0010 0000	0010 0000	uuuu uuuu
OCPCCAL	0001 0000	0001 0000	uuuu uuuu
INTC0	-000 0000	-000 0000	-uuu uuuu
INTC1	0000 0000	0000 0000	uuuu uuuu
INTC2	0000 0000	0000 0000	uuuu uuuu
INTC3	00	00	u u
PAS0	0000 0000	0000 0000	uuuu uuuu
PAS1	0000 0000	0000 0000	uuuu uuuu
INTEG	0000	0000	uuuu
PBS0	0000 0000	0000 0000	uuuu uuuu
PBS1	0000 0000	0000 0000	uuuu uuuu
PCS0	00	0 0	u u
PTMC0	0000 0	0000 0	uuuu u
PTMC1	0000 0000	0000 0000	uuuu uuuu
PTMDL	0000 0000	0000 0000	uuuu uuuu
PTMDH	0 0	0 0	u u
PTMAL	0000 0000	0000 0000	uuuu uuuu
PTMAH	0 0	0 0	u u
PTMRPL	0000 0000	0000 0000	uuuu uuuu
PTMRPH	0 0	0 0	u u
PSC0R	0 0	0 0	u u
PSC1R	0 0	00	u u

Note: "u" stands for unchanged "x" stands for unknown

"-" stands for unimplemented

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on their I/O ports. With the input or output designation of every pin fully under user program control, pull-high selections for all ports and wake-up selections on certain pins, the user is provided with an I/O structure to meet the needs of a wide range of application possibilities.

The device provides bidirectional input/output lines labeled with port names PA~PC. These I/O ports are mapped to the RAM Data Memory with specific addresses as shown in the Special Purpose Data Memory table. All of these I/O ports can be used for input and output operations. For input operation, these ports are non-latching, which means the inputs must be ready at the T2 rising edge of instruction "MOV A, [m]", where m denotes the port address. For output operation, all the data is latched and remains unchanged until the output latch is rewritten.

Register		Bit									
Name	7	6	5	4	3	2	1	0			
PA	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0			
PAC	PAC7	PAC6	PAC5	PAC4	PAC3	PAC2	PAC1	PAC0			
PAPU	PAPU7	PAPU6	PAPU5	PAPU4	PAPU3	PAPU2	PAPU1	PAPU0			
PAWU	PAWU7	PAWU6	PAWU5	PAWU4	PAWU3	PAWU2	PAWU1	PAWU0			
РВ	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0			
PBC	PBC7	PBC6	PBC5	PBC4	PBC3	PBC2	PBC1	PBC0			
PBPU	PBPU7	PBPU6	PBPU5	PBPU4	PBPU3	PBPU2	PBPU1	PBPU0			
PC	_	_	_	_	_	_	PC1	PC0			
PCC	_	_	_	_	_	_	PCC1	PCC0			
PCPU	_	_	_	_	_	_	PCPU1	PCPU0			

"—": Unimplemented, read as "0"

I/O Logic Function Register List

Pull-high Resistors

Many product applications require pull-high resistors for their switch inputs usually requiring the use of an external resistor. To eliminate the need for these external resistors, all I/O pins, when configured as a digital input have the capability of being connected to an internal pull-high resistor. These pull-high resistors are selected using the relevant pull-high control registers and are implemented using weak PMOS transistors.

Note that the pull-high resistor can be controlled by the relevant pull-high control register only when the pin-shared functional pin is selected as a digital input or NMOS output. Otherwise, the pull-high resistors cannot be enabled.

PxPU Register

Bit	7	6	5	4	3	2	1	0
Name	PxPU7	PxPU6	PxPU5	PxPU4	PxPU3	PxPU2	PxPU1	PxPU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

PxPUn: I/O port x pin pull-high function control

0: Disable 1: Enable

The PxPUn bit is used to control the pin pull-high function. Here the "x" can be A, B or C. However, the actual available bits for each I/O Port may be different.

For the PB3 and PB4 pins, there is another internal pull-high resistor which is always enabled and connected in parallel with the register controlled pull-high resistor. Care must be taken to the PB5 pin, which has an always enabled internal pull-low resistor, if its pull-high function is enabled, this will lead to some increase in power comsumption.

Rev. 1.10 43 November 11, 2019

Port A Wake-up

The HALT instruction forces the microcontroller into the SLEEP or IDLE Mode which preserves power, a feature that is important for battery and other low-power applications. Various methods exist to wake-up the microcontroller, one of which is to change the logic condition on one of the Port A pins from high to low. This function is especially suitable for applications that can be woken up via external switches. Each pin on Port A can be selected individually to have this wake-up feature using the PAWU register.

Note that the wake-up function can be controlled by the wake-up control registers only when the pin is selected as a general purpose input and the MCU enters the IDLE or SLEEP mode.

• PAWU Register

Bit	7	6	5	4	3	2	1	0
Name	PAWU7	PAWU6	PAWU5	PAWU4	PAWU3	PAWU2	PAWU1	PAWU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

PAWUn: Port A pin wake-up function control

0: Disable 1: Enable

I/O Port Control Registers

Each I/O port has its own control register known as PAC~PCC, to control the input/output configuration. With this control register, each CMOS output or input can be reconfigured dynamically under software control. Each pin of the I/O ports is directly mapped to a bit in its associated port control register. For the I/O pin to function as an input, the corresponding bit of the control register must be written as a "1". This will then allow the logic state of the input pin to be directly read by instructions. When the corresponding bit of the control register is written as a "0", the I/O pin will be set as a CMOS output. If the pin is currently set as an output, instructions can still be used to read the output register. However, it should be noted that the program will in fact only read the status of the output data latch and not the actual logic status of the output pin.

PxC Register

Bit	7	6	5	4	3	2	1	0
Name	PxC7	PxC6	PxC5	PxC4	PxC3	PxC2	PxC1	PxC0
R/W								
POR	1	1	1	1	1	1	1	1

PxCn: I/O port x pin type selection

0: Output 1: Input

The PxCn bit is used to control the pin type selection. Here the "x" can be A, B or C. However, the actual available bits for each I/O Port may be different.

Care must be taken to the PB3, PB4 and PB5 pins. For the PB3 and PB4 pins, there is another internal pull-high resistor which is always enabled, if they are configured to output low level, this will lead to some increase in power consumption. For the PB5 pin, there is an internal pull-low resistor which is always enabled, if the pin is configured to output high level, this will also lead to some increase in power comsumption.

Rev. 1.10 44 November 11, 2019

Pin-shared Functions

The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more than one function. Limited numbers of pins can force serious design constraints on designers but by supplying pins with multi-functions, many of these difficulties can be overcome. For these pins, the desired function of the multi-function I/O pins is selected by a series of registers via the application program control.

Pin-shared Function Selection Registers

The limited number of supplied pins in a package can impose restrictions on the amount of functions a certain device can contain. However by allowing the same pins to share several different functions and providing a means of function selection, a wide range of different functions can be incorporated into even relatively small package sizes. The device includes a Port x Output Function Selection register, labeled as PxSn, which can select the desired functions of the multi-function pin-shared pins.

The most important point to note is to make sure that the desired pin-shared function is properly selected and also deselected. For most pin-shared functions, to select the desired pin-shared function, the pin-shared function should first be correctly selected using the corresponding pin-shared control register. After that the corresponding peripheral functional setting should be configured and then the peripheral function can be enabled. However, a special point must be noted for digital input pins, such as xTCK, xTPI and INTn, which share the same pin-shared control configuration with their corresponding general purpose I/O functions when setting the relevant pin-shared control bits. To select these pin functions, in addition to the necessary pin-shared control and peripheral functional setup aforementioned, they must also be set as an input by setting the corresponding bit in the I/O port control register. To correctly deselect the pin-shared function, the peripheral function should first be disabled and then the corresponding pin-shared function control register can be modified to select other pin-shared functions.

Register	Bit							
Name	7	6	5	4	3	2	1	0
PAS0	PAS07	PAS06	PAS05	PAS04	PAS03	PAS02	PAS01	PAS00
PAS1	PAS17	PAS16	PAS15	PAS14	PAS13	PAS12	PAS11	PAS10
PBS0	PBS07	PBS06	PBS05	PBS04	PBS03	PBS02	PBS01	PBS00
PBS1	PBS17	PBS16	PBS15	PBS14	PBS13	PBS12	PBS11	PBS10
PCS0	_	_	_	_	PCS03	PCS02	_	_

Pin-shared Function Selection Register List

PAS0 Register

Bit	7	6	5	4	3	2	1	0
Name	PAS07	PAS06	PAS05	PAS04	PAS03	PAS02	PAS01	PAS00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 PAS07~PAS06: PA3 pin-shared function selection

00: PA3

01: OCPI

10: PA3

11: PA3

Bit 5~4 PAS05~PAS04: PA2 pin-shared function selection

00: PA2

01: AN4

10: PA2

11: PA2

Bit 3~2 **PAS03~PAS02**: PA1 pin-shared function selection

00: PA1 01: AN3 10: PA1 11: PA1

Bit 1~0 PAS01~PAS00: PA0 pin-shared function selection

00: PA0 01: AN7 10: PA0 11: PA0

PAS1 Register

Bit	7	6	5	4	3	2	1	0
Name	PAS17	PAS16	PAS15	PAS14	PAS13	PAS12	PAS11	PAS10
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 PAS17~PAS16: PA7 pin-shared function selection

00: PA7 01: AN0/OVPI 10: PA7 11: PA7

Bit 5~4 PAS15~PAS14: PA6 pin-shared function selection

00: PA6 01: AN6 10: PA6 11: PA6

Bit 3~2 PAS13~PAS12: PA5 pin-shared function selection

00: PA5 01: AN5 10: PA5 11: PA5

Bit 1~0 **PAS11~PAS10**: PA4 pin-shared function selection

00: PA4 01: AN1/BATV 10: PA4 11: PA4

• PBS0 Register

Bit	7	6	5	4	3	2	1	0
Name	PBS07	PBS06	PBS05	PBS04	PBS03	PBS02	PBS01	PBS00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 **PBS07~PBS06**: PB3 pin-shared function selection

00: PB3 01: PTP 10: PB3 11: PB3

Bit 5~4 **PBS05~PBS04**: PB2 pin-shared function selection

00: PB2/INT0/STCK 01: OVPCOUT 10: PB2/INT0/STCK 11: PB2/INT0/STCK

Bit 3~2 **PBS03~PBS02**: PB1 pin-shared function selection

00: PB1 01: PTPB 10: PB1

11: PB1

Bit 1~0 **PBS01~PBS00**: PB0 pin-shared function selection

00: PB0 01: STPB 10: PB0 11: PB0

• PBS1 Register

Bit	7	6	5	4	3	2	1	0
Name	PBS17	PBS16	PBS15	PBS14	PBS13	PBS12	PBS11	PBS10
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 **PBS17~PBS16**: PB7 pin-shared function selection

00: PB7/INT1/PTCK01: OCPCOUT10: PB7/INT1/PTCK11: PB7/INT1/PTCK

Bit 5~4 **PBS15~PBS14**: PB6 pin-shared function selection

00: PB6 01: STP 10: PB6 11: PB6

Bit 3~2 **PBS13~PBS12**: PB5 pin-shared function selection

00: PB5 01: PWML 10: PB5 11: PB5

Bit 1~0 **PBS11~PBS10**: PB4 pin-shared function selection

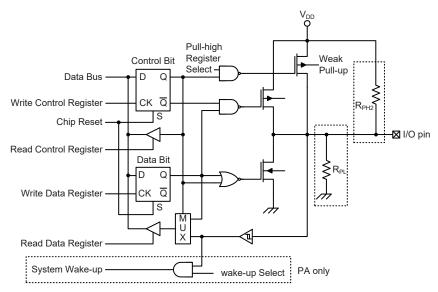
00: PB4 01: PWMH 10: PB4 11: PB4

PCS0 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	PCS03	PCS02	_	_
R/W	_	_	_	_	R/W	R/W	_	_
POR	_	_	_	_	0	0	_	

Bit 7~4 Unimplemented, read as "0"

Bit 3~2 PCS03~PCS02: PC1 pin-shared function selection


00: PC1/STPI 01: VREF 10: PC1/STPI 11: PC1/STPI

Bit 1~0 Unimplemented, read as "0"

I/O Pin Structure

The accompanying diagram illustrates the internal structure of the I/O logic function. As the exact logical construction of the I/O pin will differ from this drawing, it is supplied as a guide only to assist with the functional understanding of the I/O logic function. The wide range of pin-shared structures does not permit all types to be shown.

Note: The R_{PH2} resistor is only available for the PB3 and PB4 pins, while the R_{PL} resistor is only available for the PB5 pins.

Logic Function Input/Output Structure

Programming Considerations

Within the user program, one of the first things to consider is port initialisation. After a reset, all of the I/O data and port control registers will be set high. This means that all I/O pins will default to an input state, the level of which depends on the other connected circuitry and whether pull-high selections have been chosen. If the port control registers are then programmed to set some pins as outputs, these output pins will have an initial high output value unless the associated port data registers are first programmed. Selecting which pins are inputs and which are outputs can be achieved byte-wide by loading the correct values into the appropriate port control register or by programming individual bits in the port control register using the "SET [m].i" and "CLR [m].i" instructions. Note that when using these bit control instructions, a read-modify-write operation takes place. The microcontroller must first read in the data on the entire port, modify it to the required new bit values and then rewrite this data back to the output ports.

Port A has the additional capability of providing wake-up function. When the device is in the SLEEP or IDLE Mode, various methods are available to wake the device up. One of these is a high to low transition of any of the Port A pins. Single or multiple pins on Port A can be set to have this function.

Rev. 1.10 48 November 11, 2019

Timer Modules - TM

One of the most fundamental functions in any microcontroller devices is the ability to control and measure time. To implement time related functions the device includes several Timer Modules, generally abbreviated to the name TM. The TMs are multi-purpose timing units and serve to provide operations such as Timer/Counter, Input Capture, Compare Match Output and Single Pulse Output as well as being the functional unit for the generation of PWM signals. Each of the TMs has two interrupts. The addition of input and output pins for each TM ensures that users are provided with timing units with a wide and flexible range of features.

The common features of the different TM types are described here with more detailed information provided in the individual Standard and Periodic Type TM sections.

Introduction

The device contains two Timer Modules and each individual TM can be categorised as a certain type, namely the Standard Type TM or Periodic Type TM. Although similar in nature, the different TM types vary in their feature complexity. The common features to all of the Standard and Periodic type TMs will be described in this section and the detailed operation regarding each of the TM types will be described in separate sections. The main features and differences between the two types of TMs are summarised in the accompanying table.

TM Function	STM	PTM
Timer/Counter	√	√
Input Capture	√	√
Compare Match Output	√	√
PWM Output	√	√
Single Pulse Output	√	√
PWM Alignment	Edge	Edge
PWM Adjustment Period & Duty	Duty or Period	Duty or Period

TM Function Summary

TM Operation

The different types of TM offer a diverse range of functions, from simple timing operations to PWM signal generation. The key to understanding how the TM operates is to see it in terms of a free running count-up counter whose value is then compared with the value of pre-programmed internal comparators. When the free running count-up counter has the same value as the pre-programmed comparator, known as a compare match situation, a TM interrupt signal will be generated which can clear the counter and perhaps also change the condition of the TM output pin. The internal TM counter is driven by a user selectable clock source, which can be an internal clock or an external pin.

TM Clock Source

The clock source which drives the main counter in each TM can originate from various sources. The selection of the required clock source is implemented using the xTCK2~xTCK0 bits in the xTM control registers, where "x" stands for S or P type TM. The clock source can be a ratio of the system clock, f_{SYS}, or the internal high clock, f_H, the f_{SUB} clock source or the external xTCK pin. The xTCK pin clock source is used to allow an external signal to drive the TM as an external clock source for event counting.

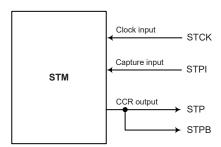
Rev. 1.10 49 November 11, 2019

TM Interrupts

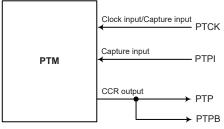
The Standard or Periodic type TM each has two internal interrupt, one for each of the internal comparator A or comparator P, which generate a TM interrupt when a compare match condition occurs. When a TM interrupt is generated, it can be used to clear the counter and also to change the state of the TM output pin.

TM External Pins

Each of the TMs, irrespective of what type, has two TM input pins, with the label xTCK and xTPI. One of the xTM input pin, xTCK, is essentially a clock source for the xTM and is selected using the xTCK2~xTCK0 bits in the xTMC0 register. This external TM input pin allows an external clock source to drive the internal TM. The xTCK input pin can be chosen to have either a rising or falling active edge. The xTCK pin is also used as the external trigger input pin in single pulse output mode for the xTM.


Another xTM input pin, xTPI, which is the capture input whose active edge can be a rising edge, a falling edge or both rising and falling edges and the active edge transition type is selected using the xTIO1~xTIO0 bits in the xTMC1 register. There is another capture input, PTCK, for PTM capture input mode, which can be used as the external trigger input source except the PTPI pin.

The TMs each has two output pins, xTP and xTPB, the xTPB is the inverted signal of the xTP output. When the TM is in the Compare Match Output Mode, these pins can be controlled by the TM to switch to a high or low level or to toggle when a compare match situation occurs. The external xTP and xTPB output pins are also the pins where the TM generates the PWM output waveform.

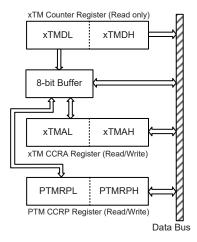

As the TM input/output pins are pin-shared with other functions, the TM input/output function must first be setup using relevant pin-shared function selection register. The details of the pin-shared function selection are described in the pin-shared function section.

ST	ГМ	PTM		
Input	Output	Input	Output	
STCK, STPI	STP, STPB	PTCK, PTPI	PTP, PTPB	

TM External Pins

STM Function Pin Block Diagram

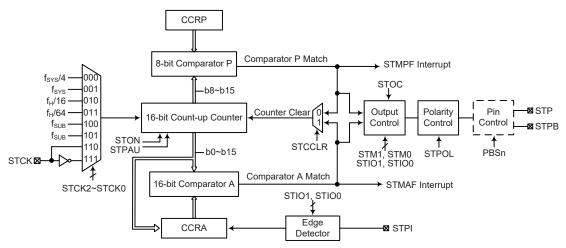
PTM Function Pin Block Diagram


Rev. 1.10 50 November 11, 2019

Programming Considerations

The TM Counter Registers and the Capture/Compare CCRA and CCRP registers, all have a low and high byte structure. The high bytes can be directly accessed, but as the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to note is that data transfer to and from the 8-bit buffer and its related low byte only takes place when a write or read operation to its corresponding high byte is executed.

As the CCRA and CCRP registers are implemented in the way shown in the following diagram and accessing these register pairs is carried out in a specific way as described above, it is recommended to use the "MOV" instruction to access the CCRA and CCRP low byte registers, named xTMAL and PTMRPL, using the following access procedures. Accessing the CCRA or CCRP low byte registers without following these access procedures will result in unpredictable values.


The following steps show the read and write procedures:

- · Writing Data to CCRA or CCRP
 - Step 1. Write data to Low Byte xTMAL or PTMRPL
 - Note that here data is only written to the 8-bit buffer.
 - Step 2. Write data to High Byte xTMAH or PTMRPH
 - Here data is written directly to the high byte registers and simultaneously data is latched from the 8-bit buffer to the Low Byte registers.
- Reading Data from the Counter Registers and CCRA or CCRP
 - Step 1. Read data from the High Byte xTMDH, xTMAH or PTMRPH
 - Here data is read directly from the High Byte registers and simultaneously data is latched from the Low Byte register into the 8-bit buffer.
 - Step 2. Read data from the Low Byte xTMDL, xTMAL or PTMRPL
 - This step reads data from the 8-bit buffer.

