UHF power LDMOS transistor Rev. 2 — 12 July 2013

Product data sheet

Product profile 1.

1.1 General description

A 650 W LDMOS RF power transistor for broadcast transmitter applications and industrial applications. The excellent ruggedness of this device makes it ideal for digital and analog transmitter applications.

Application information Table 1.

RF performance at $V_{DS} = 50$ V unless otherwise specified.

	P _{L(AV)}	P _{L(M)}	Gp	η _D	IMD3	IMD _{shldr}	PAR
IHz) ((W)	(W)	(dB)	(%)	(dBc)	(dBc)	(dB)
RF performance in a common source 860 MHz narrowband test circuit							
= 860; f ₂ = 860.1	250	-	21	46	-34	-	-
i8 ·	120	-	21	33	-	-31 <mark>11</mark>	8.2 [2]
mmon source 470	MHz to	860 MI	lz bro	adba	nd test	circuit	
8	120	-	20	32	-	-32 <mark>[1]</mark>	8.0 [2]
	mmon source 860 = 860; f ₂ = 860.1 8 mmon source 470	mmon source 860 MHz na = 860; f ₂ = 860.1 250 8 120 mmon source 470 MHz to	mmon source 860 MHz narrowba = 860; f ₂ = 860.1 250 8 120 mmon source 470 MHz to 860 MHz	mmon source 860 MHz narrowband test = 860; f ₂ = 860.1 250 - 21 8 120 - 21 mmon source 470 MHz to 860 MHz bro 120 - 120	mmon source 860 MHz narrowband test circ = 860; f ₂ = 860.1 250 - 21 46 8 120 - 21 33 mmon source 470 MHz to 860 MHz broadba	mmon source 860 MHz narrowband test circuit = 860; f ₂ = 860.1 250 - 21 46 -34 8 120 - 21 33 - mmon source 470 MHz to 860 MHz broadband test of the second seco	mmon source 860 MHz narrowband test circuit = 860; f ₂ = 860.1 250 - 21 46 -34 - 8 120 - 21 33 - -31 ^[1] mmon source 470 MHz to 860 MHz broadband test circuit

[1] Measured [dBc] with delta marker at 4.3 MHz from center frequency.

[2] PAR (of output signal) at 0.01 % probability on CCDF; PAR of input signal = 9.5 dB at 0.01 % probability on CCDF.

1.2 Features and benefits

- Excellent ruggedness
- Optimum thermal behavior and reliability, R_{th(i-c)} = 0.15 K/W
- High power gain
- High efficiency
- Designed for broadband operation (470 MHz to 860 MHz)
- Internal input matching for high gain and optimum broadband operation
- Excellent reliability
- Easy power control
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

1.3 Applications

- Communication transmitter applications in the UHF band
- Industrial applications in the UHF band

UHF power LDMOS transistor

2. Pinning information

Pin	Description	Simplified outlin	e Graphic symbol
BLF888E	8 (SOT539A)		
1	drain1		
2	drain2		1
3	gate1		
4	gate2	3 4	
5	SOUICE	<u>[1]</u>	2 sym117
BLF888E	3S (SOT539B)		
1	drain1	1 2	1
2	drain2		، ل
3	gate1		
4	gate2	3 4	
5	source	<u>[1]</u>	

[1] Connected to flange.

3. Ordering information

Table 3.Ordering information

Type number	Package					
	Name	Description	Version			
BLF888B	-	flanged balanced LDMOST ceramic package; 2 mounting holes; 4 leads	SOT539A			
BLF888BS	-	earless flanged balanced LDMOST ceramic package; 4 leads	SOT539B			

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

			,		
Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage		-	104	V
V _{GS}	gate-source voltage		-0.5	+11	V
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	200	°C

2 sym117

UHF power LDMOS transistor

5. Thermal characteristics

Table 5.	Thermal characteristics				
Symbol	Parameter	Conditions	٦	Тур	Unit
R _{th(j-c)}	thermal resistance from junction to case	T_{case} = 80 °C; $P_{L(AV)}$ = 125 W	<u>[1]</u> (0.15	K/W
[1] R _{th(j-c)}	is measured under RF conditions.				

6. Characteristics

Table 6. DC characteristics

 $T_i = 25$ °C; per section unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$V_{(BR)DSS}$	drain-source breakdown voltage	V_{GS} = 0 V; I_D = 2.4 mA	[1]	104	-	-	V
V _{GS(th)}	gate-source threshold voltage	V_{DS} = 10 V; I_{D} = 240 mA	[1]	1.4	1.9	2.4	V
I _{DSS}	drain leakage current	V_{GS} = 0 V; V_{DS} = 50 V		-	-	2.8	μA
I _{DSX}	drain cut-off current	$\label{eq:VGS} \begin{array}{l} V_{GS} = V_{GS(th)} + 3.75 \; V; \\ V_{DS} = 10 \; V \end{array}$		-	38	-	A
I _{GSS}	gate leakage current	V_{GS} = 10 V; V_{DS} = 0 V		-	-	280	nA
R _{DS(on)}	drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 3.75 V;$ $I_D = 8.5 A$	[1]	-	120	-	mΩ
C _{iss}	input capacitance	$V_{GS} = 0 V; V_{DS} = 50 V;$ f = 1 MHz	[2]	-	210	-	pF
C _{oss}	output capacitance	$V_{GS} = 0 V; V_{DS} = 50 V;$ f = 1 MHz		-	67	-	pF
C _{rss}	reverse transfer capacitance	$V_{GS} = 0 V; V_{DS} = 50 V;$ f = 1 MHz		-	1.35	-	pF

[1] I_D is the drain current.

