DISCRETE SEMICONDUCTORS

DATA SHEET

BLV75/12 VHF power transistor

Product specification

August 1986

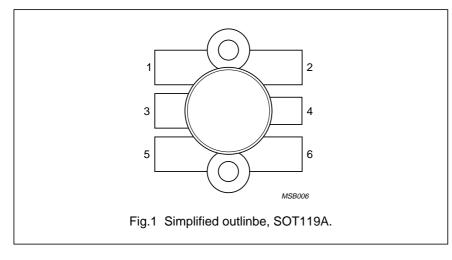
BLV75/12

DESCRIPTION

N-P-N silicon planar epitaxial transistor primarily intended for use in mobile radio transmitters in the 175 MHz commmunications band.

FEATURES

- multi-base structure and emitter-ballasting resistors for an optimum temperature profile
- gold metallization ensures excellent reliability
- internal matching to achieve an optimum wideband capability and high power gain


The transistor has a 6-lead flange envelope with a ceramic cap (SOT-119). All leads are isolated from the flange.

QUICK REFERENCE DATA

R.F. performance up to T_h = 25 °C in a common-emitter class-B circuit

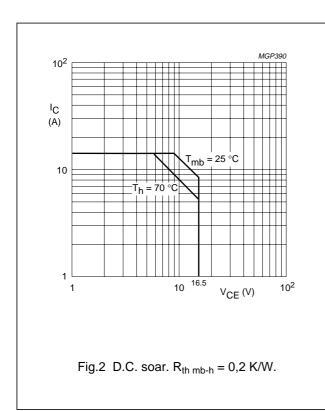
MODE OF OPERATION	V _{CE}	f	P _L	G _p	η c
	V	MHz	W	dB	%
narrow band; c.w.	12,5	175	75	> 6,5	> 55

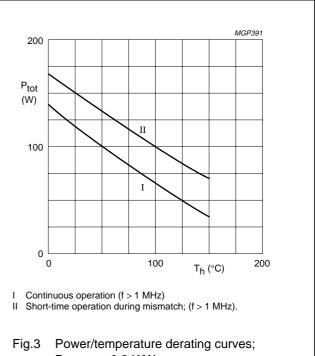
PIN CONFIGURATION

PINNING

PIN	DESCRIPTION
1	emitter
2	emitter
3	base
4	collector
5	emitter
6	emitter

PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.


BLV75/12


RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)

peak value	VCBOM	max.	36	V
Collector-emitter voltage (open base)	V_{CEO}	max.	16,5	V
Emitter-base voltage (open collector)	V_{EBO}	max.	4	V
Collector current				
d.c. or average	I _C	max.	15	Α
peak value; f > 1 MHz	I _{CM}	max.	45	Α
Total power dissipation				
at T_{mb} = 25 °C; f > 1 MHz	P_{tot}	max.	150	W
Storage temperature	T_{stg}	-65 to +	150	°С
Operating junction temperature	T_j	max.	200	°C

 $R_{th mb-h} = 0.2 \text{ K/W}.$

THERMAL RESISTANCE

Dissipation = 96 W; T_{mb} = 25 °C

From junction to mounting base

(r.f. operation)

From mounting base to heatsink

 $R_{th j-mb}$ 1,05 K/W 0,2 K/W $R_{th\ mb-h}$

August 1986

BLV75/12

CHARACTERISTICS

$T_j = 25^{\circ}C$ unless otherwise specified				
Collector-base breakdown voltage				
open emitter; I _C = 100 mA	$V_{(BR)CBO}$	min.	36	V
Collector-emitter breakdown voltage				
open base; $I_C = 200 \text{ mA}$	$V_{(BR)CEO}$	min.	16,5	V
Emitter-base breakdown voltage				
open collector; I _E = 20 mA	$V_{(BR)EBO}$	min.	4	V
Collector cut-off current				
$V_{BE} = 0; V_{CE} = 16 \text{ V}$	I _{CES}	max.	44	mΑ
Second breakdown energy				
L = 25 mH; f = 50 Hz; R_{BE} = 10 Ω	E _{SBR}	min.	20	mJ
D.C. current gain			45	
$V_{CE} = 10 \text{ V}; I_{C} = 10 \text{ A}$	h _{FE}	min. typ.	15 55	
		٠,, ٢,	00	
Collector capacitance at f = 1 MHz				
$I_E = i_e = 0$; $V_{CB} = 12.5 \text{ V}$	C _c	typ.	240	pF
Feedback capacitance at f = 1 MHz				
$I_C = 0$; $V_{CE} = 12.5 \text{ V}$	C_{re}	typ.	150	pF
Collector-flange capacitance	C_{cf}	typ.	3	pF