Standard Type TM - STM

The Standard Type TM contains five operating modes, which are Compare Match Output, Timer/Event Counter, Capture Input, Single Pulse Output and PWM Output modes. The Standard type TM can also be controlled with two external input pins and can drive two external output pins.

Note: 1. The STM external pins are pin-shared with other functions, so before using the STM function, ensure that the pin-shared function register has been set properly to enable the STM pin function. The STCK and STPI pins, if used, must also be set as an input by setting the corresponding bits in the port control register.

2. The STPB is the inverted signal of the STP.

16-bit Standard Type TM Block Diagram

Standard Type TM Operation

The size of Standard type TM is 16-bit wide and its core is a 16-bit count-up counter which is driven by a user selectable internal or external clock source. There are also two internal comparators with the names, Comparator A and Comparator P. These comparators will compare the value in the counter with CCRP and CCRA registers. The CCRP comparator is 8-bit wide whose value is compared with the highest 8 bits in the counter while the CCRA is the sixteen bits and therefore compares all counter bits.

The only way of changing the value of the 16-bit counter using the application program, is to clear the counter by changing the STON bit from low to high. The counter will also be cleared automatically by a counter overflow or a compare match with one of its associated comparators. When these conditions occur, an STM interrupt signal will also usually be generated. The Standard type TM can operate in a number of different operational modes, can be driven by different clock sources including an input pin and can also control an output pin. All operating setup conditions are selected using relevant internal registers.

Standard Type TM Register Description

Overall operation of the Standard type TM is controlled using a series of registers. A read only register pair exists to store the internal counter 16-bit value, while a read/write register pair exists to store the internal 16-bit CCRA value. The STMRP register is used to store the 8-bit CCRP bits. The remaining two registers are control registers which setup the different operating and control modes.

Rev. 1.10 52 November 11, 2019

Register	Bit										
Name	7	6	5	4	3	2	1	0			
STMC0	STPAU	STCK2	STCK1	STCK0	STON	_	_	_			
STMC1	STM1	STM0	STIO1	STIO0	STOC	STPOL	STDPX	STCCLR			
STMDL	D7	D6	D5	D4	D3	D2	D1	D0			
STMDH	D15	D14	D13	D12	D11	D10	D9	D8			
STMAL	D7	D6	D5	D4	D3	D2	D1	D0			
STMAH	D15	D14	D13	D12	D11	D10	D9	D8			
STMRP	D7	D6	D5	D4	D3	D2	D1	D0			

16-bit Standard Type TM Register List

STMC0 Register

Bit	7	6	5	4	3	2	1	0
Name	STPAU	STCK2	STCK1	STCK0	STON	_	_	_
R/W	R/W	R/W	R/W	R/W	R/W	_	_	_
POR	0	0	0	0	0	_	_	_

Bit 7 STPAU: STM counter pause control

0: Run 1: Pause

The counter can be paused by setting this bit high. Clearing the bit to zero restores normal counter operation. When in a Pause condition the STM will remain powered up and continue to consume power. The counter will retain its residual value when this bit changes from low to high and resume counting from this value when the bit changes to a low value again.

Bit 6~4 STCK2~STCK0: Select STM counter clock

 $\begin{array}{c} 000: \ f_{SYS}/4 \\ 001: \ f_{SYS} \\ 010: \ f_{H}/16 \\ 011: \ f_{H}/64 \\ 100: \ f_{SUB} \\ 101: \ f_{SUB} \end{array}$

110: STCK rising edge clock 111: STCK falling edge clock

These three bits are used to select the clock source for the STM. The external pin clock source can be chosen to be active on the rising or falling edge. The clock source f_{SYS} is the system clock, while f_H and f_{SUB} are other internal clocks, the details of which can be found in the oscillator section.

Bit 3 STON: STM counter on/off control

0: Off 1: On

This bit controls the overall on/off function of the STM. Setting the bit high enables the counter to run while clearing the bit to zero disables the STM. Clearing this bit to zero will stop the counter from counting and turn off the STM which will reduce its power consumption. When the bit changes state from low to high the internal counter value will be reset to zero, however when the bit changes from high to low, the internal counter will retain its residual value until the bit returns high again. If the STM is in the Compare Match Output Mode or the PWM Output Mode or Single Pulse Output Mode then the STM output pin will be reset to its initial condition, as specified by the STOC bit, when the STON bit changes from low to high.

Bit 2~0 Unimplemented, read as "0"

STMC1 Register

Bit	7	6	5	4	3	2	1	0
Name	STM1	STM0	STIO1	STIO0	STOC	STPOL	STDPX	STCCLR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 **STM1~STM0**: Select STM operating mode

00: Compare Match Output Mode

01: Capture Input Mode

10: PWM Output Mode or Single Pulse Output Mode

11: Timer/Counter Mode

These bits setup the required operating mode for the STM. To ensure reliable operation the STM should be switched off before any changes are made to the STM1 and STM0 bits. In the Timer/Counter Mode, the STM output pin state is undefined.

Bit 5~4 STIO1~STIO0: Select STM function

Compare Match Output Mode

00: No change 01: Output low 10: Output high

11: Toggle output

PWM Output Mode/Single Pulse Output Mode

00: PWM output inactive state

01: PWM output active state

10: PWM output

11: Single pulse output

Capture Input Mode

00: Input capture at rising edge of STPI

01: Input capture at falling edge of STPI

10: Input capture at rising/falling edge of STPI

11: Input capture disabled

Timer/Counter Mode

Unused

These two bits are used to determine how the STM output pin changes state when a certain condition is reached. The function that these bits select depends upon in which mode the STM is running.

In the Compare Match Output Mode, the STIO1 and STIO0 bits determine how the STM output pin changes state when a compare match occurs from the Comparator A. The STM output pin can be setup to switch high, switch low or to toggle its present state when a compare match occurs from the Comparator A. When the bits are both zero, then no change will take place on the output. The initial value of the STM output pin should be setup using the STOC bit in the STMC1 register. Note that the output level requested by the STIO1 and STIO0 bits must be different from the initial value setup using the STOC bit otherwise no change will occur on the STM output pin when a compare match occurs. After the STM output pin changes state, it can be reset to its initial level by changing the level of the STON bit from low to high.

In the PWM Output Mode, the STIO1 and STIO0 bits determine how the STM output pin changes state when a certain compare match condition occurs. The PWM output function is modified by changing these two bits. It is necessary to only change the values of the STIO1 and STIO0 bits only after the STM has been switched off. Unpredictable PWM outputs will occur if the STIO1 and STIO0 bits are changed when the STM is running.

Rev. 1.10 54 November 11, 2019

Bit 3 STOC: STM STP output control

Compare Match Output Mode

0: Initial low 1: Initial high

PWM Output Mode/Single Pulse Output Mode

0: Active low 1: Active high

This is the output control bit for the STM output pin. Its operation depends upon whether STM is being used in the Compare Match Output Mode or in the PWM Output Mode/ Single Pulse Output Mode. It has no effect if the STM is in the Timer/Counter Mode. In the Compare Match Output Mode it determines the logic level of the STM output pin before a compare match occurs. In the PWM Output Mode it determines if the PWM signal is active high or active low. In the Single Pulse Output Mode it determines the logic level of the STM output pin when the STON bit changes from low to high.

Bit 2 STPOL: STM STP output polarity control

0: Non-invert

1: Invert

This bit controls the polarity of the STP output pin. When the bit is set high the STM output pin will be inverted and not inverted when the bit is zero. It has no effect if the STM is in the Timer/Counter Mode.

Bit 1 STDPX: STM PWM duty/period control

0: CCRP – period; CCRA – duty 1: CCRP – duty; CCRA – period

This bit determines which of the CCRA and CCRP registers are used for period and duty control of the PWM waveform.

Bit 0 STCCLR: STM counter clear condition selection

0: Comparator P match

1: Comparator A match

This bit is used to select the method which clears the counter. Remember that the Standard type TM contains two comparators, Comparator A and Comparator P, either of which can be selected to clear the internal counter. With the STCCLR bit set high, the counter will be cleared when a compare match occurs from the Comparator A. When the bit is low, the counter will be cleared when a compare match occurs from the Comparator P or with a counter overflow. A counter overflow clearing method can only be implemented if the CCRP bits are all cleared to zero. The STCCLR bit is not used in the PWM Output, Single Pulse Output or Capture Input Mode.

STMDL Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R	R	R	R	R	R	R	R
POR	0	0	0	0	0	0	0	0

Bit $7 \sim 0$ **D7~D0**: STM counter low byte register bit $7 \sim$ bit 0

STM 16-bit counter bit $7 \sim bit 0$

• STMDH Register

Bit	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8
R/W	R	R	R	R	R	R	R	R
POR	0	0	0	0	0	0	0	0

Bit $7 \sim 0$ **D15~D8:** STM counter high byte register bit $7 \sim$ bit 0

STM 16-bit counter bit 15 ~ bit 8

STMAL Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D7~D0:** STM CCRA low byte register bit $7 \sim$ bit 0 STM 16-bit CCRA bit $7 \sim$ bit 0

STMAH Register

Bit	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D15~D8:** STM CCRA high byte register bit $7 \sim$ bit 0 STM 16-bit CCRA bit $15 \sim$ bit $8 \sim$

STMRP Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D7~D0:** STM CCRP 8-bit register, compared with the STM counter bit 15 ~ bit 8 Comparator P match period

0: 65536 STM clocks

1~255: (1~255)×256 STM clocks

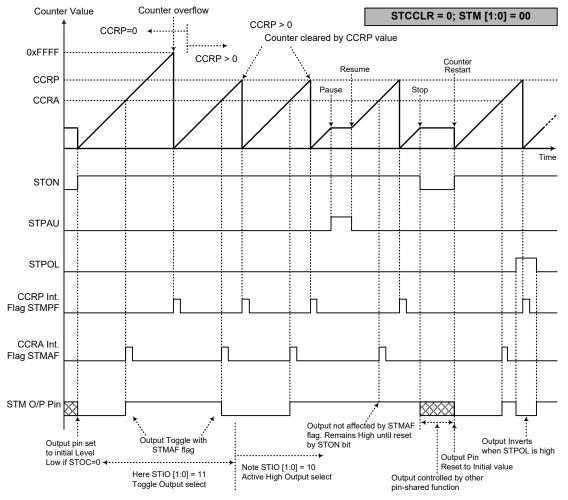
These eight bits are used to setup the value on the internal CCRP 8-bit register, which are then compared with the internal counter's highest eight bits. The result of this comparison can be selected to clear the internal counter if the STCCLR bit is set to zero. Clearing the STCCLR bit to zero ensures that a compare match with the CCRP values will reset the internal counter. As the CCRP bits are only compared with the highest eight counter bits, the compare values exist in 256 clock cycle multiples. Clearing all eight bits to zero is in effect allowing the counter to overflow at its maximum value.

Standard Type TM Operation Modes

The Standard type TM can operate in one of five operating modes, Compare Match Output Mode, PWM Output Mode, Single Pulse Output Mode, Capture Input Mode or Timer/Counter Mode. The operating mode is selected using the STM1 and STM0 bits in the STMC1 register.

Compare Match Output Mode

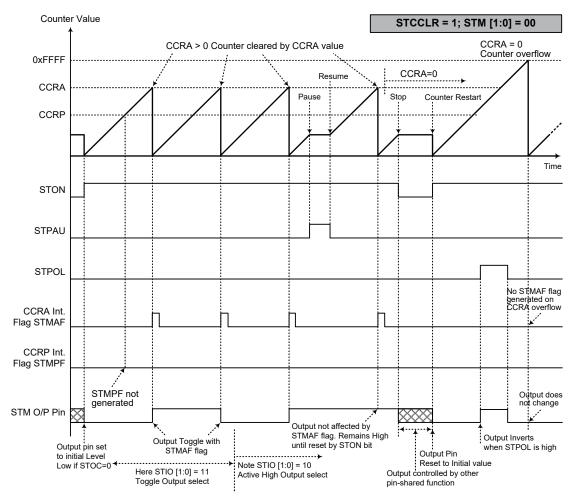
To select this mode, bits STM1 and STM0 in the STMC1 register, should be set to 00 respectively. In this mode once the counter is enabled and running it can be cleared by three methods. These are a counter overflow, a compare match from Comparator A and a compare match from Comparator P. When the STCCLR bit is low, there are two ways in which the counter can be cleared. One is when a compare match from Comparator P, the other is when the CCRP bits are all zero which allows the counter to overflow. Here both STMAF and STMPF interrupt request flags for Comparator A and Comparator P respectively, will both be generated.


If the STCCLR bit in the STMC1 register is high then the counter will be cleared when a compare match occurs from Comparator A. However, here only the STMAF interrupt request flag will be generated even if the value of the CCRP bits is less than that of the CCRA registers. Therefore when

Rev. 1.10 56 November 11, 2019

STCCLR is high no STMPF interrupt request flag will be generated. In the Compare Match Output Mode, the CCRA can not be set to "0".

As the name of the mode suggests, after a comparison is made, the STM output pin, will change state. The STM output pin condition however only changes state when an STMAF interrupt request flag is generated after a compare match occurs from Comparator A. The STMPF interrupt request flag, generated from a compare match occurs from Comparator P, will have no effect on the STM output pin. The way in which the STM output pin changes state are determined by the condition of the STIO1 and STIO0 bits in the STMC1 register. The STM output pin can be selected using the STIO1 and STIO0 bits to go high, to go low or to toggle from its present condition when a compare match occurs from Comparator A. The initial condition of the STM output pin, which is setup after the STON bit changes from low to high, is setup using the STOC bit. Note that if the STIO1 and STIO0 bits are zero then no pin change will take place.



Compare Match Output Mode - STCCLR=0

Note: 1. With STCCLR=0 a Comparator P match will clear the counter

- 2. The STM output pin is controlled only by the STMAF flag
- 3. The output pin is reset to itsinitial state by an STON bit rising edge

Compare Match Output Mode - STCCLR=1

Note: 1. With STCCLR=1 a Comparator A match will clear the counter

- 2. The STM output pin is controlled only by the STMAF flag
- 3. The output pin is reset to its initial state by an STON bit rising edge
- 4. An STMPF flag is not generated when STCCLR=1

Rev. 1.10 58 November 11, 2019

Timer/Counter Mode

To select this mode, bits STM1 and STM0 in the STMC1 register should be set to 11 respectively. The Timer/Counter Mode operates in an identical way to the Compare Match Output Mode generating the same interrupt flags. The exception is that in the Timer/Counter Mode the STM output pin is not used. Therefore the above description and Timing Diagrams for the Compare Match Output Mode can be used to understand its function. As the STM output pin is not used in this mode, the pin can be used as a normal I/O pin or other pin-shared function.

PWM Output Mode

To select this mode, bits STM1 and STM0 in the STMC1 register should be set to 10 respectively and also the STIO1 and STIO0 bits should be set to 10 respectively. The PWM function within the STM is useful for applications which require functions such as motor control, heating control, illumination control etc. By providing a signal of fixed frequency but of varying duty cycle on the STM output pin, a square wave AC waveform can be generated with varying equivalent DC RMS values.

As both the period and duty cycle of the PWM waveform can be controlled, the choice of generated waveform is extremely flexible. In the PWM Output mode, the STCCLR bit has no effect as the PWM period. Both of the CCRA and CCRP registers are used to generate the PWM waveform, one register is used to clear the internal counter and thus control the PWM waveform frequency, while the other one is used to control the duty cycle. Which register is used to control either frequency or duty cycle is determined using the STDPX bit in the STMC1 register. The PWM waveform frequency and duty cycle can therefore be controlled by the values in the CCRA and CCRP registers.

An interrupt flag, one for each of the CCRA and CCRP, will be generated when a compare match occurs from either Comparator A or Comparator P. The STOC bit in the STMC1 register is used to select the required polarity of the PWM waveform while the two STIO1 and STIO0 bits are used to enable the PWM output or to force the STM output pin to a fixed high or low level. The STPOL bit is used to reverse the polarity of the PWM output waveform.

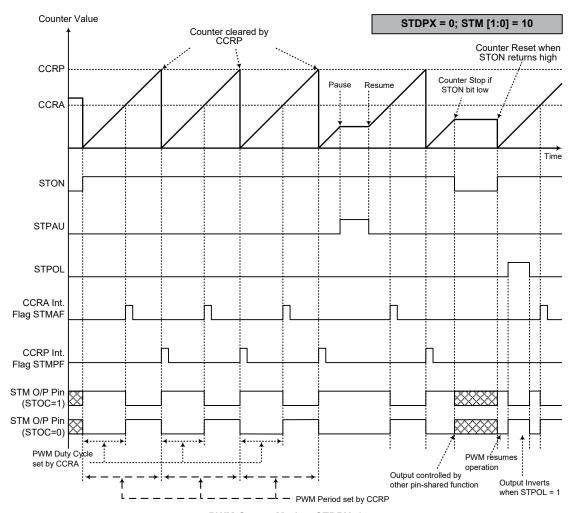
• 16-bit STM, PWM Output Mode, Edge-aligned Mode, STDPX=0

CCRP	1~255	0			
Period	CCRP×256	65536			
Duty	CCRA				

If f_{SYS}=7.5MHz, TM clock source is f_{SYS}/4, CCRP=2 and CCRA=128,

The STM PWM output frequency= $(f_{SYS}/4)/(2\times256)=f_{SYS}/2048=3.6621$ kHz, duty= $128/(2\times256)=25\%$.

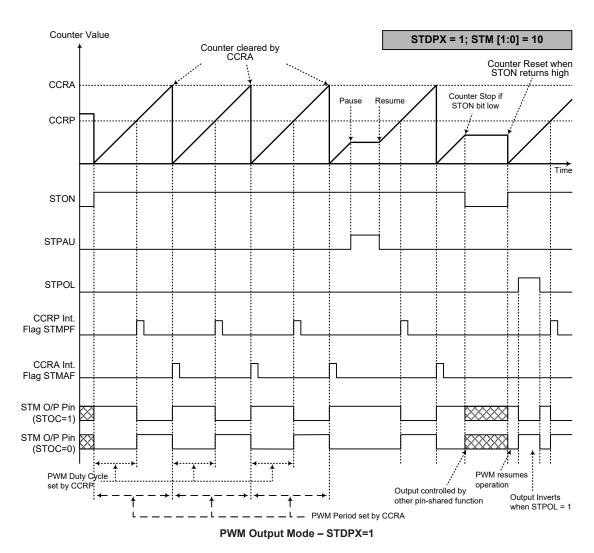
If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the PWM output duty is 100%.


• 16-bit STM, PWM Output Mode, Edge-aligned Mode, STDPX=1

CCRP	1~255	0			
Period	CCRA				
Duty	CCRP×256	65536			

The PWM output period is determined by the CCRA register value together with the TM clock while the PWM duty cycle is defined by the CCRP register value except when the CCRP value is equal to 0.

Rev. 1.10 59 November 11, 2019


PWM Output Mode - STDPX=0

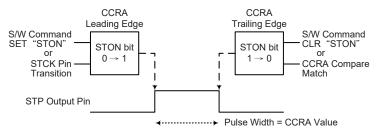
Note: 1. Here STDPX=0 - Counter cleared by CCRP

- 2. A counter clear sets the PWM Period
- 3. The internal PWM function continues running even when STIO [1:0]=00 or 01
- 4. The STCCLR bit has no influence on PWM operation

Rev. 1.10 60 November 11, 2019

Note: 1. Here STDPX=1 - Counter cleared by CCRA

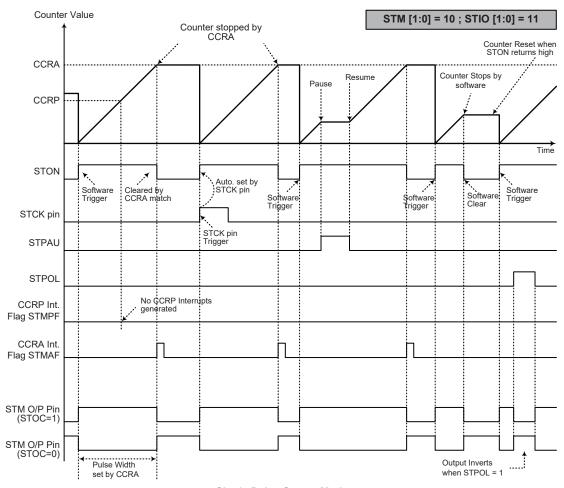
- 2. A counter clear sets the PWM Period
- 3. The internal PWM function continues even when STIO [1:0]=00 or 01
- 4. The STCCLR bit has no influence on PWM operation



Single Pulse Output Mode

To select this mode, bits STM1 and STM0 in the STMC1 register should be set to 10 respectively and also the STIO1 and STIO0 bits should be set to 11 respectively. The Single Pulse Output Mode, as the name suggests, will generate a single shot pulse on the STM output pin.

