晶丰明源半导体

High Precision PSR Constant Current LED Driver

Description

BP3136D is a high precision primary-side feedback and regulation controller for LED lighting, it operates in constant current control mode and is designed to work in inductor current discontinuous conduction mode and especially suitable for flyback convertor under universal input. The output power of system is recommended to less than 18W.

BP3136D integrates 650V power MOSFET. Since adopting primary sense and feedback control technology, the secondary sense and feedback circuit is eliminated. The loop compensation components are also removed while maintaining stability overall operating conditions. It uses patent pending source driver architecture and demagnetization sensing technology, the operating current is very low, and it doesn't need the auxiliary winding for sensing the output current and supplying the chip. The low component counts and small system size are realized.

Since using the proprietary high accurate current sense method, the BP3136D realizes ±5% accuracy of LED

The BP3136D offers rich protection functions including LED open/short circuit protection, CS resistor short circuit protection, thermal regulation, $V_{\rm CC}$ under voltage protection.

Features

- Built-in 650V Power MOSFET
- Constant current control without secondary sense and feedback circuit.
- No Auxiliary winding for sensing and supplying
- Ultra low operating current to improve efficiency
- Universal input voltage
- ±5% LED current accuracy
- LED short and open circuit protection
- CS resistor short circuit protection
- VCC under-voltage protection
- Thermal regulation
- Available in DIP-8 package

Applications

- LED Panel Light
- LED Ceiling Light
- LED Bulb
- Other LED lighting

Typical Application

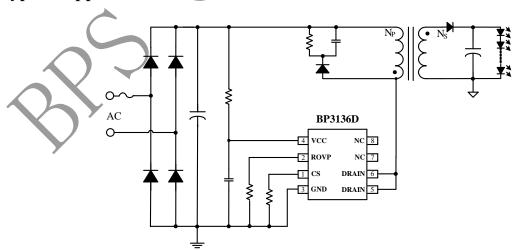


Figure 1. Typical application circuit for BP3136D

晶丰明源半导体 High Precision PSR Constant Current LED Driver

Ordering Information

Part Number	Package	Operating Temperature	Package Method	Marking
BP3136D	DIP8	-40 ℃ to 105 ℃	Tube 50 Piece/Tube	BP3136D XXXXXY WXYY

Pin Configuration and Marking Information

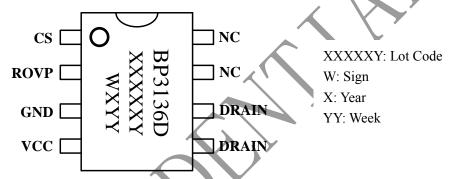


Figure 2. Pin configuration

Pin Definition

Pin No.	Name	Description
1	CS	Current sense. This pin connects a current sense resistor to GND to detect the primary current of transformer.
2	ROVP	Connect a ROVP resistor to GND to set the LED open voltage.
3	GND	Ground
4	VCC	Power supply
5, 6	DRAIN	Internal high voltage MOSFET Drain
7, 8	NC	No connection, must be floated

晶丰明源半导体 High Precision PSR Constant Current LED Driver

Absolute Maximum Ratings (note1)

Symbol	Parameters	Range	Units
I _{CC_MAX}	VCC pin maximum sink current	5	mA
DRAIN	Internal HV MOSFET drain voltage	-0.3~650	V
CS	Current sense pin input voltage	-0.3~6	V
ROVP	Set the LED open voltage	-0.3~6	V
P _{DMAX}	Power dissipation (note2)	0.9	W
$\theta_{ m JA}$	Thermal resistance (Junction to Ambient)	80	°C/W
$T_{ m J}$	Operating junction temperature	-40 to 150	°°
$T_{ ext{STG}}$	Storage temperature range	-55 to 150	$^{\circ}$ C
	ESD (note3)	2	KV

Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. Under "recommended operating conditions" the device operation is assured, but some particular parameter may not be achieved. The electrical characteristics table defines the operation range of the device, the electrical characteristics is assured on DC and AC voltage by test program. For the parameters without minimum and maximum value in the EC table, the typical value defines the operation range, the accuracy is not guaranteed by spec.

Note 2: The maximum power dissipation decrease if temperature rise, it is decided by T_{JMAX} , θ_{JA} , and environment temperature (T_A) . The maximum power dissipation is the lower one between $P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$ and the number listed in the maximum table.