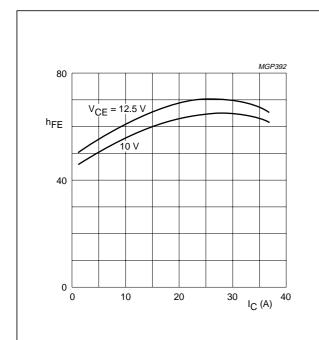


Fig.4 D.C. current gain versus collector current; $T_j = 25 \, ^{\circ}\text{C}$.

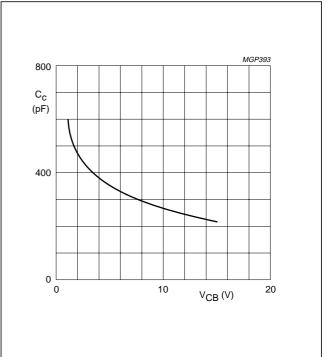
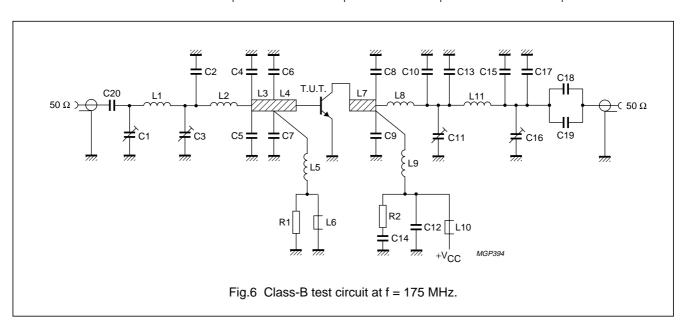


Fig.5 Output capacitance versus V_{CB} ; $I_E = i_e = 0$; f = 1 MHz; $T_j = 25$ °C.


VHF power transistor

BLV75/12

APPLICATION

R. F. performance in c.w. operation (common-emitter circuit; class-B) f = 175 MHz; T_h = 25 °C; $R_{th\ mb-h}$ = 0,2 K/W

MODE OF OPERATION	V _{CE} V	P _L W	G _p dB	η c %
narrow band; c.w.	12,5	75	> 6,5	> 55
			typ. 7,5	typ. 63

VHF power transistor

BLV75/12

List of components:

C1 = 5 to 60 pF film dielectric trimmer (cat. no. 2222 809 07011)

C2 = 10 pF multilayer ceramic chip capacitor⁽¹⁾

C3 = C16 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)

C4 = C5 = 75 pF multilayer ceramic chip capacitor

C6 = C7 = 100 pF multilayer ceramic chip capacitor⁽¹⁾

C8 = C9 = 2×75 pF multilayer ceramic chip capacitors⁽¹⁾ in parallel

C10 = C13 = 39 pF multilayer ceramic chip capacitor⁽¹⁾

C11 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222 809 07004)

C12 = 2×820 pF multilayer ceramic chip capacitors in parallel⁽¹⁾

C14 = 100 nF polyester capacitor

C15 = C17 = 12 pF multilayer ceramic chip capacitor⁽¹⁾

C18 = C19 = 470 pF multilayer ceramic chip capacitor⁽¹⁾

C20 = 820 pF multilayer ceramic chip capacitor⁽¹⁾

L1 = 1 turn silver-plated Cu-wire (2,0 mm); int. dia. 10 mm; leads 2 × 4 mm

L2 = 1 turn silver-plated Cu-wire (2,0 mm); int. dia. 1 mm; leads 2 × 6 mm

L3 = strip (14 mm \times 6 mm)

L4 = strip (8 mm \times 6 mm)

L5 = 100 nH, 7 turns closely wound enamelled Cu-wire (0,5 mm); int. dia. 3 mm; leads 2 × 7 mm

L6 = Ferroxcube wideband h.f. choke, grade 3B (cat. no. 4312 020 36640)