The trigger for the pulse output leading edge is a low to high transition of the STON bit, which can be implemented using the application program. However in the Single Pulse Output Mode, the STON bit can also be made to automatically change from low to high using the external STCK pin, which will in turn initiate the Single Pulse output. When the STON bit transitions to a high level, the counter will start running and the pulse leading edge will be generated. The STON bit should remain high when the pulse is in its active state. The generated pulse trailing edge will be generated when the STON bit is cleared to zero, which can be implemented using the application program or when a compare match occurs from Comparator A.


However a compare match from Comparator A will also automatically clear the STON bit and thus generate the Single Pulse output trailing edge. In this way the CCRA value can be used to control the pulse width. A compare match from Comparator A will also generate an STM interrupt. The counter can only be reset back to zero when the STON bit changes from low to high when the counter restarts. In the Single Pulse Output Mode CCRP is not used. The STCCLR and STDPX bits are not used in this Mode.

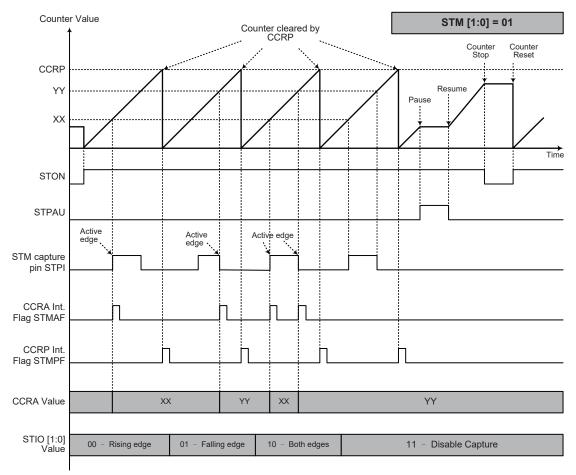
Single Pulse Generation

Rev. 1.10 62 November 11, 2019

Single Pulse Output Mode

Note: 1. Counter stopped by CCRA

- 2. CCRP is not used
- 3. The pulse triggered by the STCK pin or by setting the STON bit high
- 4. An STCK pin active edge will automatically set the STON bit high
- 5. In the Single Pulse Output Mode, STIO [1:0] must be set to 11 and can not be changed

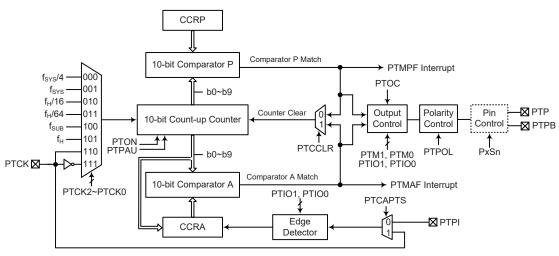

Capture Input Mode

To select this mode bits STM1 and STM0 in the STMC1 register should be set to 01 respectively. This mode enables external signals to capture and store the present value of the internal counter and can therefore be used for applications such as pulse width measurements. The external signal is supplied on the STPI pin, whose active edge can be a rising edge, a falling edge or both rising and falling edges; the active edge transition type is selected using the STIO1 and STIO0 bits in the STMC1 register. The counter is started when the STON bit changes from low to high which is initiated using the application program.

When the required edge transition appears on the STPI pin the present value in the counter will be latched into the CCRA registers and an STM interrupt generated. Irrespective of what events occur on the STPI pin the counter will continue to free run until the STON bit changes from high to low. When a CCRP compare match occurs the counter will reset back to zero; in this way the CCRP value can be used to control the maximum counter value. When a CCRP compare match occurs from Comparator P, an STM interrupt will also be generated. Counting the number of overflow interrupt signals from the CCRP can be a useful method in measuring long pulse widths. The STIO1 and STIO0 bits can select the active trigger edge on the STPI pin to be a rising edge, falling edge or both edge types. If the STIO1 and STIO0 bits are both set high, then no capture operation will take place irrespective of what happens on the STPI pin, however it must be noted that the counter will continue to run. As the STPI pin is pin shared with other functions, care must be taken if the STM is in the Capture Input Mode. This is because if the pin is setup as an output, then any transitions on this pin may cause an input capture operation to be executed. The STCCLR and STDPX bits are not used in this Mode.

Rev. 1.10 64 November 11, 2019

Capture Input Mode


Note: 1. STM [1:0]=01 and active edge set by the STIO[1:0] bits

- 2. An STM Capture input pin active edge transfers the counter value to CCRA
- 3. STCCLR bit not used
- 4. No output function STOC and STPOL bits are not used
- 5. CCRP determines the counter value and the counter has a maximum count value when CCRP is equal to zero

Periodic Type TM - PTM

The Periodic Type TM contains five operating modes, which are Compare Match Output, Timer/Event Counter, Capture Input, Single Pulse Output and PWM Output modes. The Periodic Type TM can also be controlled with two external input pins and can drive two external output pin.

Note: 1. The PTM external pins are pin-shared with other functions, so before using the PTM function, ensure that the pin-shared function register has been set properly to enable the PTM pin function. The PTCK and PTPI pins, if used, must also be set as an input by setting the corresponding bits in the port control register.

2. The PTPB is the inverted signal of the PTP.

10-bit Periodic Type TM Block Diagram

Periodic Type TM Operation

The size of Periodic Type TM is 10-bit wide and its core is a 10-bit count-up counter which is driven by a user selectable internal or external clock source. There are also two internal comparators with the names, Comparator A and Comparator P. These comparators will compare the value in the counter with CCRP and CCRA registers. The CCRP and CCRA comparators are 10-bit wide whose value is respectively compared with all counter bits.

The only way of changing the value of the 10-bit counter using the application program is to clear the counter by changing the PTON bit from low to high. The counter will also be cleared automatically by a counter overflow or a compare match with one of its associated comparators. When these conditions occur, a PTM interrupt signal will also usually be generated. The Periodic Type TM can operate in a number of different operational modes, can be driven by different clock sources including an input pin and can also control the output pins. All operating setup conditions are selected using relevant internal registers.

Periodic Type TM Register Description

Overall operation of the Periodic Type TM is controlled using a series of registers. A read only register pair exists to store the internal counter 10-bit value, while two read/write register pairs exist to store the internal 10-bit CCRA and CCRP value. The remaining two registers are control registers which setup the different operating and control modes.

Rev. 1.10 66 November 11, 2019

Register		Bit									
Name	7	6	5	4	3	2	1	0			
PTMC0	PTPAU	PTCK2	PTCK1	PTCK0	PTON	_	_	_			
PTMC1	PTM1	PTM0	PTIO1	PTIO0	PTOC	PTPOL	PTCAPTS	PTCCLR			
PTMDL	D7	D6	D5	D4	D3	D2	D1	D0			
PTMDH	_	_	_	_	_	_	D9	D8			
PTMAL	D7	D6	D5	D4	D3	D2	D1	D0			
PTMAH	_	_	_	_	_	_	D9	D8			
PTMRPL	D7	D6	D5	D4	D3	D2	D1	D0			
PTMRPH	_	_	_	_	_	_	D9	D8			

10-bit Periodic Type TM Register List

• PTMC0 Register

Bit	7	6	5	4	3	2	1	0
Name	PTPAU	PTCK2	PTCK1	PTCK0	PTON	_	_	_
R/W	R/W	R/W	R/W	R/W	R/W	_	_	_
POR	0	0	0	0	0	_	_	_

Bit 7 **PTPAU**: PTM counter pause control

0: Run 1: Pause

The counter can be paused by setting this bit high. Clearing the bit to zero restores normal counter operation. When in a Pause condition the PTM will remain powered up and continue to consume power. The counter will retain its residual value when this bit changes from low to high and resume counting from this value when the bit changes to a low value again.

Bit 6~4 PTCK2~PTCK0: Select PTM counter clock

 $\begin{array}{c} 000: \, f_{SYS}/4 \\ 001: \, f_{SYS} \\ 010: \, f_{H}/16 \\ 011: \, f_{H}/64 \\ 100: \, f_{SUB} \\ 101: \, f_{H} \end{array}$

110: PTCK rising edge clock111: PTCK falling edge clock

These three bits are used to select the clock source for the PTM. The external pin clock source can be chosen to be active on the rising or falling edge. The clock source f_{SYS} is the system clock, while f_H and f_{SUB} are other internal clocks, the details of which can be found in the oscillator section.

Bit 3 **PTON**: PTM counter on/off control

0: Off 1: On

This bit controls the overall on/off function of the PTM. Setting the bit high enables the counter to run while clearing the bit to zero disables the PTM. Clearing this bit to zero will stop the counter from counting and turn off the PTM which will reduce its power consumption. When the bit changes state from low to high the internal counter value will be reset to zero, however when the bit changes from high to low, the internal counter will retain its residual value until the bit returns high again. If the PTM is in the Compare Match Output Mode, PWM Output Mode or Single Pulse Output Mode then the PTM output pin will be reset to its initial condition, as specified by the PTOC bit, when the PTON bit changes from low to high.

Bit 2~0 Unimplemented, read as "0"

• PTMC1 Register

Bit	7	6	5	4	3	2	1	0
Name	PTM1	PTM0	PTIO1	PTIO0	PTOC	PTPOL	PTCAPTS	PTCCLR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 **PTM1~PTM0**: Select PTM operating mode

00: Compare Match Output Mode

01: Capture Input Mode

10: PWM Output Mode or Single Pulse Output Mode

11: Timer/Counter Mode

These bits setup the required operating mode for the PTM. To ensure reliable operation the PTM should be switched off before any changes are made to the PTM1 and PTM0 bits. In the Timer/Counter Mode, the PTM output pin state is undefined.

Bit 5~4 **PTIO1~PTIO0**: Select PTM function

Compare Match Output Mode

00: No change 01: Output low

10: Output high 11: Toggle output

PWM Output Mode/Single Pulse Output Mode

00: PWM output inactive state

01: PWM output active state

10: PWM output

11: Single Pulse Output

Capture Input Mode

00: Input capture at rising edge of PTPI or PTCK

01: Input capture at falling edge of PTPI or PTCK

10: Input capture at rising/falling edge of PTPI or PTCK

11: Input capture disabled

Timer/Counter Mode

Unused

These two bits are used to determine how the PTM output pin changes state when a certain condition is reached. The function that these bits select depends upon in which mode the PTM is running.

In the Compare Match Output Mode, the PTIO1 and PTIO0 bits determine how the PTM output pin changes state when a compare match occurs from the Comparator A. The PTM output pin can be setup to switch high, switch low or to toggle its present state when a compare match occurs from the Comparator A. When the bits are both zero, then no change will take place on the output. The initial value of the PTM output pin should be setup using the PTOC bit in the PTMC1 register. Note that the output level requested by the PTIO1 and PTIO0 bits must be different from the initial value setup using the PTOC bit otherwise no change will occur on the PTM output pin when a compare match occurs. After the PTM output pin changes state, it can be reset to its initial level by changing the level of the PTON bit from low to high.

In the PWM Output Mode, the PTIO1 and PTIO0 bits determine how the TM output pin changes state when a certain compare match condition occurs. The PTM output function is modified by changing these two bits. It is necessary to only change the values of the PTIO1 and PTIO0 bits only after the PTM has been switched off. Unpredictable PWM outputs will occur if the PTIO1 and PTIO0 bits are changed when the PTM is running.

Rev. 1.10 68 November 11, 2019

Bit 3 **PTOC**: PTM PTP output control

Compare Match Output Mode

0: Initial low 1: Initial high

PWM Output Mode/Single Pulse Output Mode

0: Active low 1: Active high

This is the output control bit for the PTM output pin. Its operation depends upon whether PTM is being used in the Compare Match Output Mode or in the PWM Output Mode/ Single Pulse Output Mode. It has no effect if the PTM is in the Timer/Counter Mode. In the Compare Match Output Mode it determines the logic level of the PTM output pin before a compare match occurs. In the PWM Output Mode it determines if the PWM signal is active high or active low. In the Single Pulse Output Mode it determines the logic level of the PTM output pin when PTON bit changes from low to high.

Bit 2 **PTPOL**: PTM PTP output polarity control

0: Non-invert

1: Invert

This bit controls the polarity of the PTP output pin. When the bit is set high the PTM output pin will be inverted and not inverted when the bit is zero. It has no effect if the PTM is in the Timer/Counter Mode.

Bit 1 **PTCAPTS**: PTM capture trigger source selection

0: From PTPI pin 1: From PTCK pin

Bit 0 **PTCCLR**: PTM counter clear condition selection

0: Comparator P match1: Comparator A match

This bit is used to select the method which clears the counter. Remember that the Periodic type TM contains two comparators, Comparator A and Comparator P, either of which can be selected to clear the internal counter. With the PTCCLR bit set high, the counter will be cleared when a compare match occurs from the Comparator A. When the bit is low, the counter will be cleared when a compare match occurs from the Comparator P or with a counter overflow. A counter overflow clearing method can only be implemented if the CCRP bits are all cleared to zero. The PTCCLR bit is not used in the PWM Output Mode, Single Pulse Output Mode or Capture Input Mode.

PTMDL Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R	R	R	R	R	R	R	R
POR	0	0	0	0	0	0	0	0

Bit $7 \sim 0$ **D7~D0**: PTM counter low byte register bit $7 \sim$ bit 0

PTM 10-bit counter bit $7 \sim \text{bit } 0$

PTMDH Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	D9	D8
R/W	_	_	_	_	_	_	R	R
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit $1\sim 0$ **D9~D8**: PTM counter high byte register bit $1\sim$ bit 0

PTM 10-bit counter bit 9 ~ bit 8

• PTMAL Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D7~D0**: PTM CCRA low byte register bit $7 \sim$ bit 0 PTM 10-bit CCRA bit $7 \sim$ bit 0

PTMAH Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	D9	D8
R/W	_	_	_	_	_	_	R/W	R/W
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit $1\sim 0$ **D9\simD8**: PTM CCRA high byte register bit $1\sim$ bit 0

PTM 10-bit CCRA bit 9 ~ bit 8

• PTMRPL Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit $7\sim 0$ **D7\simD0**: PTM CCRP low byte register bit $7\sim$ bit 0 PTM 10-bit CCRP bit $7\sim$ bit 0

• PTMRPH Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	D9	D8
R/W	_	_	_	_	_	_	R/W	R/W
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

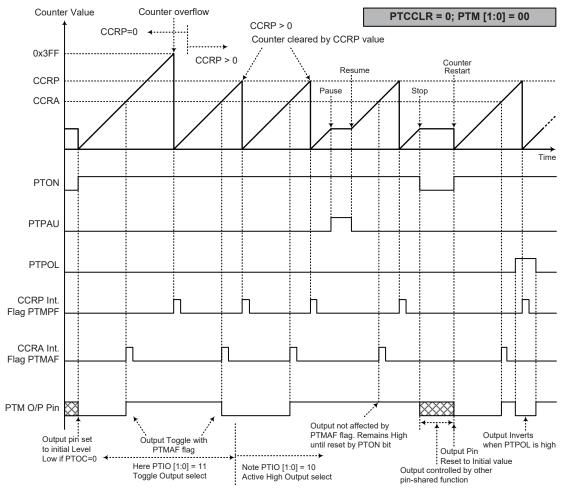
Bit $1\sim 0$ **D9~D8**: PTM CCRP high byte register bit $1\sim$ bit 0

PTM 10-bit CCRP bit 9 ~ bit 8

Periodic Type TM Operation Modes

The Periodic Type TM can operate in one of five operating modes, Compare Match Output Mode, PWM Output Mode, Single Pulse Output Mode, Capture Input Mode or Timer/Counter Mode. The operating mode is selected using the PTM1 and PTM0 bits in the PTMC1 register.

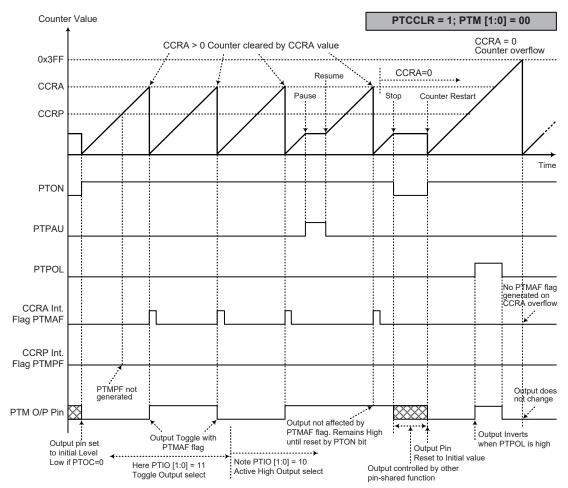
Compare Match Output Mode


To select this mode, bits PTM1 and PTM0 in the PTMC1 register, should be set to 00 respectively. In this mode once the counter is enabled and running it can be cleared by three methods. These are a counter overflow, a compare match from Comparator A and a compare match from Comparator P. When the PTCCLR bit is low, there are two ways in which the counter can be cleared. One is when a compare match from Comparator P, the other is when the CCRP bits are all zero which allows the counter to overflow. Here both PTMAF and PTMPF interrupt request flags for Comparator A and Comparator P respectively, will both be generated.

Rev. 1.10 70 November 11, 2019

If the PTCCLR bit in the PTMC1 register is high then the counter will be cleared when a compare match occurs from Comparator A. However, here only the PTMAF interrupt request flag will be generated even if the value of the CCRP bits is less than that of the CCRA registers. Therefore when PTCCLR is high no PTMPF interrupt request flag will be generated. In the Compare Match Output Mode, the CCRA can not be cleared to "0". If the CCRA bits are all zero, the counter will overflow when its reaches its maximum 10-bit, 3FF Hex, value, however here the PTMnAF interrupt request flag will not be generated.

As the name of the mode suggests, after a comparison is made, the PTM output pin will change state. The PTM output pin condition however only changes state when a PTMAF interrupt request flag is generated after a compare match occurs from Comparator A. The PTMPF interrupt request flag, generated from a compare match occurs from Comparator P, will have no effect on the PTM output pin. The way in which the PTM output pin changes state are determined by the condition of the PTIO1 and PTIO0 bits in the PTMC1 register. The PTM output pin can be selected using the PTIO1 and PTIO0 bits to go high, to go low or to toggle from its present condition when a compare match occurs from Comparator A. The initial condition of the PTM output pin, which is setup after the PTON bit changes from low to high, is setup using the PTOC bit. Note that if the PTIO1 and PTIO0 bits are zero then no pin change will take place.



Compare Match Output Mode - PTCCLR=0

Note: 1. With PTCCLR=0, a Comparator P match will clear the counter

- 2. The PTM output pin is controlled only by the PTMAF flag
- 3. The output pin is reset to its initial state by a PTON bit rising edge

Compare Match Output Mode - PTCCLR=1

Note: 1. With PTCCLR=1, a Comparator A match will clear the counter

- 2. The PTM output pin is controlled only by the PTMAF flag
- 3. The output pin is reset to its initial state by a PTON bit rising edge
- 4. A PTMPF flag is not generated when PTCCLR=1

Rev. 1.10 72 November 11, 2019

Timer/Counter Mode

To select this mode, bits PTM1 and PTM0 in the PTMC1 register should be set to 11 respectively. The Timer/Counter Mode operates in an identical way to the Compare Match Output Mode generating the same interrupt flags. The exception is that in the Timer/Counter Mode the PTM output pin is not used. Therefore the above description and Timing Diagrams for the Compare Match Output Mode can be used to understand its function. As the PTM output pin is not used in this mode, the pin can be used as a normal I/O pin or other pin-shared function.