Note 3: Human Body mode, 100pF capacitor discharge on $1.5K\Omega$ resistor

Recommended Operation Conditions

Symbol	Parameter	Range	Unit
P _{OUT1}	Output power (input voltage 230V±15%)	< 21	W
P_{OUT2}	Output power (input voltage 85V~265V)	< 18	W
FOP	System operating frequency	<120	KHz

晶丰明源半导体 High Precision PSR Constant Current LED Driver

Electrical Characteristics (Notes 4, 5) (Unless otherwise specified, V_{CC}=15V and T_A=25 °C)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Supply Voltage Section						
$V_{\text{CC_CLAMP}}$	V _{CC} clamp voltage	1mA		17		V
$V_{\text{CC_ON}}$	Turn on threshold voltage	V _{cc} rising		14		V
V _{CC_UVLO}	Turn off threshold voltage	V _{cc} falling		9		V
${ m I}_{ m ST}$	V _{CC} startup current	$V_{\text{CC}} = V_{\text{CC-ON}} - 1V$		50	100	uA
${ m I}_{ m OP}$	V _{CC} operating current	F _{OP} =70KHz		100	150	υA
Current Sense S	Section					
$V_{\text{CS_TH}}$	Threshold voltage for peak current limit		388	400	412	mV
T_{LEB}	Leading edge blanking time for current sense			500	,	ns
$T_{\mathtt{DELAY}}$	Switch off delay time			200		ns
Switching Frequency	uency					
$F_{ ext{MIN}}$	Minimum working frequency			3		KHz
$F_{ exttt{MAX}}$	Maximum working frequency			120		KHz
$ m V_{ROVP}$	Voltage of ROVP Pin	V		0.5		V
Maximum Duty	Cycle				•	
D_{MAX}	Maximum duty cycle			42		%
MOSFET Section	on				•	
$R_{\text{DS_ON}}$	Static drain-source on- resistance	$V_{GS} = 15V/I_{DS} = 0.6A$		4		Ω
BV _{DSS}	Drain-source breakdown voltage	V _{GS} =0V/I _{DS} =250uA	650			V
$I_{ ext{DSS}}$	Drain-source leakage current	$V_{GS} = 0V/V_{DS} = 650V$			1	uA
Over Temperat	ure Protection					
$T_{ m REG}$	Thermal shutdown threshold			150		$^{\circ}$

Note 4: production testing of the chip is performed at 25°C.

Note 5: the maximum and minimum parameters specified are guaranteed by test, the typical value are guaranteed by design, characterization and statistical analysis

晶丰明源半导体

High Precision PSR Constant Current LED Driver

Internal Block Diagram

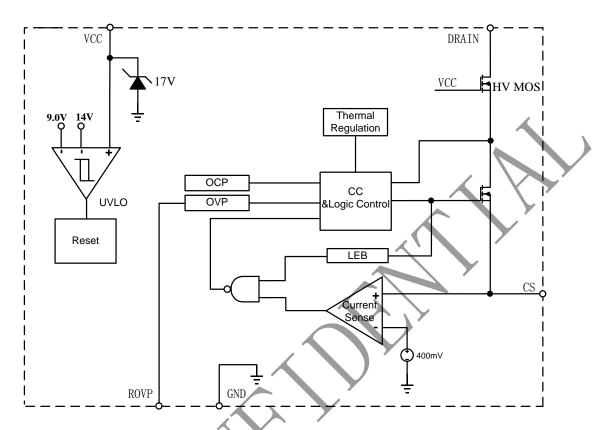


Figure 3. BP3136D Internal Block Diagram

Function Description

The BP3136D is a high performance power switch specially designed for LED lighting, with patent constant current control technology. The BP3136D integrates a 650V power MOSFET. The accurate LED current can be realized without opto-coupler, TL431 feedback circuit and auxiliary winding while minimizing the external component count, lowering the total bill of material cost.

Start Up

The V_{CC} capacitor will be charged through the start-up resistor when the system is powered on. Once the V_{CC} voltage reaches the start-up threshold, the BP3136D will start to switch. The BP3135D integrates a 17V zener for V_{CC} clamping. Due to the ultra-low operating current, the auxiliary winding is not needed to supply the IC.

Constant Current Control

Cycle-by-Cycle current sense is adopted in BP3136D, the CS is connected to the current sense comparator, and the voltage on CS will be compared with the internal 400mV reference voltage, the MOSFET will be switched off when the voltage on CS reaches the threshold. The output of the comparator includes a 500ns leading edge blanking time.

The primary peak current is given by:

$$I_{\rm P_PK} = \frac{400}{R_{\rm CS}} (mA)$$

Where R_{CS} : the sense resistor

The current in LED can be calculated by the equation:

晶丰明源半导体

High Precision PSR Constant Current LED Driver

$$I_{LED} = \frac{I_{P_PK}}{4} \times \frac{N_P}{N_S}$$

Where.

N_P: primary winding turns of transformer N_S: secondary winding turns of transformer

I_{P_PK}: peak current in MOSFET

Operating Switching Frequency

The BP3136D is designed to work in discontinuous conduction mode and no external loop compensation component is required while maintaining stability. The maximum duty cycle is limited to 42%. The maximum switching frequency at normal operation is suggested to set below 120KHz... The maximum and minimum switching frequency is limited in BP3136D to ensure the stability of system.