L7 = strip (12 mm \times 6 mm)

L8 = silver-plated copper U-shaped inductance $(7 + 15 + 7) \text{ mm} \times 4 \text{ mm} \times 0.5 \text{ mm}$

L9 = silver-plated copper U-shaped inductance (8 + 8,5 + 6) mm \times 4 mm \times 0,5 mm

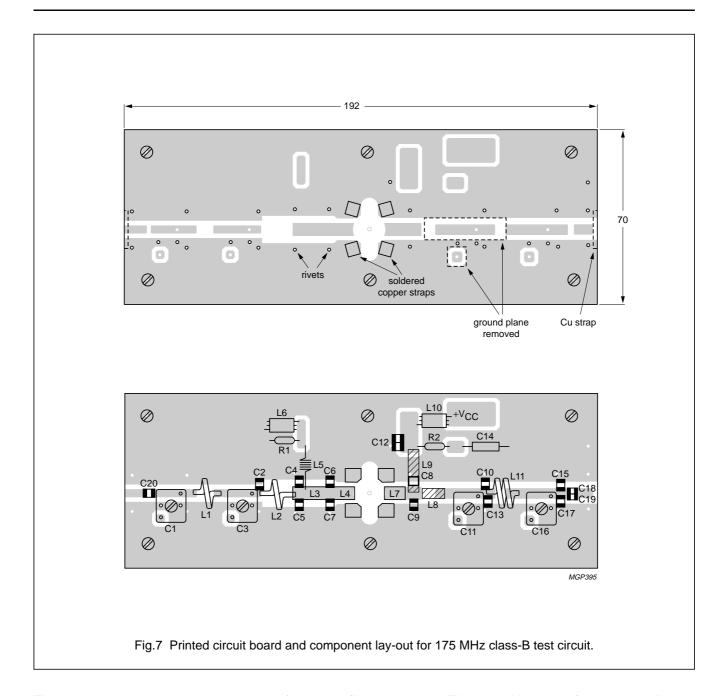
L10 = modified Ferroxcube wideband h.f. choke, grade 3B (cat. no. 4312 020 36640) with

3 parallel connected Cu wires (0,8 mm)

L11 = 2 turns silver-plated Cu-wire (2,0 mm); int. dia. 9 mm; length 7,5 mm; leads 2 × 3,5 mm

L3, L4 and L7 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric ($\epsilon_r = 4.5$), thickness 1/16 inch).

R1 = $10 \Omega \pm 10\%$, carbon resistor

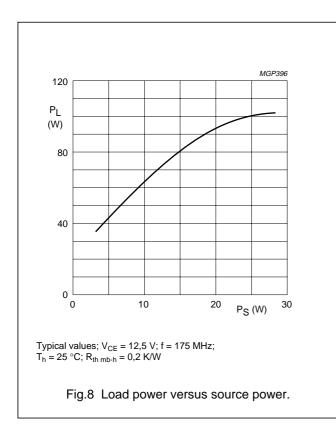

R2 = $4.7 \Omega \pm 10\%$, carbon resistor

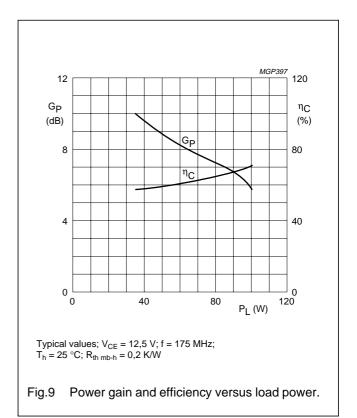
Note

1. American Technical Ceramics capacitor type 100B or capacitor of the same quality.

VHF power transistor

BLV75/12


The circuit and components are on one side of the epoxy fibre-glass board. The other side, except for the area indicated by the dotted line, is unetched copper serving as a ground plane.

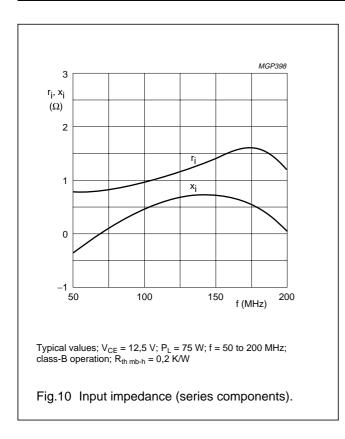

If the p.c.b. is in direct contact with the heatsink, the heatsink area within the dotted line has to be raised al least 0,5 mm to minimize the dielectric losses.