PWM Output Mode

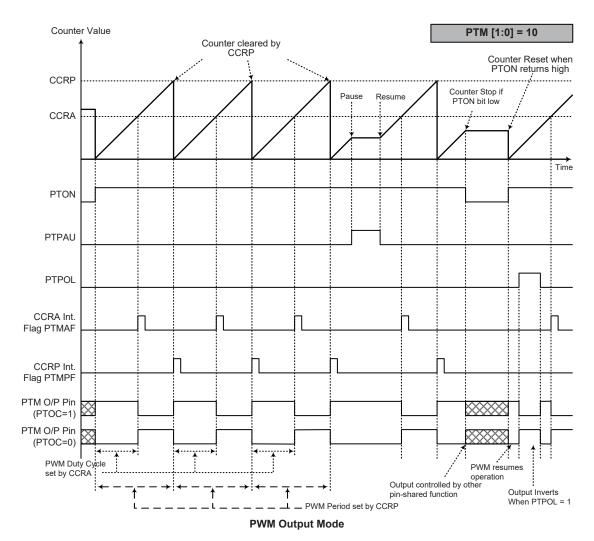
To select this mode, bits PTM1 and PTM0 in the PTMC1 register should be set to 10 respectively and also the PTIO1 and PTIO0 bits should be set to 10 respectively. The PWM function within the PTM is useful for applications which require functions such as motor control, heating control, illumination control, etc. By providing a signal of fixed frequency but of varying duty cycle on the PTM output pin, a square wave AC waveform can be generated with varying equivalent DC RMS values.

As both the period and duty cycle of the PWM waveform can be controlled, the choice of generated waveform is extremely flexible. In the PWM Output mode, the PTCCLR bit has no effect as the PWM period. Both of the CCRP and CCRA registers are used to generate the PWM waveform, one register is used to clear the internal counter and thus control the PWM waveform frequency, while the other one is used to control the duty cycle. The PWM waveform frequency and duty cycle can therefore be controlled by the values in the CCRA and CCRP registers.

An interrupt flag, one for each of the CCRA and CCRP, will be generated when a compare match occurs from either Comparator A or Comparator P. The PTOC bit in the PTMC1 register is used to select the required polarity of the PWM waveform while the two PTIO1 and PTIO0 bits are used to enable the PWM output or to force the PTM output pin to a fixed high or low level. The PTPOL bit is used to reverse the polarity of the PWM output waveform.

• 10-bit PTM, PWM Output Mode, Edge-aligned Mode

CCRP	1~1023	0				
Period	1~1023	1024				
Duty	CCRA					


If f_{SYS}=7.5MHz, PTM clock source select f_{SYS}/4, CCRP=512 and CCRA=128,

The PTM PWM output frequency= $(f_{SYS}/4)/512=f_{SYS}/2048=3.6621$ kHz, duty=128/512=25%.

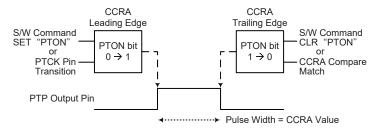
If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the PWM output duty is 100%.

Rev. 1.10 73 November 11, 2019

Note: 1. The counter is cleared by CCRP

- 2. A counter clear sets the PWM Period
- 3. The internal PWM function continues running even when PTIO [1:0]=00 or 01
- 4. The PTCCLR bit has no influence on PWM operation

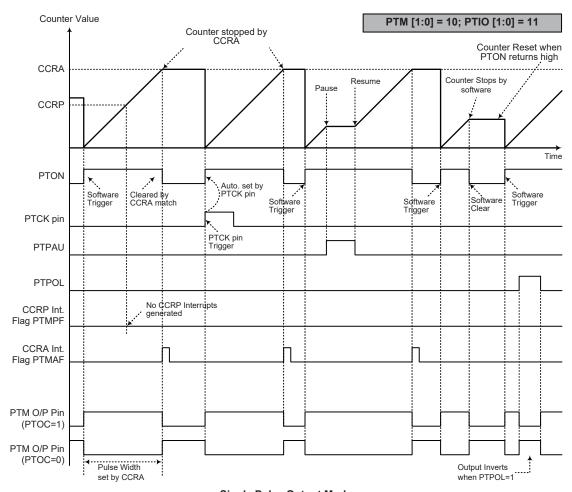
Rev. 1.10 74 November 11, 2019



Single Pulse Output Mode

To select this mode, bits PTM1 and PTM0 in the PTMC1 register should be set to 10 respectively and also the PTIO1 and PTIO0 bits should be set to 11 respectively. The Single Pulse Output Mode, as the name suggests, will generate a single shot pulse on the PTM output pin.

The trigger for the pulse output leading edge is a low to high transition of the PTON bit, which can be implemented using the application program. However in the Single Pulse Output Mode, the PTON bit can also be made to automatically change from low to high using the external PTCK pin, which will in turn initiate the Single Pulse output. When the PTON bit transitions to a high level, the counter will start running and the pulse leading edge will be generated. The PTON bit should remain high when the pulse is in its active state. The generated pulse trailing edge will be generated when the PTON bit is cleared to zero, which can be implemented using the application program or when a compare match occurs from Comparator A.


However a compare match from Comparator A will also automatically clear the PTON bit and thus generate the Single Pulse output trailing edge. In this way the CCRA value can be used to control the pulse width. A compare match from Comparator A will also generate a PTM interrupt. The counter can only be reset back to zero when the PTON bit changes from low to high when the counter restarts. In the Single Pulse Output Mode CCRP is not used. The PTCCLR is not used in this Mode.

Single Pulse Generation

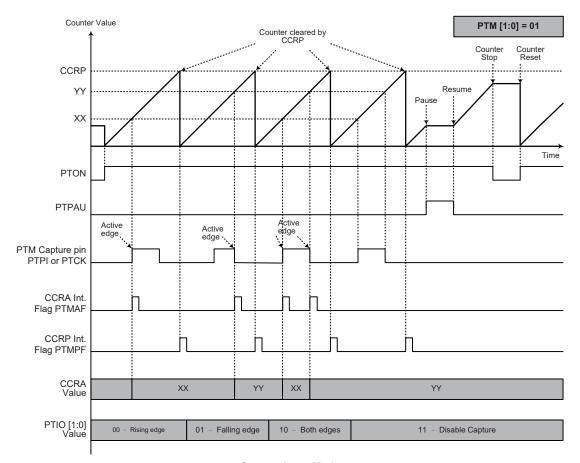
Rev. 1.10 75 November 11, 2019

Single Pulse Output Mode

Note: 1. Counter stopped by CCRA

- 2. CCRP is not used
- 3. The pulse triggered by the PTCK pin or by setting the PTON bit high
- 4. A PTCK pin active edge will automatically set the PTON bit high
- 5. In the Single Pulse Output Mode, PTIO [1:0] must be set to 11 and can not be changed

Rev. 1.10 76 November 11, 2019


Capture Input Mode

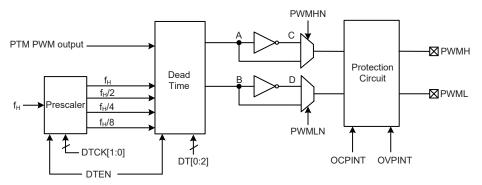
To select this mode bits PTM1 and PTM0 in the PTMC1 register should be set to 01 respectively. This mode enables external signals to capture and store the present value of the internal counter and can therefore be used for applications such as pulse width measurements. The external signal is supplied on the PTPI or PTCK pin, selected by the PTCAPTS bit in the PTMC1 register. The input pin active edge can be either a rising edge, a falling edge or both rising and falling edges; the active edge transition type is selected using the PTIO1 and PTIO0 bits in the PTMC1 register. The counter is started when the PTON bit changes from low to high which is initiated using the application program.

When the required edge transition appears on the PTPI or PTCK pin the present value in the counter will be latched into the CCRA registers and a PTM interrupt generated. Irrespective of what events occur on the PTPI or PTCK pin the counter will continue to free run until the PTON bit changes from high to low. When a CCRP compare match occurs the counter will reset back to zero; in this way the CCRP value can be used to control the maximum counter value. When a CCRP compare match occurs from Comparator P, a PTM interrupt will also be generated. Counting the number of overflow interrupt signals from the CCRP can be a useful method in measuring long pulse widths. The PTIO1 and PTIO0 bits can select the active trigger edge on the PTPI or PTCK pin to be a rising edge, falling edge or both edge types. If the PTIO1 and PTIO0 bits are both set high, then no capture operation will take place irrespective of what happens on the PTPI or PTCK pin, however it must be noted that the counter will continue to run.

As the PTPI or PTCK pin is pin shared with other functions, care must be taken if the PTM is in the Capture Input Mode. This is because if the pin is setup as an output, then any transitions on this pin may cause an input capture operation to be executed. The PTCCLR, PTOC and PTPOL bits are not used in this Mode.

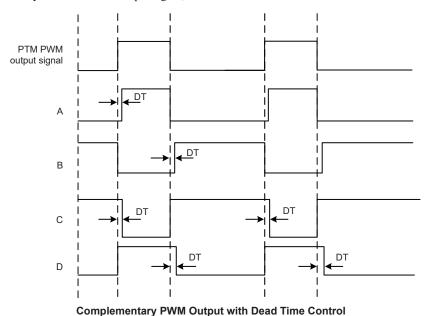
Capture Input Mode

Note: 1. PTM [1:0]=01 and active edge set by the PTIO [1:0] bits


- 2. A PTM Capture input pin active edge transfers the counter value to CCRA
- 3. PTCCLR bit not used
- 4. No output function PTOC and PTPOL bits are not used
- 5. CCRP determines the counter value and the counter has a maximum count value when CCRP is equal to zero

Rev. 1.10 78 November 11, 2019

Complementary PWM Output with Dead Time


The device provides a complementary output pair of signals which can be used as a PWM driver signal. The PWM signal is sourced from the PTM PWM output which is an active high signal. A dead time will be inserted into the PTM PWM output signals to prevent excessive DC currents. In addition to register configuration, the complementary PWM output can also be stopped by an OCP or OVP condition occurrence, when such condition occurs and the corresponding control bit in the OCVPC register is enabled, the PWM output will stop and the PWM output pair status will be forced to certain level determined by the PWMHOPS and PWMLOPS bits.

Complementary PWM Output with Dead Time Block Diagram

Dead Time Insertion

The complementary PWM output circuit provides a dead time insertion function. By setting the DTEN bit in the CPR register, the dead time generator and prescaler will be enabled. The clock source of the prescaler originates from the internal clock $f_{\rm H}$ and the division ratio is determined by the DTCK[1:0] bits. When the related register bits are properly configured, a dead time, which is programmable using the DT[2:0] bits in the CPR register, will be inserted to prevent excessive DC currents. The dead time will be inserted whenever the rising edge of the dead time generator input signal, namely the PTM PWM output signal, occurs.

Rev. 1.10 79 November 11, 2019

Complementary PWM Registers

The complementary PWM output function can be controlled using internal registers. The CPR register is used to control the dead time function enable/disable, PWMH/PWML inverse signal selection, dead time prescaler selection and dead time selection. The OCVPC register is used to control the protection circuit and determine the PWM output pair status when the complementary PWM output circuit is stopped.

CPR Register

Bit	7	6	5	4	3	2	1	0
Name	DTEN	PWMHN	PWMLN	DTCK1	DTCK0	DT2	DT1	DT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 DTEN: Dead Time On/Off control

0: Dead time & prescaler off

1: Dead time & Prescaler on

When this bit is cleared to zero, the PWMH and PWML status are determined by the PWMHOPS and PWMLOPS bits respectively.

Bit 6 PWMHN: PWMH inverse signal selection

0: PWMH=A

1: PWMH=C

Bit 5 PWMLN: PWML inverse signal selection

> 0: PWML=B 1: PWML=D

Bit 4~3 DTCK1~DTCK0: Dead time prescaler selection

00: $f_D = f_H$

01: $f_D = f_H/2$

10: $f_D = f_H/4$

11: $f_D = f_H/8$

Bit 2~0 DT2~DT0: Dead time selection

000: $[(1/f_D)-(1/f_H)]\sim (1/f_D)$

001: $[(2/f_D)-(1/f_H)]\sim(2/f_D)$

010: $[(3/f_D)-(1/f_H)]\sim(3/f_D)$

011: $[(4/f_D)-(1/f_H)]\sim (4/f_D)$

100: $[(5/f_D)-(1/f_H)]\sim (5/f_D)$

101: $[(6/f_D)-(1/f_H)]\sim(6/f_D)$

110: $[(7/f_D)-(1/f_H)]\sim(7/f_D)$

111: $[(8/f_D)-(1/f_H)]\sim(8/f_D)$

Note: $t_D=1/f_D$.

Rev. 1.10 80 November 11, 2019

OCVPC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	PWMHOPS	PWMLOPS	PWMOCEN	PWMOVEN
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	1	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3 **PWMHOPS**: PWMH output status when complementary PWM output is stopped

0: Output 0 1: Output 1

When the complementary PWM output circuit is stopped by clearing the DTEN bit to zero, or by an OVP or OCP condition occurrence, the PWMH output status will be forced to output 1 if the PWMHOPS bit is set to "1", otherwise the output status will be forced to output 0 if this bit is cleared to "0". Note that configuring this bit has no effect when the complementary PWM output circuit is in normal operation.

Bit 2 **PWMLOPS**: PWML output status when complementary PWM output is stopped

0: Output 0

1: Output 1

When the complementary PWM output circuit is stopped by clearing the DTEN bit to zero, or by an OVP or OCP condition occurrence, the PWML output status will be forced to output 1 if the PWMLOPS bit is set, otherwise the output status will be forced to output 0 if this bit is cleared to zero. Note that configuring this bit has no effect when the complementary PWM output circuit is in normal operation.

Bit 1 **PWMOCEN**: PWM over current protection enable control

0: Disable

1: Enable

This bit is used to determine if an OCP condition occurrence will affect the PWM output circuit. If an OCP condition occurs and this bit is set, the DTEN will be automatically cleared to zero by hardware to stop the complementary PWM output circuit. In this case, the PWMH and PWML status will be forced to a fixed high or low level determined by the PWMHOPS and PWMLOPS bits.

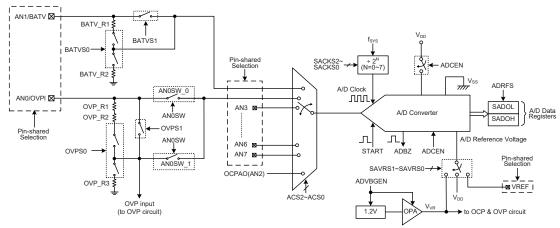
Bit 0 **PWMOVEN**: PWM over voltage protection enable control

0: Disable

1: Enable

This bit is used to determine if an OVP condition occurrence will affect the PWM output circuit. If an OVP condition occurs and this bit is set, the DTEN will be automatically cleared to zero by hardware to stop the complementary PWM output circuit. In this case, the PWMH and PWML status will be forced to a fixed high or low level determined by the PWMHOPS and PWMLOPS bits.

Analog to Digital Converter


The need to interface to real world analog signals is a common requirement for many electronic systems. However, to properly process these signals by a microcontroller, they must first be converted into digital signals by A/D converters. By integrating the A/D conversion electronic circuitry into the microcontroller, the need for external components is reduced significantly with the corresponding follow-on benefits of lower costs and reduced component space requirements.

A/D Converter Overview

The device contains a multi-channel analog to digital converter which can directly interface to external analog signals, such as that from sensors or other control signals, or the internal analog signal, such as the OCP OPA output signal, and convert these signals directly into a 12-bit digital value. More detailed information about the A/D input signal selection is described in the "A/D Converter Control Registers" and "A/D Converter Input Signals" sections respectively.

External Input Channels	Internal Signal	A/D Channel Selection Bits
7: AN0~AN1, AN3~AN7	OCPAO	ACS2~ACS0

The accompanying block diagram shows the overall internal structure of the A/D converter together with its associated registers.

A/D Converter Structure

A/D Converter Register Description

Overall operation of the A/D converter is controlled using several registers. A read only register pair exists to store the A/D converter data 12-bit single value. The remaining two registers are control registers which configure the operating and control function of the A/D converter. The SWS0 register is used to control the input voltage division circuit.

Rev. 1.10 82 November 11, 2019

Register				-	Bit			
Name	7	6	5	4	3	2	1	0
SADOL (ADRFS=0)	D3	D2	D1	D0	_	_	_	_
SADOL (ADRFS=1)	D7	D6	D5	D4	D3	D2	D1	D0
SADOH (ADRFS=0)	D11	D10	D9	D8	D7	D6	D5	D4
SADOH (ADRFS=1)	_	_	_	_	D11	D10	D9	D8
SADC0	START	ADBZ	ADCEN	ADRFS	_	ACS2	ACS1	ACS0
SADC1	_	_	ADVBGEN	SAVRS1	SAVRS0	SACKS2	SACKS1	SACKS0
SWS0	_		_	BATVS1	BATVS0	AN0SW	OVPS1	OVPS0

A/D Converter Register List

A/D Converter Data Registers - SADOL, SADOH

As the internal A/D converter provides a 12-bit digital conversion value, it requires two data registers to store the converted value. These are a high byte register, known as SADOH, and a low byte register, known as SADOL. After the conversion process takes place, these registers can be directly read by the microcontroller to obtain the digitised conversion value. As only 12 bits of the 16-bit register space is utilised, the format in which the data is stored is controlled by the ADRFS bit in the SADC0 register, as shown in the accompanying table. D0~D11 are the conversion result data bits. Any unused bits will be read as zero. Note that A/D data registers contents will be cleared if the A/D converter is disabled.

ADRFS		SADOH							SADOL							
ADRES	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	0	0	0	0
1	0	0	0	0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

A/D Converter Data Registers

A/D Converter Control Registers - SADC0, SADC1, SWS0

To control the function and operation of the A/D converter, three control registers known as SADC0, SADC1 and SWS0 are provided. These 8-bit registers define functions such as the selection of which analog channel is connected to the internal A/D converter, the digitised data format, the A/D clock source as well as controlling the start function and monitoring the A/D converter busy status, etc.. As each device contains only one actual analog to digital converter hardware circuit, each of the analog signal inputs must be routed to the converter. The ACS2~ACS0 bits in the SADC0 register are used to determine which analog input signal is selected to be converted.

The relevant pin-shared function selection bits determine which pins on I/O Ports are used as analog inputs for the A/D converter input and which pins are not to be used as the A/D converter input. When the pin is selected to be an A/D input, its original function whether it is an I/O or other pin-shared function will be removed. In addition, any internal pull-high resistor connected to the pin will be automatically removed if the pin is selected to be an A/D converter input.

Rev. 1.10 83 November 11, 2019

SADC0 Register

Bit	7	6	5	4	3	2	1	0
Name	START	ADBZ	ADCEN	ADRFS	_	ACS2	ACS1	ACS0
R/W	R/W	R	R/W	R/W	_	R/W	R/W	R/W
POR	0	0	0	0	_	0	0	0

Bit 7 START: Start the A/D conversion

 $0\rightarrow 1\rightarrow 0$: Start A/D conversion

This bit is used to initiate an A/D conversion process.

Bit 6 ADBZ: A/D converter busy flag

0: No A/D conversion is in progress

1: A/D conversion is in progress

This read only flag is used to indicate whether the A/D conversion is in progress or not. When the START bit is set from low to high and then to low again, the ADBZ flag will be set to 1 to indicate that the A/D conversion is initiated. The ADBZ flag will be cleared to 0 after the A/D conversion is complete.