The switching frequency can be set by the formula:

$$f = \frac{Np^2 \times V_{LED}}{8 \times Ns^2 \times Lp \times I_{LED}}$$

Where, L_P is the primary winding inductance of transformer.

Over Voltage Protection

The over voltage protection can be programmed by the ROVP pin resistor. The ROVP pin voltage is 0.5V.

When the LED is open circuit, the output voltage increases gradually, and the demagnetization time gets shorter. The demagnetization time at OVP----Tovp can be calculated by the open circuit protection voltage:

$$Tovp \approx \frac{Lm \times Vcs}{Nps \times Rcs \times Vovp}$$

Where,

Lm is the inductance of primary inductor Vcs is the CS pin turn off threshold (400mV) Nps is the turn ratio between primary and secondary Vovp is the open circuit protection voltage And then the Rovp resistor value can be calculated by the equation:

$$Rovp \approx 5*Tovp*10^6$$
 (kohm)

Protection Function

The BP3136D has integrated rich protection functions, LED open/short protection, CS resistor short circuit protection, V_{CC} under voltage protection, over temperature protection, and so on. When the LED is open circuit, it will trigger over-voltage protection logic, the system stops switching immediately.

When the LED short circuit is detected, the system works at low frequency (3kHz), So the system power consumption is very low. At some catastrophic fault condition, such as shorted CS resistor or flyback transformer saturation, the internal fast fault detection circuit will trigger and latch, the system stops switching immediately.

After the system enters into fault latch condition, the $V_{\rm CC}$ voltage will fall until it reaches UVLO threshold. Then the system will re-start again. If the fault condition is removed, the system will recover to normal operation.

Over Temperature Protection

The BP3136D integrates thermal regulation function. When the system is over temperature, the output current is gradually reduced; the output power and thermal dissipation are also reduced. The system temperature is regulated and the system reliability is improved. The thermal regulation temperature is set to 150°C internally.

PCB Layout

The following rules should be followed in BP3136D PCB layout:

Bypass Capacitor

The bypass capacitor on V_{CC} should be as close as possible to the V_{CC} pin and GND pin.

晶丰明源半导体 High Precision PSR Constant Current LED Driver

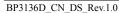
ROVP Pin

The ROVP resistor should be as close as possible to the ROVP Pin.

Ground Path

The power ground path for current sense should be short, and the power ground path should be separated from small signal ground path before the negative of the bulk capacitor.

The Area of Power Loop

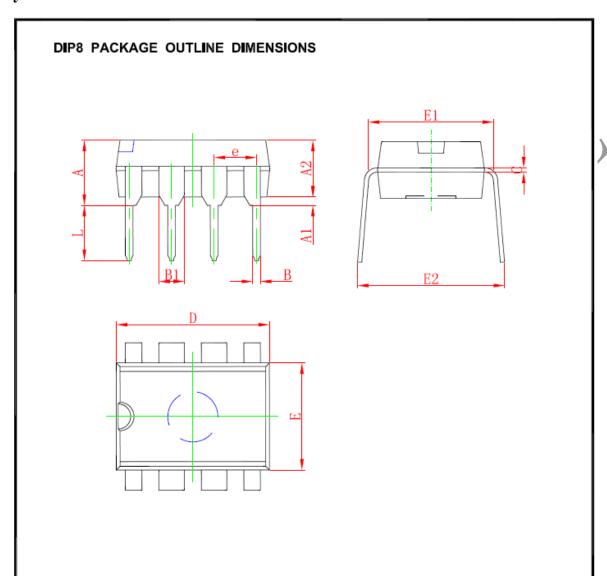

The area of main current loop should be as small as possible to reduce EMI radiation, such as the primary current loop, the snubber circuit and the secondary rectifying loop.

NC Pin

The NC pin must be left floating to satisfy the requirement of creep age distance.

Drain pin

To increase the copper area of drain for thermal consideration.



晶丰明源半导体 High Precision PSR Constant Current LED Driver

Physical Dimensions

Symbol A	Dimensions Ir Min	n Millimeters Max	Dimensions Min	In Inches Max	
A	3. 710	4. 310	0. 146	0. 170	
A1	0. 510		0. 020		
A2	3. 200	3. 600	0. 126	0. 142	
В	0. 380	0. 570	0. 015	0. 022	
B1	1. 524 (BSC)		0. 060 (BSC)		
С	0. 204	0. 360	0.008	0. 014	
D	9.000	9. 400	0. 354	0. 370	
Е	6. 200	6. 600	0. 244	0. 260	
E1	7. 320	7. 920	0. 288	0. 312	
е	2. 540 (BSC)		0. 100	0. 100 (BSC)	
L	3.000	3. 600	0. 118	0. 142	
E2	8. 400	9. 000	0. 331	0. 354	