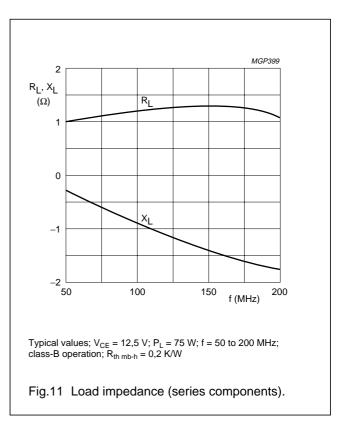
Earth connections are made by hollow rivets and additionally by fixing screws and copper straps under the emitters to provide a direct contact between the copper of the component side and the ground plane.

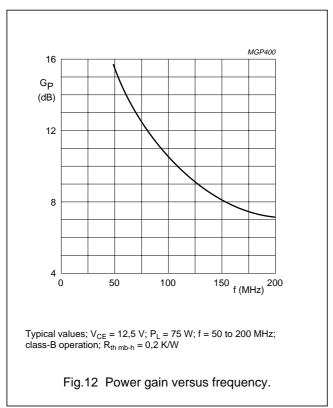
VHF power transistor

BLV75/12

Ruggedness in class-B operation

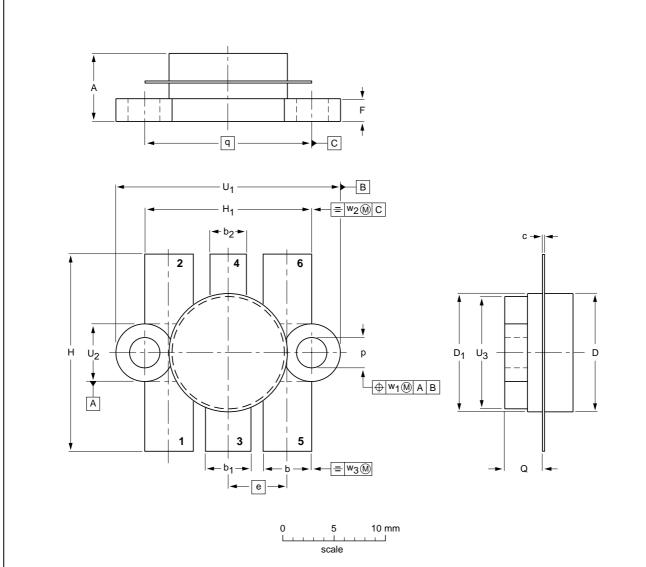

The BLV75/12 is capable of withstanding a load mismatch (VSWR = 20 through all phases) at rated load power up to a supply voltage of 12,5 V; $T_h = 25$ °C; $R_{th\ mb-h} = 0,2$ K/W.


Power slump


If T_h is increased from 25 °C to 70 °C the output power slump for constant P_S amounts to typ. 7% (V_{CE} = 12,5; f = 175 MHz; $R_{th\ mb-h}$ = 0,2 K/W).

VHF power transistor

BLV75/12



BLV75/12

PACKAGE OUTLINE

Flanged ceramic package; 2 mounting holes; 6 leads

SOT119A

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	A	b	b ₁	b ₂	С	D	D ₁	е	F	Н	Н1	р	Q	q	U ₁	U ₂	U ₃	w ₁	w ₂	w ₃
mm	7.39 6.32	5.59 5.33	5.34 5.08	4.07 3.81	0.18 0.07	12.86 12.59	12.83 12.57	6.48	2.54 2.28	22.10 21.08	18.55 18.28	3.31 2.97	4.58 3.98	18.42	25.23 23.95	6.48 6.07	12.76 12.06	0.51	1.02	0.26
inches	0.291 0.249	0.220 0.210	0.210 0.200	0.160 0.150	0.007 0.003	0.505 0.496	0.505 0.495	0.255	0.100 0.090	0.870 0.830	0.730 0.720	0.130 0.117	0.180 0.157	0.725	0.993 0.943	0.255 0.239	0.502 0.475	0.02	0.04	0.01

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT119A					97-06-28

VHF power transistor

BLV75/12

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	•

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.