Bit 5 ADCEN: A/D converter function enable control

> 0: Disable 1: Enable

This bit controls the A/D internal function. This bit should be set to 1 to enable the A/D converter. If the bit is cleared to zero, then the A/D converter will be switched off reducing the device power consumption. When the A/D converter function is disabled, the contents of the A/D data register pair known as SADOH and SADOL will be cleared to zero.

Bit 4 ADRFS: A/D converter data format selection

> 0: A/D converter data format \rightarrow SADOH=D[11:4]; SADOL=D[3:0] 1: A/D converter data format \rightarrow SADOH=D[11:8]; SADOL=D[7:0]

This bit controls the format of the 12-bit converted A/D value in the two A/D data registers. Details are provided in the A/D data register section.

Bit 3 Unimplemented, read as "0"

Bit 2~0 ACS2~ACS0: A/D converter analog input channel selection

> 000: AN0 001: AN1

010: AN2 - from internal OCP OPA output

011: AN3 100: AN4 101: AN5 110: AN6 111: AN7

SADC1 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	ADVBGEN	SAVRS1	SAVRS0	SACKS2	SACKS1	SACKS0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	_	0	0	0	0	0	0

Bit 7~6 Unimplemented, read as "0"

Bit 5 ADVBGEN: A/D converter internal 1.2V bandgap and OPA (Gain=2) enable control

> 0: Disable 1: Enable

SAVRS1~SAVRS0: A/D converter reference voltage selection Bit 4~3

00/11: Internal A/D converter power supply, V_{DD}

01: External VREF pin

10: Internal OPA output voltage, V_{VR}

Rev. 1.10 84 November 11, 2019

These bits are used to select the A/D converter reference voltage source. The V_{VR} is the A/D converter internal OPA output voltage. It should be noted that when the internal reference voltage source is selected, the reference voltage derived from the external VREF pin will automatically be switched off.

Bit 2~0 SACKS2~SACKS0: A/D conversion clock source selection

000: f_{sys} 001: f_{sys}/2 010: f_{sys}/4 011: f_{sys}/8 100: f_{sys}/16 101: f_{sys}/32 110: f_{sys}/64 111: f_{sys}/128

These three bits are used to select the clock source for the A/D converter.

SWS0 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	BATVS1	BATVS0	AN0SW	OVPS1	OVPS0
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
POR	_	_	_	0	0	0	0	0

Bit 7~5 Unimplemented, read as "0"

Bit 4 BATVS1: Integrated voltage division resistor bypass control

0: BATVS1 disable 1: BATVS1 enable

This bit will only be enabled when the AN1 channel is selected by the ACS2~ACS0 bits and the BATVS1 bit is set to 1, otherwise this bit will be disabled. When this bit is enabled, the input signal will bypass the integrated voltage division circuit.

Bit 3 BATVS0: Integrated voltage division resistor BATV_R1 and BATV_R2 control

0: BATVS0 disable 1: BATVS0 enable

This bit will only be enabled when the AN1 channel is selected by the ACS2~ACS0 bits and the BATVS[1:0] is set to "01B", otherwise this bit will be disabled. When this bit is enabled, the input signal will pass through the integrated voltage division circuit to obtain a divided input voltage.

Bit 2 AN0SW: AN0 input selection

0: AN0SW_0 on and AN0SW_1 off 1: AN0SW 0 off and AN0SW 1 on

This bit only takes effect when the AN0 channel is selected by the ACS2~ACS0 bits, otherwise the two switches will both be off.

Bit 1 **OVPS1**: Integrated voltage division resistor bypass control

0: OVPS1 disable 1: OVPS1 enable

This bit will only be enabled when the AN0 function is selected using the corresponding pin-shared control bits and the OVPS1 bit is set to 1, otherwise this bit will be disabled.

Bit 0 **OVPS0**: Integrated voltage division resistor OVP_R2 and OVP_R3 control

0: OVPS0 disable 1: OVPS0 enable

This bit will only be enabled when the AN0 function is selected using the corresponding pin-shared control bits and the OVPS[1:0] is set to "01B", otherwise this bit will be disabled.

A/D Converter Reference Voltage

The reference voltage supply to the A/D converter can be supplied from the internal A/D converter power supply voltage, V_{DD}, or internal operational amplifer output voltage, V_{VR}, or from an external reference source supplied on pin VREF. The desired selection is made using the SAVRS1~SAVRS0 bits. When the SAVRS bit field is set to "00" or "11", the A/D converter reference voltage will come from the power supply voltage, V_{DD}. When the SAVRS bit field is set to "10", the A/D converter reference voltage will come from the internal operational amplifer output voltage, V_{VR}. Otherwise, if the SAVRS bit field is set to "01", the A/D converter reference voltage will come from the VREF pin. As the VREF pin is pin-shared with other functions, when the VREF pin is selected as the reference voltage supply pin, the VREF pin-shared function control bit should be properly configured to disable other pin functions. However, if the internal reference signal is selected as the reference voltage, the external reference input from the VREF pin will automatically be switched off by hardware. The analog input values must not be allowed to exceed the selected reference voltage.

SAVRS[1:0]	Reference Source	Description
00, 11	V _{DD}	From internal A/D converter power supply voltage
01	VREF pin	From external A/D converter reference voltage pin VREF
10	V_{VR}	From internal operational amplifier output voltage

A/D Converter Reference Voltage Selection

A/D Converter Input Signals

All the external A/D converter analog channel input pins are pin-shared with the I/O pins as well as other functions. The corresponding control bits for each A/D converter external input pin in the pin-shared function selection register determine whether the input pins are set as A/D converter analog inputs or whether they have other functions. If the pin is set to be as an A/D converter analog channel input, the original pin functions will be disabled. In this way, pins can be changed under program control to change their function between A/D inputs and other functions. All pull high resistors, which are set through register programming, will be automatically disconnected if the pins are set as A/D inputs. Note that it is not necessary to first set the A/D pin as an input in the port control register to enable the A/D input as when the pin-shared function control bits enable an A/D input, the status of the port control register will be overridden.

If the ACS2~ACS0 bits are set to any value except "010", the external analog channel input is selected to be converted. If the ACS2~ACS0 bits are set to "010", the internal signal OCPAO is selected to be converted. It should be noted that the AN0 and AN1 channels each has an integrated voltage division circuit to prevent the input signal from exceeding the selected reference voltage. Properly configuring the BATVS0 and BATVS1 bits in the SWS0 register can determine whether the input signal will pass through the integrated voltage division circuit on the AN1 channel or not. For the AN0 channel, the input signal will pass through the integrated voltage division circuit on the AN0 channel by clearing the OVPS1 bit to zero and setting both the OVPS0 and AN0SW0 bits to one. Users can also set the OVPS1 to high and clear the OVPS0 and AN0SW bits to zero and use external resistors to achieve voltage division. Special attention must be taken to the configuration of these bits, otherwise it will result in an unnormal operation of the AN0 and OVP input. Refer to the "A/D Converter Structure" and "A/D Converter Register Description" for more detailed information.

ACS[2:0]	Input Signals	Description
000, 001	AN0, AN1	External channel analog input ANn with integrated voltage division circuit
011~111	AN3~AN7	External channel analog input ANn
010	OCPAO	Internal signal derived from the OCP OPA output

A/D Converter Input Signal Selection

Rev. 1.10 86 November 11, 2019

A/D Converter Operation

The START bit in the SADC0 register is used to start the A/D conversion. When the microcontroller sets this bit from low to high and then low again, an analog to digital conversion cycle will be initiated.

The ADBZ bit in the SADC0 register is used to indicate whether the analog to digital conversion process is in progress or not. This bit will be automatically set to 1 by the microcontroller after an A/D conversion is successfully initiated. When the A/D conversion is complete, the ADBZ will be cleared to 0. In addition, the corresponding A/D interrupt request flag will be set in the interrupt control register, and if the associated interrupts are enabled, an appropriate internal interrupt signal will be generated. This A/D internal interrupt signal will direct the program flow to the associated A/D internal interrupt address for processing. If the A/D internal interrupt is disabled, the microcontroller can poll the ADBZ bit in the SADC0 register to check whether it has been cleared as an alternative method of detecting the end of an A/D conversion cycle.

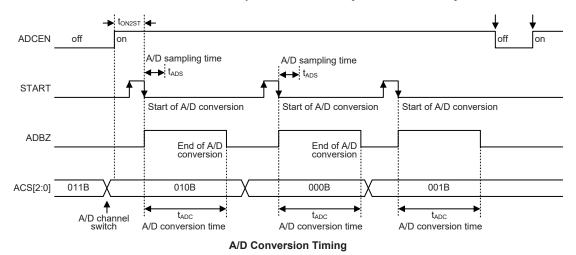
The clock source for the A/D converter, which originates from the system clock f_{SYS}, can be chosen to be either f_{SYS} or a subdivided version of f_{SYS}. The division ratio value is determined by the SACKS2~SACKS0 bits in the SADC1 register. Although the A/D clock source is determined by the system clock f_{SYS} and by bits SACKS2~SACKS0, there are some limitations on the A/D clock source speed that can be selected. As the recommended range of permissible A/D clock period, t_{ADCK}, is from 0.5μs to 10μs, care must be taken for system clock frequencies. For example, if the system clock operates at a frequency of 8MHz, the SACKS2~SACKS0 bits should not be set to 000, 001 or 111. Doing so will give A/D clock periods that are less than the minimum A/D clock period or greater than the maximum A/D clock period, which may result in inaccurate A/D conversion values. Refer to the following table for examples, special care must be taken to values marked with an asterisk *, as these values may be less or greater than the specified A/D clock period.

				A/D Clock P	Period (tadck)			
f _{sys}	SACKS[2:0] = 000 (f _{SYS})	SACKS[2:0] = 001 (f _{SYS} /2)	SACKS[2:0] = 010 (f _{SYS} /4)	SACKS[2:0] = 011 (f _{sys} /8)	SACKS[2:0] = 100 (f _{SYS} /16)	SACKS[2:0] = 101 (f _{SYS} /32)	SACKS[2:0] = 110 (f _{SYS} /64)	SACKS[2:0] = 111 (fsys/128)
1MHz	1µs	2µs	4µs	8µs	16µs *	32µs *	64µs *	128µs *
2MHz	500ns	1µs	2µs	4µs	8µs	16µs *	32µs *	64µs *
4MHz	250ns *	500ns	1µs	2µs	4µs	8µs	16µs *	32µs *
8MHz	125ns *	250ns *	500ns	1µs	2µs	4µs	8µs	16µs *

A/D Clock Period Examples

Controlling the power on/off function of the A/D converter circuitry is implemented using the ADCEN bit in the SADC0 register. This bit must be set high to power on the A/D converter. When the ADCEN bit is set high to power on the A/D converter internal circuitry a certain delay, as indicated in the timing diagram, must be allowed before an A/D conversion is initiated. Even if no pins are selected for use as A/D inputs, if the ADCEN bit is high, then some power will still be consumed. In power conscious applications it is therefore recommended that the ADCEN is set low to reduce power consumption when the A/D converter function is not being used.

Conversion Rate and Timing Diagram


A complete A/D conversion contains two parts, data sampling and data conversion. The data sampling which is defined as t_{ADS} takes 4 A/D clock cycles and the data conversion takes 12 A/D clock cycles. Therefore a total of 16 A/D clock cycles for an external input A/D conversion which is defined as t_{ADC} are necessary.

Maximum single A/D conversion rate = A/D clock period/16

Rev. 1.10 87 November 11, 2019

The accompanying diagram shows graphically the various stages involved in an analog to digital conversion process and its associated timing. After an A/D conversion process has been initiated by the application program, the microcontroller internal hardware will begin to carry out the conversion, during which time the program can continue with other functions. The time taken for the A/D conversion is $16 \, t_{ADCK}$ clock cycles where t_{ADCK} is equal to the A/D clock period.

Summary of A/D Conversion Steps

The following summarises the individual steps that should be executed in order to implement an A/D conversion process.

- Step 1
 Select the required A/D conversion clock by correctly programming bits SACKS2~SACKS0 in the SADC1 register.
- Step 2
 Enable the A/D converter by setting the ADCEN bit in the SADC0 register to 1.
- Step 3
 Select which signal is to be connected to the internal A/D converter by correctly configuring the ACS2~ACS0 bits in the SADC0 register.
- Step 4
 Select the reference voltage source by configuring the SAVRS1~SAVRS0 bits in the SADC1 register. If the A/D converter power supply voltage or the operational amplifier output voltage is selected, the external reference voltage input will be automatically switched off.
- Step 5
 Select A/D converter output data format by configuring the ADRFS bit in the SADC0 register.
- Step 6
 If the A/D conversion interrupt is used, the interrupt control registers must be correctly configured to ensure the A/D interrupt function is active. The master interrupt control bit, EMI, and the A/D converter interrupt control bit, ADE, must both be set high in advance.
- Step 7
 The A/D conversion procedure can now be initiated by setting the START bit from low to high and then low again.

Rev. 1.10 88 November 11, 2019

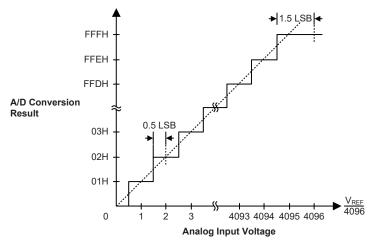
Step 8
 If A/D conversion is in progress, the ADBZ flag will be set high. After the A/D conversion process is complete, the ADBZ flag will go low and then the output data can be read from SADOH and SADOL registers.

Note: When checking for the end of the conversion process, if the method of polling the ADBZ bit in the SADC0 register is used, the interrupt enable step above can be omitted.

Programming Considerations

During microcontroller operations where the A/D converter is not being used, the A/D internal circuitry can be switched off to reduce power consumption by clearing bit ADCEN to 0 in the SADC0 register. When this happens, the internal A/D converter circuits will not consume power irrespective of what analog voltage is applied to their input lines. If the A/D converter input lines are used as normal I/Os, then care must be taken as if the input voltage is not at a valid logic level, then this may lead to some increase in power consumption.

A/D Conversion Function


As the device contains a 12-bit A/D converter, its full-scale converted digitised value is equal to FFFH. Since the full-scale analog input value is equal to the actual A/D converter reference voltage, V_{REF} , this gives a single bit analog input value of V_{REF} divided by 4096.

$$1 LSB = V_{REF} \div 4096$$

The A/D converter input voltage value can be calculated using the following equation:

A/D input voltage = A/D output digital value
$$\times$$
 V_{REF} \div 4096

The diagram shows the ideal transfer function between the analog input value and the digitised output value for the A/D converter. Except for the digitised zero value, the subsequent digitised values will change at a point 0.5 LSB below where they would change without the offset, and the last full scale digitised value will change at a point 1.5 LSB below the V_{REF} level. Note that here the V_{REF} voltage is the actual A/D converter reference voltage determined by the SAVRS field.

Ideal A/D Transfer Function

A/D Conversion Programming Examples

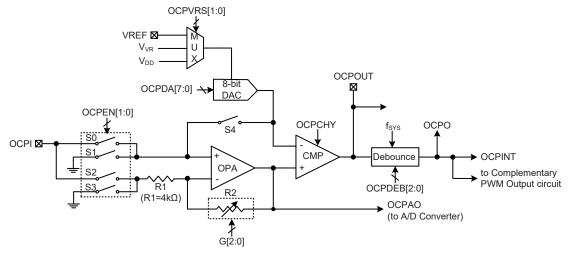
The following two programming examples illustrate how to configure and implement an A/D conversion. In the first example, the method of polling the ADBZ bit in the SADC0 register is used to detect when the conversion cycle is complete, whereas in the second example, the A/D interrupt is used to determine when the conversion is complete.

Example: using an ADBZ polling method to detect the end of conversion

```
clr ADE
                       ; disable ADC interrupt
mov a,03h
                      ; select f_{\text{SYS}}/8 as A/D clock and
mov SADC1,a
                      ; select internal reference voltage V_{\text{DD}}
mov a,01h
                      ; set PASO to configure pin AN7
mov PASO, a
mov a,27h
                      ; enable A/D and connect AN7 channel to A/D converter
mov SADCO, a
start conversion:
clr START
                        ; high pulse on start bit to initiate conversion
                        ; reset A/D
set START
clr START
                        ; start A/D
polling EOC:
                        ; poll the SADCO register ADBZ bit to detect end of A/D conversion
sz ADBZ
jmp polling EOC
                        ; continue polling
                       ; read low byte conversion result value
mov a, SADOL
mov SADOL_buffer,a
                      ; save result to user defined register
                      ; read high byte conversion result value
mov a,SADOH
mov SADOH buffer,a
                      ; save result to user defined register
                        ; start next A/D conversion
jmp start conversion
```

Example: using the interrupt method to detect the end of conversion

```
clr ADE
                       ; disable ADC interrupt
mov a,03h
                       ; select f_{\text{SYS}}/8 as A/D clock and
mov SADC1,a
                       ; select internal reference voltage V_{\text{DD}}
mov a,01h
                       ; set PASO to configure pin AN7
mov PASO, a
mov a,27h
mov SADCO, a
                       ; enable A/D and connect AN7 channel to A/D converter
Start conversion:
clr START
                        ; high pulse on START bit to initiate conversion
set START
                        ; reset A/D
clr START
                        ; start A/D
                        ; clear ADC interrupt request flag
clr ADF
                        ; enable ADC interrupt
set ADE
set EMI
                        ; enable global interrupt
:
ADC ISR:
                      ; ADC interrupt service routine
mov acc stack,a
                       ; save ACC to user defined memory
mov a,STATUS
mov status stack,a
                      ; save STATUS to user defined memory
:
:
```


Rev. 1.10 90 November 11, 2019


```
mov
     a, SADOL
                           ; read low byte conversion result value
     SADOL buffer, a
                           ; save result to user defined register
     a, SADOH
                           ; read high byte conversion result value
     SADOH buffer, a
                           ; save result to user defined register
EXIT INT ISR:
     a, status stack
mov
mov STATUS, a
                          ; restore STATUS from user defined memory
                          ; restore ACC from user defined memory
     a,acc stack
mov
reti
```

Over Current Protection

The device includes an over current protection function which provides a protection mechanism for applications. To prevent the battery charge or load current from exceeding a specific level, the current on the OCPI pin is converted to a relevant voltage level according to the current value using the OCP operational amplifier. It is then compared with a reference voltage generated by an 8-bit D/A converter. When an over current event occurs, an OCP interrupt will be generated if the corresponding interrupt control bit is enabled.

Note: The V_{VR} is from the A/D converter OPA output and the OCPAO can be selected as the A/D converter input signals. Over Current Protection Circuit

Over Current Protection Operation

The illustrated OCP circuit is used to prevent the input current from exceeding a reference level. The current on the OCPI pin is converted to a voltage and then amplified by the OCP operational amplifier with a programmable gain from 1 to 50 selected by the G2~G0 bits in the OCPC1 register. This is known as a Programmable Gain Amplifier or PGA. This PGA can also be configured to operate in the non-invert, invert or input offset calibration mode determined by the OCPEN1 and OCPEN0 bits in the OCPC0 register. After the current is converted and amplified to a specific voltage level, it will be compared with a reference voltage provided by an 8-bit D/A converter. The 8-bit D/A converter reference voltage can be supplied from the internal power supply voltage, V_{DD}, or A/D converter internal operational amplifer output voltage, V_{VR}, or from an external reference source supplied on pin VREF, selected by the OCPVRS[1:0] bits in the OCPC0 register. The comparator output, OCPCOUT, will first be filtered with a certain de-bounce time period selected by the OCPDEB2~OCPDEB0

bits in the OCPC1 register. Then a filtered OCP digital comparator output, OCPO, is obtained to indicate whether an over current condition occurs or not. The OCPO bit will be set to 1 if an over current condition occurs. Otherwise, the OCPO bit is zero. Once an over current event occurs, i.e., the converted voltage of the OCP input current is greater than the reference voltage, the corresponding interrupt will be generated if the relevant interrupt control bit is enabled.

Over Current Protection Registers

Overall operation of the over current protection is controlled using several registers. One register is used to provide the reference voltages for the over current protection circuit. There are two registers used to cancel out the operational amplifier and comparator input offset. Two control registers are used to control the OCP function, D/A converter reference voltage selection, PGA gain selection, comparator de-bounce time together with the hysteresis function.

Register		Bit									
Name	7	6	5	4	3	2	1	0			
OCPC0	OCPEN1	OCPEN0	OCPVRS1	OCPVRS0	OCPCHY	_	_	OCPO			
OCPC1	_	_	G2	G1	G0	OCPDEB2	OCPDEB1	OCPDEB0			
OCPDA	D7	D6	D5	D4	D3	D2	D1	D0			
OCPOCAL	OCPOOFM	OCPORSP	OCPOOF5	OCPOOF4	OCPOOF3	OCPOOF2	OCPOOF1	OCPOOF0			
OCPCCAL	OCPCOUT	OCPCOFM	OCPCRSP	OCPCOF4	OCPCOF3	OCPCOF2	OCPCOF1	OCPCOF0			

OCP Register List

OCPC0 Register

Bit	7	6	5	4	3	2	1	0
Name	OCPEN1	OCPEN0	OCPVRS1	OCPVRS0	OCPCHY	_	_	OCPO
R/W	R/W	R/W	R/W	R/W	R/W	_	_	R
POR	0	0	0	0	0	_	_	0

Bit 7~6 **OCPEN1~OCPEN0**: OCP function operating mode selection

00: OCP function is disabled; S1 and S3 on, S0 and S2 off

01: Non-invert mode; S0 and S3 on, S1 and S2 off

10: Invert mode; S1 and S2 on, S0 and S3 off

11: Calibration mode; S1 and S3 on, S0 and S2 off

Bit 5~4 OCPVRS1~OCPVRS0: OCP D/A converter reference voltage selection

00/11: From V_{DD}

01: From external VREF pin

10: From V_{VR}

When setting these bits to "10" to select the V_{VR} as the OCP D/A converter reference voltage, care must be taken that as the V_{VR} signal is from the A/D converter OPA output, so the OPA must first be enabled by setting the ADVBGEN bit high.

Bit 3 OCPCHY: OCP comparator hysteresis function control

0: Disable 1: Enable

Bit 2~1 Unimplemented, read as "0"

Bit 0 **OCPO**: OCP digital output bit

0: No over current condition occurs in the monitored source current

1: Over current condition occurs in the monitored source current

OCPC1 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	G2	G1	G0	OCPDEB2	OCPDEB1	OCPDEB0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	_	0	0	0	0	0	0

Bit 7~6 Unimplemented, read as "0"

Bit 5~3 **G2~G0**: R2/R1 ratio selection

000: Unity gain buffer (non-invert mode) or R2/R1=1(invert mode)

001: R2/R1=5 010: R2/R1=10 011: R2/R1=15 100: R2/R1=20 101: R2/R1=30 110: R2/R1=40 111: R2/R1=50

These bits are used to select the R2/R1 ratio to obtain various gain values for invert and non-invert mode. The calculating formula of the OCP PGA gain for the invert and non-invert mode is described in the "Input Voltage Range" section.

Bit 2~0 **OCPDEB2~OCPDEB0**: OCP output filter debounce time selection

000: Bypass, without debounce

001: (1~2)×t_{DEB} 010: (3~4)×t_{DEB} 011: (7~8)×t_{DEB} 100: (15~16)×t_{DEB} 101: (31~32)×t_{DEB} 110: (63~64)×t_{DEB} 111: (127~128)×t_{DEB}

Note: $t_{DEB}=1/f_{SYS}$

OCPDA Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D7~D0**: OCP D/A converter output voltage control bits

OCP D/A converter output V_{OUT}=(D/A converter reference voltage/256)×D[7:0]

OCPOCAL Register

Bit	7	6	5	4	3	2	1	0
Name	OCPOOFM	OCPORSP	OCPOOF5	OCPOOF4	OCPOOF3	OCPOOF2	OCPOOF1	OCPOOF0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	1	0	0	0	0	0

Bit 7 OCPOOFM: OCP operational amplifier operating mode selection

0: Normal operation mode

1: Input Offset Calibration Mode

This bit is used to control the OCP operational amplifier input offset calibration function. The OCPEN1 and OCPEN0 bits must first be set to "11" and then the OCPOOFM bit must be set to 1 followed by the OCPCOFM bit being cleared to 0, then the operational amplifier input offset calibration mode will be enabled. Refer to the "Operational Amplifier Input Offset Calibration" section for the detailed offset calibration procedures.

Bit 6 OCPORSP: OCP operational amplifier input offset voltage calibration reference selection

0: Select negative input as the reference input

1: Select positive input as the reference input

Bit 5~0 **OCPOOF5~OCPOOF0**: OCP operational amplifier input offset voltage calibration value This 6-bit field is used to perform the operational amplifier input offset calibration operation and the value for the OCP operational amplifier input offset calibration can be restored into this bit field. More detailed information is described in the "Operational Amplifier Input Offset Calibration" section.

OCPCCAL Register

Bit	7	6	5	4	3	2	1	0
Name	OCPCOUT	OCPCOFM	OCPCRSP	OCPCOF4	OCPCOF3	OCPCOF2	OCPCOF1	OCPCOF0
R/W	R	R/W						
POR	0	0	0	1	0	0	0	0

Bit 7 OCPOUT: OCP comparator output bit, positive logic (read only)

0: Positive input voltage < Negative input voltage

1: Positive input voltage > Negative input voltage

This bit is used to indicate whether the positive input voltage is greater than the negative input voltage when the OCP operates in the input offset calibration mode. If the OCPCOUT is set to 1, the positive input voltage is greater than the negative input voltage. Otherwise, the positive input voltage is less than the negative input voltage.

Bit 6 OCPCOFM: OCP comparator operating mode selection

0: Normal operation

1: Input Offset Calibration Mode

This bit is used to control the OCP comparator input offset calibration function. The OCPEN1 and OCPEN0 bits must first be set to "11" and then the OCPCOFM bit must be set to 1 followed by the OCPOOFM bit being cleared to 0, then the comparator input offset calibration mode will be enabled. Refer to the "Comparator Input Offset Calibration" section for the detailed offset calibration procedures.

Bit 5 OCPCRSP: OCP comparator input offset calibration reference input selection

0: Select negative input as the reference input

1: Select positive input as the reference input

Bit 4~0 OCPCOF4~OCPCOF0: OCP comparator input offset calibration value

This 5-bit field is used to perform the comparator input offset calibration operation and the value for the OCP comparator input offset calibration can be restored into this bit field. More detailed information is described in the "Comparator Input Offset Calibration" section.

Input Voltage Range

Together with different PGA operating modes, the input voltage on the OCPI pin can be positive or negative for flexible operation. The PGA output for the positive or negative input voltage is calculated based on different formulas and described by the following.

• For input voltages V_{IN} >0, the PGA operates in the non-invert mode and the PGA output is obtained using the formula below:

$$V_{OUT} = \left(1 + \frac{R_2}{R_1}\right) \times V_{IN}$$

• When the PGA operates in the non-invert mode by setting the OCPEN[1:0] to 01 with unity gain select by setting the G[2:0] to 000, the PGA will act as a unit-gain buffer whose output is equal to $V_{\rm IN}$.

$$V_{OUT} = V_{IN}$$

Rev. 1.10 94 November 11, 2019

For input voltages 0>V_{IN}>-0.2V, the PGA operates in the invert mode and the PGA output is
obtained using the formula below. Note that if the input voltage is negative, it cannot be lower
than -0.2V which will result in current leakage.

$$V_{OUT} = -\frac{R_2}{R_1} \times V_{IN}$$

OCP OPA and Comparator Offset Calibration

The OCP circuit has four operating modes controlled by OCPEN[1:0], one of them is calibration mode. In calibration mode, Operational amplifier and comparator offset can be calibrated. The procedures and settings of the operational amplifier and comparator input offset calibration are shown as follows.

Operational Amplifier Input Offset Calibration

• Step 1

Set OCPEN[1:0]=11, OCPOOFM=1, OCPCOFM=0 and OCPORSP=1, the OCP will operate in the operational amplifier input offset calibration mode. In this mode operation, the S4 is off, the OPA output to the OCPCOUT will bypass the comparator.

• Step 2

Set OCPOOF[5:0]=000000 and then read the OCPCOUT bit.

• Step 3

Increase the OCPOOF[5:0] value by 1 and then read the OCPCOUT bit.

If the OCPCOUT bit state has not changed, then repeat Step 3 until the OCPCOUT bit state has changed.

If the OCPCOUT bit state has changed, record the OCPOOF value as Voosi and then go to Step 4.

Step 4

Set OCPOOF[5:0]=111111 and read the OCPCOUT bit.

Step 5

Decrease the OCPOOF[5:0] value by 1 and then read the OCPCOUT bit.

If the OCPCOUT bit state has not changed, then repeat Step 5 until the OCPCOUT bit state has changed.

If the OCPCOUT bit state has changed, record the OCPOOF value as V₀₀₈₂ and then go to Step 6.

Step 6

Restore the operational amplifier input offset calibration value V_{OOS} into the OCPOOF[5:0] bit field. The offset Calibration procedure is now finished.

Where
$$V_{OOS} = \frac{V_{OOS1} + V_{OOS2}}{2}$$

Comparator Input Offset Calibration

• Step 1

Set OCPEN[1:0]=11, OCPCOFM=1 and OCPOOFM=0, the OCP is now in the comparator input offset calibration mode in which the S4 is on and the D/A converter is off (S4 is used only for comparator calibration mode, in other operation modes, it is off).

• Step 2

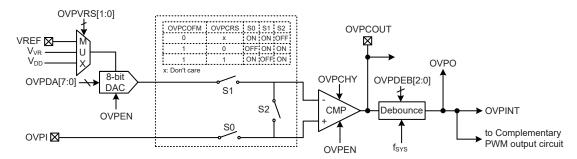
Set OCPCOF[4:0]=00000 and read the OCPCOUT bit.

Step 3

Increase the OCPCOF[4:0] value by 1 and then read the OCPCOUT bit.

If the OCPCOUT bit state has not changed, then repeat Step 3 until the OCPCOUT bit state has changed.

If the OCPCOUT bit state has changed, record the OCPCOF value as V_{COS1} and then go to Step 4.


- Step 4
 Set OCPCOF[4:0]=11111 and then read the OCPCOUT bit.
- Step 5
 Decrease the OCPCOF[4:0] value by 1 and then read the OCPCOUT bit.

 If the OCPCOUT bit state has not changed, then repeat Step 5 until the OCPCOUT bit state has changed.
 If the OCPCOUT bit state has changed, record the OCPCOF value as V_{COS2} and then go to Step 6.
- Step 6
 Restore the comparator input offset calibration value V_{COS} into the OCPCOF[4:0] bit field. The offset Calibration procedure is now finished.

 Where $V_{COS} = \frac{V_{COS1} + V_{COS2}}{2}$

Over Voltage Protection

The device includes an over voltage protection function which provides an over voltage protection mechanism for practical applications. The input voltage on the OVPI pin is compared with a reference voltage generated by the 8-bit D/A converter. When the OVPF flag changes from 0 to 1 and if the corresponding interrupt control bit is enabled, an OVP interrupt will be generated to indicate an over voltage condition has occurred.

Note: The V_{VR} is from the A/D converter OPA output and the OVPI input voltage may pass through a voltage division circuit depending on configurations, refer to the A/D converter section for more detailed information.

Over Voltage Protection Circuit

OVP Operation

The OVP circuit is used to prevent the input voltage from being in an unexpected level range. The input voltage will be compared with a reference voltage provided by the 8-bit D/A converter. The 8-bit D/A converter reference voltage can be supplied from the internal power supply voltage, V_{DD}, or A/D converter internal operational amplifer output voltage, V_{VR}, or from an external reference source supplied on pin VREF, selected by the OVPVRS[1:0] bits in the OVPC0 register. The comparator output, OVPCOUT, will first be filtered with a certain de-bounce time period selected by the OVPDEB2~OVPDEB0 bits in the OVPC0 register. Then a filtered OVP digital comparator output, OVPO, is obtained to indicate whether a user-defined voltage condition occurs or not. The OVPO bit will be set to 1 if an over voltage condition occurs. Otherwise, the OVPO bit is zero. Once an over voltage event occurs, i.e., the input voltage on the OVPI pin is greater than the reference voltage, the corresponding interrupt will be generated if the relevant interrupt control bit is enabled. The comparator in the OVP circuit also has hysteresis function controlled by OVPCHY bit.

Rev. 1.10 96 November 11, 2019

Over Voltage Protection Registers

Overall operation of the OVP function is controlled using several registers. The OVPC0 control register is used to control the OVP function, switches on/off control, D/A converter reference voltage selection, comparator de-bounce time together hysteresis function, etc. The OVPC1 register is used to cancel out the comparator input offset. The OVPDA register is used to provide the reference voltage for the OVP circuit.

Register		Bit										
Name	7	6	5	4	3	2	1	0				
OVPC0	OVPO	OVPEN	OVPCHY	OVPVRS1	OVPVRS0	OVPDEB2	OVPDEB1	OVPDEB0				
OVPC1	OVPCOUT	OVPCOFM	OVPCRS	OVPCOF4	OVPCOF3	OVPCOF2	OVPCOF1	OVPCOF0				
OVPDA	D7	D6	D5	D4	D3	D2	D1	D0				

OVP Register List

OVPC0 Register

Bit	7	6	5	4	3	2	1	0
Name	OVPO	OVPEN	OVPCHY	OVPVRS1	OVPVRS0	OVPDEB2	OVPDEB1	OVPDEB0
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 **OVPO**: OVP comparator output bit after debounce

0: Positive input voltage < negative input voltage

1: Positive input voltage > negative input voltage

Bit 6 **OVPEN**: OVP function enable control

0: Disable

1: Enable

If this bit is cleared to 0, the overall OVP operation will be disabled, the comparator and D/A converter of OVP will all be switched off.

Bit 4 **OVPCHY**: OVP comparator hysteresis function control

0: Disable

1: Enable

Bit 3 **OVPVRS1~OVPVRS0**: OVP D/A converter reference voltage selection

00/11: From V_{DD}

01: From external VREF pin

10: From V_{VR}

When setting these bits to "10" to select the V_{VR} as the OVP D/A converter reference voltage, care must be taken that as the V_{VR} signal is from the A/D converter OPA output, so the OPA must first be enabled by setting the ADVBGEN bit high.

Bit 2~0 **OVPDEB2~OVPDEB0**: OVP comparator output debounce time selection

000: Bypass, without debounce

001: (1~2)×t_{DEB}

010: $(3\sim4)\times t_{DEB}$

011: (7~8)×t_{DEB}

100: (15~16)× t_{DEB}

101: $(31\sim32)\times t_{DEB}$

110: (63~64)×t_{DEB}

111: (127~128)×t_{DEB}

Note: $t_{DEB}=1/f_{SYS}$.

OVPC1 Register

Bit	7	6	5	4	3	2	1	0
Name	OVPCOUT	OVPCOFM	OVPCRS	OVPCOF4	OVPCOF3	OVPCOF2	OVPCOF1	OVPCOF0
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	1	0	0	0	0

Bit 7 **OVPCOUT**: OVP comparator output bit

0: Positive input voltage < negative input voltage

1: Positive input voltage > negative input voltage

This bit is used to indicate whether the positive input voltage is greater than the negative input voltage when the OVP operates in the input offset calibration mode. If the OVPCOUT is set to 1, the positive input voltage is greater than the negative input voltage. Otherwise, the positive input voltage is less than the negative input voltage.

Bit 6 **OVPCOFM**: OVP comparator operating mode selection

0: Normal operating mode

1: Input offset voltage calibration mode

This bit is used to select the OVP comparator operating mode. To select the comparator input offset voltage calibration mode, the OVPCOFM bit must be set to 1. Refer to the "Comparator Input Offset Voltage Calibration" section for the detailed offset calibration procedures.

Bit 5 **OVPCRS**: OVP comparator input offset voltage calibration reference selection

0: Select negative input as the reference input

1: Select positive input as the reference input

Bit 4~0 **OVPCOF4~OVPCOF0**: OVP comparator input offset voltage calibration value

This 5-bit field is used to perform the comparator input offset voltage calibration operation and the value for the OVP comparator input offset voltage calibration can be restored into this bit field. More detailed information is described in the "Comparator Input Offset Voltage Calibration" section.

OVPDA Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D7~D0**: OVP D/A converter output voltage control bits

OVP D/A converter output $V_{OUT} = (D/A \text{ converter reference voltage/}256) \times D[7:0]$

Rev. 1.10 98 November 11, 2019

Comparator Input Offset Calibration

Before the offset calibration, the hysteresis function should be zero by clearing the OVPCHY bit to 0. As the OVPI is pin-shared with I/O function, it should first be configured as the OVP input using the corresponding pin-share function control bits. The procedures and settings of the comparator input offset calibration are shown as follows.

• Step 1

Set OVPCOFM=1 and OVPCRS=1, the OVP will now operate in the comparator input offset voltage calibration mode (S0 and S2 on). To make sure the $V_{\rm OS}$ is as minimized as possible after calibration, the input reference voltage in calibration should be the same as input DC operating voltage in normal mode operation.

• Step 2
Set OVPCOF[4:0]=00000 then read the OVPCOUT bit.

• Step 3

Increase the OVPCOF[4:0] value by 1 and then read the OVPCOUT bit.

If the OVPCOUT bit state has not changed, then repeat Step 3 until the OVPCOUT bit state has changed.

If the OVPCOUT bit state has changed, record the OVPCOF value as Vos1 and then go to Step 4.

• Step 4

Set OVPCOF[4:0]=11111 and read the OVPCOUT bit.

Step 5

Decrease the OVPCOF[4:0] value by 1 and then read the OVPCOUT bit.

If the OVPCOUT bit state has not changed, then repeat Step 5 until the OVPCOUT bit state has changed.

If the OVPCOUT bit state has changed, record the OVPCOF value as V_{OS2} and then go to Step 6.

• Step 6

Restore the comparator input offset voltage calibration value $V_{\rm OS}$ into the OVPCOF[4:0] bit field. The offset calibration procedure is now finished.

Where
$$V_{COS}=\frac{V_{COS1}+V_{COS2}}{2}$$
 , if the result is not integral, discard the decimal. Residue $V_{OS}=V_{OUT}-V_{IN}.$

Interrupts

Interrupts are an important part of any microcontroller system. When an external event or an internal function such as a TM Comparator P, Comparator A match, requires microcontroller attention, its corresponding interrupt will enforce a temporary suspension of the main program allowing the microcontroller to direct attention to its needs. The device contains several external interrupt and internal interrupt functions. The external interrupts are generated by the action of the external INT0~INT1 pins, while the internal interrupts are generated by internal functions including the TMs, A/D converter, LVD, OCP, OVP and Time Bases.

Interrupt Registers

Overall interrupt control, which basically means the setting of request flags when certain microcontroller conditions occur and the setting of interrupt enable bits by the application program, is controlled by a series of registers, located in the Special Purpose Data Memory, as shown in the accompanying table. The number of registers falls into two categories. The first is the INTCO~INTC3 registers which set the primary interrupts, the second is an INTEG register to setup the external interrupts trigger edge type.

Each register contains a number of enable bits to enable or disable individual registers as well as interrupt flags to indicate the presence of an interrupt request. The naming convention of these follows a specific pattern. First is listed an abbreviated interrupt type, then the (optional) number of that interrupt followed by either an "E" for enable/disable bit or "F" for request flag.

Function	Enable Bit	Request Flag	Notes
Global	EMI	_	_
INTn Pin	INTnE	INTnF	n=0~1
A/D Converter	ADE	ADF	_
Time Bases	TBnE	TBnF	n=0~1
OVP	OVPE	OVPF	_
OCP	OCPE	OCPF	_
LVD	LVE	LVF	_
STM	STMPE	STMPF	_
STIVI	STMAE	STMAF	_
РТМ	PTMPE	PTMPF	_
PIN	PTMAE	PTMAF	_

Interrupt Register Bit Naming Conventions

Register		Bit										
Name	7	6	5	4	3	2	1	0				
INTEG	_	_	_	_	INT1S1	INT1S0	INT0S1	INT0S0				
INTC0	_	INT0F	OVPF	OCPF	INT0E	OVPE	OCPE	EMI				
INTC1	STMAF	STMPF	ADF	INT1F	STMAE	STMPE	ADE	INT1E				
INTC2	TB1F	TB0F	PTMAF	PTMPF	TB1E	TB0E	PTMAE	PTMPE				
INTC3	_	_	_	LVF	_	_	_	LVE				

Interrupt Register List

Rev. 1.10 100 November 11, 2019

INTEG Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	INT1S1	INT1S0	INT0S1	INT0S0
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3~2 INT1S1~INT1S0: Interrupt edge control for INT1 pin

00: Disable01: Rising edge10: Falling edge

11: Rising and falling edges

Bit 1~0 INT0S1~INT0S0: Interrupt edge control for INT0 pin

00: Disable01: Rising edge10: Falling edge

11: Rising and falling edges

• INTC0 Register

Bit	7	6	5	4	3	2	1	0
Name	_	INT0F	OVPF	OCPF	INT0E	OVPE	OCPE	EMI
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	0	0	0	0	0	0	0

Bit 7 Unimplemented, read as "0"

Bit 6 INT0F: INT0 interrupt request flag

0: No request1: Interrupt request

Bit 5 **OVPF**: OVP interrupt request flag

0: No request1: Interrupt request

Bit 4 **OCPF**: OCP interrupt request flag

0: No request1: Interrupt request

Bit 3 INT0E: INT0 interrupt control

0: Disable 1: Enable

Bit 2 **OVPE**: OVP interrupt control

0: Disable 1: Enable

Bit 1 **OCPE**: OCP interrupt control

0: Disable 1: Enable

Bit 0 EMI: Global interrupt control

0: Disable 1: Enable

• INTC1 Register

Bit	7	6	5	4	3	2	1	0
Name	STMAF	STMPF	ADF	INT1F	STMAE	STMPE	ADE	INT1E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 STMAF: STM comparator A match interrupt request flag

0: No request1: Interrupt request

Bit 6 STMPF: STM comparator P match interrupt request flag

0: No request1: Interrupt request

Bit 5 ADF: A/D converter interrupt request flag

0: No request1: Interrupt request

Bit 4 INT1F: INT1 interrupt request flag

0: No request1: Interrupt request

Bit 3 STMAE: STM comparator A match interrupt control

0: Disable 1: Enable

Bit 2 STMPE: STM comparator P match interrupt control

0: Disable 1: Enable

Bit 1 ADE: A/D converter interrupt control

0: Disable 1: Enable

Bit 0 **INT1E**: INT1 interrupt control

0: Disable 1: Enable

• INTC2 Register

Bit	7	6	5	4	3	2	1	0
Name	TB1F	TB0F	PTMAF	PTMPF	TB1E	TB0E	PTMAE	PTMPE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 TB1F: Time Base 1 interrupt request flag

0: No request1: Interrupt request

Bit 6 **TB0F**: Time Base 0 interrupt request flag

0: No request1: Interrupt request

Bit 5 PTMAF: PTM comparator A match interrupt request flag

0: No request1: Interrupt request

Bit 4 **PTMPF**: PTM comparator P match interrupt request flag

0: No request1: Interrupt request

Bit 3 **TB1E**: Time Base 1 interrupt control

0: Disable 1: Enable

Bit 2 **TB0E**: Time Base 0 interrupt control

0: Disable 1: Enable

Bit 1 **PTMAE**: PTM comparator A match interrupt control

0: Disable 1: Enable

Bit 0 **PTMPE**: PTM comparator P match interrupt control

0: Disable 1: Enable

• INTC3 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	LVF	_	_	_	LVE
R/W	_	_	_	R/W	_	_	_	R/W
POR	_	_	_	0	_	_	_	0

Bit 7~5 Unimplemented, read as "0"

Bit 4 LVF: LVD interrupt request flag

0: No request1: Interrupt request

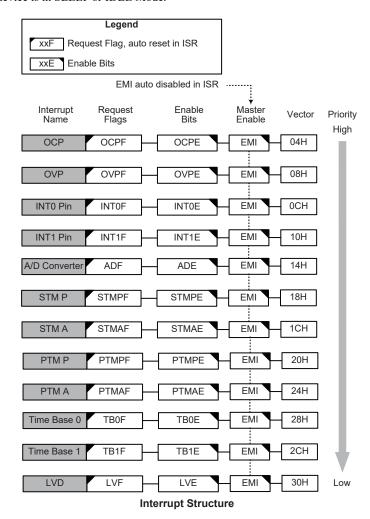
Bit 3~1 Unimplemented, read as "0"

Bit 0 LVE: LVD interrupt control

0: Disable 1: Enable

Interrupt Operation

When the conditions for an interrupt event occur, such as a TM Comparator P, Comparator A match, the relevant interrupt request flag will be set. Whether the request flag actually generates a program jump to the relevant interrupt vector is determined by the condition of the interrupt enable bit. If the enable bit is set high then the program will jump to its relevant vector; if the enable bit is zero then although the interrupt request flag is set an actual interrupt will not be generated and the program will not jump to the relevant interrupt vector. The global interrupt enable bit, if cleared to zero, will disable all interrupts.


When an interrupt is generated, the Program Counter, which stores the address of the next instruction to be executed, will be transferred onto the stack. The Program Counter will then be loaded with a new address which will be the value of the corresponding interrupt vector. The microcontroller will then fetch its next instruction from this interrupt vector. The instruction at this vector will usually be a "JMP" which will jump to another section of program which is known as the interrupt service routine. Here is located the code to control the appropriate interrupt. The interrupt service routine must be terminated with an "RETI", which retrieves the original Program Counter address from the stack and allows the microcontroller to continue with normal execution at the point where the interrupt occurred.

The various interrupt enable bits, together with their associated request flags, are shown in the accompanying diagram with their order of priority. All of the interrupt sources have their own individual vector. Once an interrupt subroutine is serviced, all the other interrupts will be blocked, as the global interrupt enable bit, EMI bit will be cleared automatically. This will prevent any further interrupt nesting from occurring. However, if other interrupt requests occur during this interval, although the interrupt will not be immediately serviced, the request flag will still be recorded.

If an interrupt requires immediate servicing while the program is already in another interrupt service routine, the EMI bit should be set after entering the routine, to allow interrupt nesting. If the stack

is full, the interrupt request will not be acknowledged, even if the related interrupt is enabled, until the Stack Pointer is decremented. If immediate service is desired, the stack must be prevented from becoming full. In case of simultaneous requests, the accompanying diagram shows the priority that is applied. All of the interrupt request flags when set will wake-up the device if it is in SLEEP or IDLE Mode, however to prevent a wake-up from occurring the corresponding flag should be set before the device is in SLEEP or IDLE Mode.

External Interrupts

The external interrupts are controlled by signal transitions on the INTn pins. An external interrupt request will take place when the external interrupt request flag, INTnF, is set, which will occur when a transition, whose type is chosen by the edge select bits, appears on the external interrupt pins. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and the external interrupt enable bit, INTnE, must first be set. Additionally the correct interrupt edge type must be selected using the INTEG register to enable the external interrupt function and to choose the trigger edge type. As the external interrupt pins are pin-shared with I/O pins, they can only be configured as external interrupt pins if their external interrupt enable bits in the corresponding interrupt registers has been set and the external interrupt pins are selected by the corresponding pin-shared function selection bits. The pins must also be set as an input by setting the corresponding bit in the port control register. When the interrupt is enabled, the stack is not full

Rev. 1.10 104 November 11, 2019

and the correct transition type appears on the external interrupt pins, a subroutine call to the external interrupt vector, will take place. When the interrupt is serviced, the external interrupt request flag, INTnF, will be automatically reset and the EMI bit will be automatically cleared to disable other interrupts. Note that any pull-high resistor selection on the external interrupt pin will remain valid even if the pin is used as an external interrupt input.

The INTEG register is used to select the type of active edge that will trigger the external interrupt. A choice of either rising or falling or both edge types can be chosen to trigger an external interrupt. Note that the INTEG register can also be used to disable the external interrupt function.

A/D Converter Interrupt

An A/D converter interrupt request will take place when the A/D converter interrupt request flag, ADF, is set, which occurs when the A/D conversion process finishes. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and A/D converter interrupt enable bit, ADE, must first be set. When the interrupt is enabled, the stack is not full and the A/D conversion process has ended, a subroutine call to the A/D converter interrupt vector, will take place. When the A/D converter interrupt is serviced, the A/D converter interrupt flag, ADF, will be automatically cleared. The EMI bit will also be automatically cleared to disable other interrupts.

Over Current Protection Interrupt

The OCP interrupt is controlled by detecting the OCP input current. An OCP interrupt request will take place when the OCP interrupt request flag, OCPF, is set, which occurs when an over current condition is detected. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and OCP interrupt enable bit, OCPE, must first be set. When the interrupt is enabled, the stack is not full and an over current condition is detected, a subroutine call to the OCP interrupt vector, will take place. When the interrupt is serviced, the OCP interrupt flag, OCPF, will be automatically cleared. The EMI bit will also be automatically cleared to disable other interrupts.

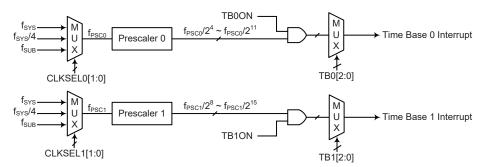
Over Voltage Protection Interrupt

The OVP interrupt is controlled by detecting the OVP input voltage. An OVP interrupt request will take place when the OVP interrupt request flag, OVPF, is set, which occurs when the over voltage protection circuit detects an over voltage condition. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and OVP interrupt enable bit, OVPE, must first be set. When the interrupt is enabled, the stack is not full and an over voltage condition is detected, a subroutine call to the OVP interrupt vector, will take place. When the interrupt is serviced, the OVP interrupt flag, OVPF, will be automatically cleared. The EMI bit will also be automatically cleared to disable other interrupts.

Timer Module Interrupts

The Standard and Periodic type TMs each has two interrupts, one comes from the comparator A match situation and the other comes from the comparator P match situation. For all of the TM types there are two interrupt request flags and two enable control bits. A TM interrupt request will take place when any of the TM request flags are set, a situation which occurs when a TM comparator P or A match situation happens.

To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and the respective TM interrupt enable bit, must first be set. When the interrupt is enabled, the stack is not full and a TM comparator match situation occurs, a subroutine call to the relevant TM interrupt vector locations, will take place. When the TM interrupt is serviced, the TM interrupt request flags will be automatically cleared, the EMI bit will also be automatically cleared to disable other interrupts.


Rev. 1.10 105 November 11, 2019

Time Base Interrupts

The function of the Time Base interrupts is to provide regular time signal in the form of an internal interrupt. It is controlled by the overflow signals from the timer function. When this happens its interrupt request flag TBnF will be set. To allow the program to branch to its interrupt vector address, the global interrupt enable bit, EMI and Time Base enable bit, TBnE, must first be set. When the interrupt is enabled, the stack is not full and the Time Base overflows, a subroutine call to its interrupt vector location will take place. When the interrupt is serviced, the interrupt request flag, TBnF, will be automatically reset and the EMI bit will be cleared to disable other interrupts.

The purpose of the Time Base interrupts is to provide an interrupt signal at fixed time periods. Its clock source, f_{PSCn}, originates from the internal clock source f_{SYS}, f_{SYS}/4 or f_{SUB} and then passes through a divider, the division ratio of which is selected by programming the appropriate bits in the TBnC register to obtain longer interrupt periods whose value ranges. The clock source which in turn controls the Time Base interrupt period is selected using the CLKSELn[1:0] bits in the PSCnR register.

Time Base Interrupts

PSCnR Register (n=0~1)

Bit	7	6	5	4	3	2	1	0
Name		_	_	_	_	_	CLKSELn1	CLKSELn0
R/W	_	_	_	_	_	_	R/W	R/W
POR		_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit 1~0 CLKSELn1~CLKSELn0: Prescaler n clock source f_{PSCn} selection

00: f_{SYS} 01: f_{SYS}/4 1x: f_{SUB}

TB0C Register

Bit	7	6	5	4	3	2	1	0
Name	TB0ON	_	_	_	_	TB02	TB01	TB00
R/W	R/W	_	_	_	_	R/W	R/W	R/W
POR	0	_	_	_	_	0	0	0

Bit 7 **TB0ON**: Time Base 0 control

0: Disable 1: Enable

Bit 6~3 Unimplemented, read as "0"

Rev. 1.10 106 November 11, 2019

Bit 2~0 **TB02~TB00**: Time Base 0 time-out period selection

000: 2⁴/f_{PSC0} 001: 2⁵/f_{PSC0} 010: 2⁶/f_{PSC0} 011: 2⁷/f_{PSC0} 100: 2⁸/f_{PSC0} 101: 2⁹/f_{PSC0} 110: 2¹⁰/f_{PSC0} 111: 2¹¹/f_{PSC0}

• TB1C Register

Bit	7	6	5	4	3	2	1	0
Name	TB10N	_	_	_	_	TB12	TB11	TB10
R/W	R/W	_	_	_	_	R/W	R/W	R/W
POR	0	_	_	_	_	0	0	0

Bit 7 **TB1ON**: Time Base 1 control

0: Disable 1: Enable

1. Lilabic

Bit 6~3 Unimplemented, read as "0"

Bit 2~0 **TB12~TB10**: Time Base 1 time-out period selection

000: $2^8/f_{PSC1}$ 001: $2^9/f_{PSC1}$ 010: $2^{19}/f_{PSC1}$ 010: $2^{19}/f_{PSC1}$ 011: $2^{11}/f_{PSC1}$ 100: $2^{12}/f_{PSC1}$ 101: $2^{13}/f_{PSC1}$ 110: $2^{14}/f_{PSC1}$ 111: $2^{15}/f_{PSC1}$

LVD Interrupt

An LVD interrupt request will take place when the LVD interrupt request flag, LVF, is set, which occurs when the Low Voltage Detector function detects a low power supply voltage. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and the Low Voltage interrupt enable bit, LVE, must first be set. When the interrupt is enabled, the stack is not full and a low voltage condition occurs, a subroutine call to the LVD interrupt vector, will take place. When the LVD interrupt is serviced, the LVF flag will be automatically cleared. The EMI bit will also be automatically cleared to disable other interrupts.

Interrupt Wake-up Function

Each of the interrupt functions has the capability of waking up the microcontroller when in the SLEEP or IDLE Mode. A wake-up is generated when an interrupt request flag changes from low to high and is independent of whether the interrupt is enabled or not. Therefore, even though the device is in the SLEEP or IDLE Mode and its system oscillator stopped, situations such as external edge transitions on the external interrupt pin may cause their respective interrupt flag to be set high and consequently generate an interrupt. Care must therefore be taken if spurious wake-up situations are to be avoided. If an interrupt wake-up function is to be disabled then the corresponding interrupt request flag should be set high before the device enters the SLEEP or IDLE Mode. The interrupt enable bits have no effect on the interrupt wake-up function.

Programming Considerations

By disabling the relevant interrupt enable bits, a requested interrupt can be prevented from being serviced, however, once an interrupt request flag is set, it will remain in this condition in the interrupt register until the corresponding interrupt is serviced or until the request flag is cleared by the application program.

It is recommended that programs do not use the "CALL" instruction within the interrupt service subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately. If only one stack is left and the interrupt is not well controlled, the original control sequence will be damaged once a CALL subroutine is executed in the interrupt subroutine.

Every interrupt has the capability of waking up the microcontroller when it is in the SLEEP or IDLE Mode, the wake up being generated when the interrupt request flag changes from low to high. If it is required to prevent a certain interrupt from waking up the microcontroller then its respective request flag should be first set high before enter SLEEP or IDLE Mode.

As only the Program Counter is pushed onto the stack, then when the interrupt is serviced, if the contents of the accumulator, status register or other registers are altered by the interrupt service program, their contents should be saved to the memory at the beginning of the interrupt service routine.

To return from an interrupt subroutine, either an RET or RETI instruction may be executed. The RETI instruction in addition to executing a return to the main program also automatically sets the EMI bit high to allow further interrupts. The RET instruction however only executes a return to the main program leaving the EMI bit in its present zero state and therefore disabling the execution of further interrupts.

Low Voltage Detector - LVD

The device has a Low Voltage Detector function, also known as LVD. This enables the device to monitor the power supply voltage, V_{DD}, and provides a warning signal should it fall below a certain level. This function may be especially useful in battery applications where the supply voltage will gradually reduce as the battery ages, as it allows an early warning battery low signal to be generated. The Low Voltage Detector also has the capability of generating an interrupt signal.

LVD Register

The Low Voltage Detector function is controlled using a single register with the name LVDC. Three bits in this register, VLVD2~VLVD0, are used to select one of eight fixed voltages below which a low voltage condition will be determined. A low voltage condition is indicated when the LVDO bit is set. If the LVDO bit is low, this indicates that the V_{DD} voltage is above the preset low voltage value. The LVDEN bit is used to control the overall on/off function of the low voltage detector. Setting the bit high will enable the low voltage detector. Clearing the bit to zero will switch off the internal low voltage detector circuits. As the low voltage detector will consume a certain amount of power, it may be desirable to switch off the circuit when not in use, an important consideration in power sensitive battery powered applications.

LVDC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	LVDO	LVDEN	VBGEN	VLVD2	VLVD1	VLVD0
R/W	_	_	R	R/W	R/W	R/W	R/W	R/W
POR	_	_	0	0	0	0	0	0

Bit 7~6 Unimplemented, read as "0"

Rev. 1.10 108 November 11, 2019

Bit 5 LVDO: LVD output flag
0: No Low Voltage Detected

1: Low Voltage Detected

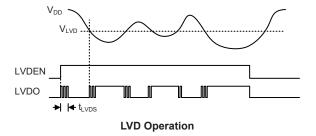
Bit 4 LVDEN: Low voltage detector enable control

0: Disable 1: Enable

Bit 3 VBGEN: Bandgap voltage output enable control

0: Disable 1: Enable

Note that the Bandgap circuit is enabled when the LVD or LVR function is enabled or

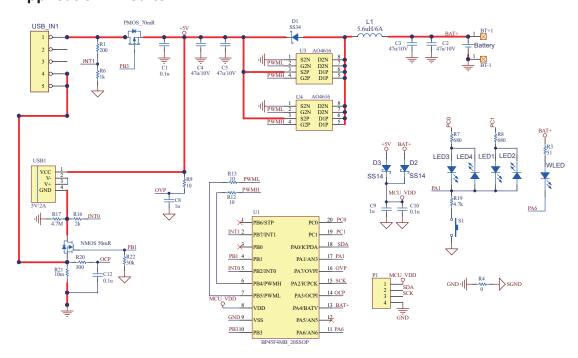

when the VBGEN bit is set to 1.

Bit 2~0 VLVD2~VLVD0: LVD voltage selection

000: 2.0V 001: 2.2V 010: 2.4V 011: 2.7V 100: 3.0V 101: 3.3V 110: 3.6V 111: 4.0V

LVD Operation

The Low Voltage Detector function operates by comparing the power supply voltage, V_{DD} , with a pre-specified voltage level stored in the LVDC register. This has a range of between 2.0V and 4.0V. When the power supply voltage, V_{DD} , falls below this pre-determined value, the LVDO bit will be set high indicating a low power supply voltage condition. When the device enters the SLEEP mode, the low voltage detector will be automatically disabled even if the LVDEN bit is set high. After enabling the Low Voltage Detector, a time delay $t_{\rm LVDS}$ should be allowed for the circuitry to stabilise before reading the LVDO bit. Note also that as the $V_{\rm DD}$ voltage may rise and fall rather slowly, at the voltage nears that of $V_{\rm LVD}$, there may be multiple bit LVDO transitions.



The Low Voltage Detector also has its own interrupt, providing an alternative means of low voltage detection, in addition to polling the LVDO bit. The interrupt will only be generated after a delay of t_{LVD} after the LVDO bit has been set high by a low voltage condition. In this case, the LVF interrupt request flag will be set, causing an interrupt to be generated if V_{DD} falls below the preset LVD voltage. This will cause the device to wake-up from the IDLE Mode, however if the Low Voltage Detector wake up function is not required then the LVF flag should be first set high before the device enters the IDLE Mode.

Rev. 1.10 109 November 11, 2019

Application Circuits

Rev. 1.10 November 11, 2019

Instruction Set

Introduction

Central to the successful operation of any microcontroller is its instruction set, which is a set of program instruction codes that directs the microcontroller to perform certain operations. In the case of Holtek microcontroller, a comprehensive and flexible set of over 60 instructions is provided to enable programmers to implement their application with the minimum of programming overheads.

For easier understanding of the various instruction codes, they have been subdivided into several functional groupings.

Instruction Timing

Most instructions are implemented within one instruction cycle. The exceptions to this are branch, call, or table read instructions where two instruction cycles are required. One instruction cycle is equal to 4 system clock cycles, therefore in the case of an 8MHz system oscillator, most instructions would be implemented within 0.5µs and branch or call instructions would be implemented within 1µs. Although instructions which require one more cycle to implement are generally limited to the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other instructions which involve manipulation of the Program Counter Low register or PCL will also take one more cycle to implement. As instructions which change the contents of the PCL will imply a direct jump to that new address, one more cycle will be required. Examples of such instructions would be "CLR PCL" or "MOV PCL, A". For the case of skip instructions, it must be noted that if the result of the comparison involves a skip operation then this will also take one more cycle, if no skip is involved then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program is one of the most frequently used operations. Making use of three kinds of MOV instructions, data can be transferred from registers to the Accumulator and vice-versa as well as being able to move specific immediate data directly into the Accumulator. One of the most important data transfer applications is to receive data from the input ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and data manipulation is a necessary feature of most microcontroller applications. Within the Holtek microcontroller instruction set are a range of add and subtract instruction mnemonics to enable the necessary arithmetic to be carried out. Care must be taken to ensure correct handling of carry and borrow data when results exceed 255 for addition and less than 0 for subtraction. The increment and decrement instructions INC, INCA, DEC and DECA provide a simple means of increasing or decreasing by a value of one of the values in the destination specified.

Rev. 1.10 111 November 11, 2019

Logical and Rotate Operation

The standard logical operations such as AND, OR, XOR and CPL all have their own instruction within the Holtek microcontroller instruction set. As with the case of most instructions involving data manipulation, data must pass through the Accumulator which may involve additional programming steps. In all logical data operations, the zero flag may be set if the result of the operation is zero. Another form of logical data manipulation comes from the rotate instructions such as RR, RL, RRC and RLC which provide a simple means of rotating one bit right or left. Different rotate instructions exist depending on program requirements. Rotate instructions are useful for serial port programming applications where data can be rotated from an internal register into the Carry bit from where it can be examined and the necessary serial bit set high or low. Another application which rotate data operations are used is to implement multiplication and division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to specified locations using the JMP instruction or to a subroutine using the CALL instruction. They differ in the sense that in the case of a subroutine call, the program must return to the instruction immediately when the subroutine has been carried out. This is done by placing a return instruction "RET" in the subroutine which will cause the program to jump back to the address right after the CALL instruction. In the case of a JMP instruction, the program simply jumps to the desired location. There is no requirement to jump back to the original jumping off point as in the case of the CALL instruction. One special and extremely useful set of branch instructions are the conditional branches. Here a decision is first made regarding the condition of a certain data memory or individual bits. Depending upon the conditions, the program will continue with the next instruction or skip over it and jump to the following instruction. These instructions are the key to decision making and branching within the program perhaps determined by the condition of certain input switches or by the condition of internal data bits.

Bit Operations

The ability to provide single bit operations on Data Memory is an extremely flexible feature of all Holtek microcontrollers. This feature is especially useful for output port bit programming where individual bits or port pins can be directly set high or low using either the "SET [m].i" or "CLR [m].i" instructions respectively. The feature removes the need for programmers to first read the 8-bit output port, manipulate the input data to ensure that other bits are not changed and then output the port with the correct new data. This read-modify-write process is taken care of automatically when these bit operation instructions are used.

Table Read Operations

Data storage is normally implemented by using registers. However, when working with large amounts of fixed data, the volume involved often makes it inconvenient to store the fixed data in the Data Memory. To overcome this problem, Holtek microcontrollers allow an area of Program Memory to be set as a table where data can be directly stored. A set of easy to use instructions provides the means by which this fixed data can be referenced and retrieved from the Program Memory.

Other Operations

In addition to the above functional instructions, a range of other instructions also exist such as the "HALT" instruction for Power-down operations and instructions to control the operation of the Watchdog Timer for reliable program operations under extreme electric or electromagnetic environments. For their relevant operations, refer to the functional related sections.

Rev. 1.10 112 November 11, 2019

Instruction Set Summary

The following table depicts a summary of the instruction set categorised according to function and can be consulted as a basic instruction reference using the following listed conventions.

Table Conventions

x: Bits immediate data

m: Data Memory address

A: Accumulator

i: 0~7 number of bits

addr: Program memory address

Mnemonic	Description	Cycles	Flag Affected		
Arithmetic	Arithmetic				
ADD A,[m]	Add Data Memory to ACC	1	Z, C, AC, OV		
ADDM A,[m]	Add ACC to Data Memory	1 ^{Note}	Z, C, AC, OV		
ADD A,x	Add immediate data to ACC	1	Z, C, AC, OV		
ADC A,[m]	Add Data Memory to ACC with Carry	1	Z, C, AC, OV		
ADCM A,[m]	Add ACC to Data memory with Carry	1 Note	Z, C, AC, OV		
SUB A,x	Subtract immediate data from the ACC	1	Z, C, AC, OV		
SUB A,[m]	Subtract Data Memory from ACC	1	Z, C, AC, OV		
SUBM A,[m]	Subtract Data Memory from ACC with result in Data Memory	1 Note	Z, C, AC, OV		
SBC A,[m]	Subtract Data Memory from ACC with Carry	1	Z, C, AC, OV		
SBCM A,[m]	Subtract Data Memory from ACC with Carry, result in Data Memory	1 ^{Note}	Z, C, AC, OV		
DAA [m]	Decimal adjust ACC for Addition with result in Data Memory	1 Note	С		
Logic Operation					
AND A,[m]	Logical AND Data Memory to ACC	1	Z		
OR A,[m]	Logical OR Data Memory to ACC	1	Z		
XOR A,[m]	Logical XOR Data Memory to ACC	1	Z		
ANDM A,[m]	Logical AND ACC to Data Memory	1 Note	Z		
ORM A,[m]	Logical OR ACC to Data Memory	1 Note	Z		
XORM A,[m]	Logical XOR ACC to Data Memory	1 Note	Z		
AND A,x	Logical AND immediate Data to ACC	1	Z		
OR A,x	Logical OR immediate Data to ACC	1	Z		
XOR A,x	Logical XOR immediate Data to ACC	1	Z		
CPL [m]	Complement Data Memory	1 ^{Note}	Z		
CPLA [m]	Complement Data Memory with result in ACC	1	Z		
Increment & Dec	Increment & Decrement				
INCA [m]	Increment Data Memory with result in ACC	1	Z		
INC [m]	Increment Data Memory	1 Note	Z		
DECA [m]	Decrement Data Memory with result in ACC	1	Z		
DEC [m]	Decrement Data Memory	1 Note	Z		
Rotate					
RRA [m]	Rotate Data Memory right with result in ACC	1	None		
RR [m]	Rotate Data Memory right	1 Note	None		
RRCA [m]	Rotate Data Memory right through Carry with result in ACC	1	С		
RRC [m]	Rotate Data Memory right through Carry	1 Note	С		
RLA [m]	Rotate Data Memory left with result in ACC	1	None		
RL [m]	Rotate Data Memory left	1 Note	None		
RLCA [m]	Rotate Data Memory left through Carry with result in ACC	1	С		
RLC [m]	Rotate Data Memory left through Carry	1 Note	С		

Mnemonic	Description	Cycles	Flag Affected
Data Move			
MOV A,[m]	Move Data Memory to ACC		None
MOV [m],A	Move ACC to Data Memory	1 ^{Note}	None
MOV A,x	Move immediate data to ACC	1	None
Bit Operation			
CLR [m].i	Clear bit of Data Memory	1 ^{Note}	None
SET [m].i	Set bit of Data Memory	1 ^{Note}	None
Branch Operation	1		
JMP addr	Jump unconditionally	2	None
SZ [m]	Skip if Data Memory is zero	1 ^{Note}	None
SZA [m]	Skip if Data Memory is zero with data movement to ACC	1 ^{Note}	None
SZ [m].i	Skip if bit i of Data Memory is zero	1 ^{Note}	None
SNZ [m].i	Skip if bit i of Data Memory is not zero	1 ^{Note}	None
SIZ [m]	Skip if increment Data Memory is zero	1 ^{Note}	None
SDZ [m]	Skip if decrement Data Memory is zero	1 ^{Note}	None
SIZA [m]	Skip if increment Data Memory is zero with result in ACC	1 ^{Note}	None
SDZA [m]	Skip if decrement Data Memory is zero with result in ACC	1 ^{Note}	None
CALL addr	Subroutine call	2	None
RET	Return from subroutine	2	None
RET A,x	Return from subroutine and load immediate data to ACC	2	None
RETI	Return from interrupt	2	None
Table Read Opera	ation		
TABRD [m]	Read table (specific page or current page) to TBLH and Data Memory	2 ^{Note}	None
TABRDL [m]	Read table (last page) to TBLH and Data Memory	2 ^{Note}	None
Miscellaneous			
NOP	No operation	1	None
CLR [m]	Clear Data Memory	1 ^{Note}	None
SET [m]	Set Data Memory	1 ^{Note}	None
CLR WDT	Clear Watchdog Timer	1	TO, PDF
CLR WDT1	Pre-clear Watchdog Timer	1	TO, PDF
CLR WDT2	Pre-clear Watchdog Timer		TO, PDF
SWAP [m]	Swap nibbles of Data Memory		None
SWAPA [m]	Swap nibbles of Data Memory with result in ACC	1	None
HALT	Enter power down mode	1	TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then up to two cycles are required, if no skip takes place only one cycle is required.

- 2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.
- 3. For the "CLR WDT1" and "CLR WDT2" instructions the TO and PDF flags may be affected by the execution status. The TO and PDF flags are cleared after both "CLR WDT1" and "CLR WDT2" instructions are consecutively executed. Otherwise the TO and PDF flags remain unchanged.

Rev. 1.10 114 November 11, 2019

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + [m] + C$

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added.

The result is stored in the specified Data Memory.

Operation $[m] \leftarrow ACC + [m] + C$

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + [m]$ Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + x$ Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added.

The result is stored in the specified Data Memory.

 $\label{eq:continuous} \begin{array}{ll} \text{Operation} & & [m] \leftarrow ACC + [m] \\ \text{Affected flag(s)} & & \text{OV, Z, AC, C} \end{array}$

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "AND" [m]$

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bit wise logical AND

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC$ "AND" x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "AND" [m]$

Affected flag(s) Z

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then

increments by 1 to obtain the address of the next instruction which is then pushed onto the stack. The specified address is then loaded and the program continues execution from this new address. As this instruction requires an additional operation, it is a two cycle instruction.

Operation Stack \leftarrow Program Counter + 1

Program Counter \leftarrow addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation $[m] \leftarrow 00H$ Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i \leftarrow 0 Affected flag(s) None

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

 $\begin{array}{l} \text{TO} \leftarrow 0 \\ \text{PDF} \leftarrow 0 \end{array}$

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in

conjunction with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Repetitively executing this instruction without alternately executing CLR WDT2 will

have no effect.

Operation WDT cleared

 $\begin{aligned} & TO \leftarrow 0 \\ & PDF \leftarrow 0 \end{aligned}$

 $TDI \leftarrow 0$

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunction

with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect.

Repetitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

 $TO \leftarrow 0$ $PDF \leftarrow 0$

Affected flag(s) TO, PDF

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1's complement). Bits which

previously contained a 1 are changed to 0 and vice versa.

Operation $[m] \leftarrow \overline{[m]}$

Affected flag(s) Z

Rev. 1.10 116 November 11, 2019

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1's complement). Bits which

previously contained a 1 are changed to 0 and vice versa. The complemented result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m]$

Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value

resulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of 6 will be added to the high nibble. Essentially, the decimal conversion is performed by adding 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C flag may be affected by this instruction which indicates that if the original BCD sum is greater than

100, it allows multiple precision decimal addition.

Operation $[m] \leftarrow ACC + 00H$ or

 $[m] \leftarrow ACC + 06H \text{ or}$ $[m] \leftarrow ACC + 60H \text{ or}$ $[m] \leftarrow ACC + 66H$

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation $[m] \leftarrow [m] - 1$

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the

Accumulator. The contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m] - 1$

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents of

the Data Memory and registers are retained. The WDT and prescaler are cleared. The power

down flag PDF is set and the WDT time-out flag TO is cleared.

Operation $TO \leftarrow 0$

 $PDF \leftarrow 1$

Affected flag(s) TO, PDF

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation $[m] \leftarrow [m] + 1$

Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumulator.

The contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m] + 1$

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter ← addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation $ACC \leftarrow [m]$ Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation $ACC \leftarrow x$ Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation $[m] \leftarrow ACC$ Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation
Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise

logical OR operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "OR" [m]$

Affected flag(s) Z

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "OR" x$

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "OR" [m]$

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the restored

address.

Operation Program Counter ← Stack

Affected flag(s) None

Rev. 1.10 118 November 11, 2019

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the specified

immediate data. Program execution continues at the restored address.

Operation Program Counter ← Stack

 $ACC \leftarrow x$

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by setting the

EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending when the RETI instruction is executed, the pending Interrupt routine will be processed before returning

to the main program.

Operation Program Counter ← Stack

 $EMI \leftarrow 1$

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.

Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$

 $[m].0 \leftarrow [m].7$

Affected flag(s) None

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.

The rotated result is stored in the Accumulator and the contents of the Data Memory remain

unchanged.

Operation ACC.(i+1) \leftarrow [m].i; (i=0 \sim 6)

 $ACC.0 \leftarrow [m].7$

Affected flag(s) None

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$

 $[m].0 \leftarrow C$

 $C \leftarrow [m].7$

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces the

Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in the

Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1) \leftarrow [m].i; (i=0 \sim 6)

 $ACC.0 \leftarrow C$

 $C \leftarrow [m].7$

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into bit 7.

Operation $[m].i \leftarrow [m].(i+1); (i=0\sim6)$

 $[m].7 \leftarrow [m].0$

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory is rotated right by 1 bit with bit 0 rotated into bit 7.

The rotated result is stored in the Accumulator and the contents of the Data Memory remain

unchanged.

Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6)

 $ACC.7 \leftarrow [m].0$

Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation $[m].i \leftarrow [m].(i+1); (i=0\sim6)$

 $[m].7 \leftarrow C$

 $C \leftarrow [m].0$

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces

the Carry bit and the original carry flag is rotated into bit 7. The rotated result is stored in the

Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6)

 $ACC.7 \leftarrow C$ $C \leftarrow [m].0$

Affected flag(s) C

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - [m] - \overline{C}$

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation $[m] \leftarrow ACC - [m] - \overline{C}$

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation $[m] \leftarrow [m] - 1$

Skip if [m]=0

Affected flag(s) None

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy

instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0,

the program proceeds with the following instruction.

Operation $ACC \leftarrow [m] - 1$

Skip if ACC=0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation $[m] \leftarrow FFH$ Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

 $\begin{array}{ll} \text{Operation} & \quad [m].i \leftarrow 1 \\ \text{Affected flag(s)} & \quad \text{None} \end{array}$

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation $[m] \leftarrow [m] + 1$

Skip if [m]=0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy

instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation $ACC \leftarrow [m] + 1$

Skip if ACC=0

Affected flag(s) None

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this

requires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m]. $i \neq 0$

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is

stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be

cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - [m]$

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is

stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be

cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

 $\begin{tabular}{ll} Operation & [m] \leftarrow ACC - [m] \\ Affected flag(s) & OV, Z, AC, C \end{tabular}$

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumulator.

The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - x$ Affected flag(s) OV, Z, AC, C

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation $[m].3\sim[m].0 \leftrightarrow [m].7\sim[m].4$

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation $ACC.3 \sim ACC.0 \leftarrow [m].7 \sim [m].4$

 $ACC.7 \sim ACC.4 \leftarrow [m].3 \sim [m].0$

Affected flag(s) None

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As this

requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction.

Operation Skip if [m]=0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is zero,

the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation $ACC \leftarrow [m]$

Skip if [m]=0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires

the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle

instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i=0

Affected flag(s) None

Rev. 1.10 122 November 11, 2019

TABRD [m] Read table (specific page or current page) to TBLH and Data Memory

Description The low byte of the program code addressed by the table pointer (TBHP and TBLP or only

TBLP if no TBHP) is moved to the specified Data Memory and the high byte moved to

TBLH.

Operation $[m] \leftarrow program code (low byte)$

TBLH ← program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is moved

to the specified Data Memory and the high byte moved to TBLH.

Operation $[m] \leftarrow program code (low byte)$

TBLH ← program code (high byte)

Affected flag(s) None

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "XOR" [m]$

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "XOR" [m]$

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

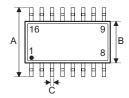
operation. The result is stored in the Accumulator.

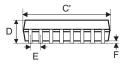
Operation $ACC \leftarrow ACC "XOR" x$

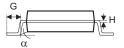
Affected flag(s) Z

Package Information

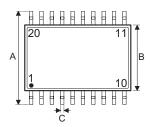
Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>.

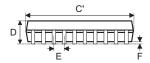

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.


- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information


Rev. 1.10 124 November 11, 2019

16-pin NSOP (150mil) Outline Dimensions




Cumbal	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
A	_	0.236 BSC	_	
В	_	0.154 BSC	_	
С	0.012	_	0.020	
C'	_	0.390 BSC	_	
D	_	_	0.069	
E	_	0.050 BSC	_	
F	0.004	_	0.010	
G	0.016	_	0.050	
Н	0.004	_	0.010	
α	0°	_	8°	

Symbol	Dimensions in mm			
Symbol	Min.	Nom.	Max.	
A	_	6.000 BSC	_	
В	_	3.900 BSC	_	
С	0.31	_	0.51	
C'	_	9.900 BSC		
D	_	_	1.75	
E	_	1.270 BSC	_	
F	0.10	_	0.25	
G	0.40	_	1.27	
Н	0.10	_	0.25	
α	0°	_	8°	

20-pin SSOP (150mil) Outline Dimensions

Cumbal	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
A	_	0.236 BSC	_	
В	_	0.154 BSC	_	
С	0.008	_	0.012	
C'	_	0.341 BSC	_	
D	_	_	0.069	
E	_	0.025 BSC	_	
F	0.004	_	0.0098	
G	0.016	_	0.05	
Н	0.004	_	0.01	
α	0°	_	8°	

Symbol	Dimensions in mm			
Зушьог	Min.	Nom.	Max.	
А	_	6.000 BSC		
В	_	3.900 BSC	_	
С	0.20	_	0.30	
C'	_	8.660 BSC	_	
D	_	_	1.75	
E	_	0.635 BSC	_	
F	0.10	_	0.25	
G	0.41	_	1.27	
Н	0.10	_	0.25	
α	0°	_	8°	

Rev. 1.10 126 November 11, 2019

Copyright[©] 2019 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.