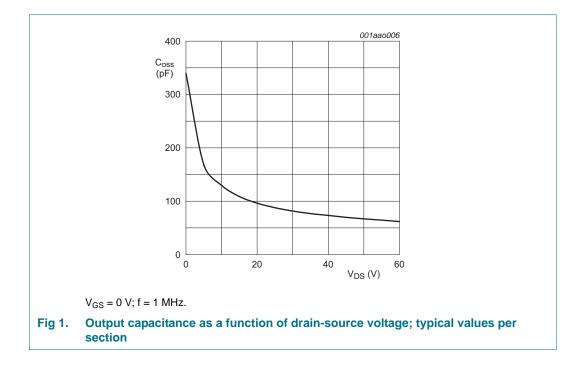
[2] Capacitance values without internal matching.

Table 7.RF characteristics

RF characteristics in NXP production narrowband test circuit; $T_{case} = 25 \ ^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
2-Tone, c	ass-AB						
V_{DS}	drain-source voltage			-	50	-	V
I _{Dq}	quiescent drain current		[1]	-	1.3	-	А
$P_{L(AV)}$	average output power	f ₁ = 860 MHz; f ₂ = 860.1 MHz		250	-	-	W
G _p	power gain	f ₁ = 860 MHz; f ₂ = 860.1 MHz		20	21	-	dB
η_D	drain efficiency	f ₁ = 860 MHz; f ₂ = 860.1 MHz		42	46	-	%
IMD3	third-order intermodulation distortion	f ₁ = 860 MHz; f ₂ = 860.1 MHz		-	-34	-30	dBc

RF characteristics ... continued Table 7.

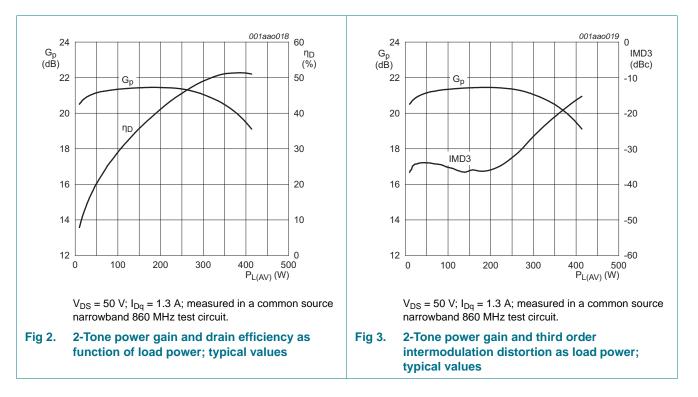

RF characteristics in NXP production narrowband test circuit; T_{case} = 25 °C unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
DVB-T (8	k OFDM), class-AB						
V _{DS}	drain-source voltage			-	50	-	V
I _{Dq}	quiescent drain current		[1]	-	1.3	-	А
P _{L(AV)}	average output power	f = 858 MHz		120	-	-	W
G _p	power gain	f = 858 MHz		20	21	-	dB
η_D	drain efficiency	f = 858 MHz		30	33	-	%
IMD _{shldr}	intermodulation distortion shoulder	f = 858 MHz	[2]	-	-31	-27	dBc
PAR	peak-to-average ratio	f = 858 MHz	[3]	-	8.2	-	dB

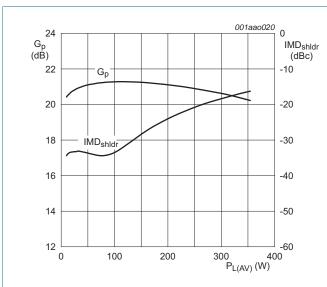
[1] I_{dq} for total device

Measured [dBc] with delta marker at 4.3 MHz from center frequency. [2]

[3] PAR (of output signal) at 0.01 % probability on CCDF; PAR of input signal = 9.5 dB at 0.01 % probability on CCDF.



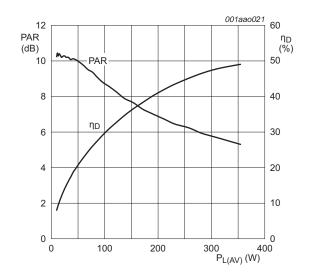
UHF power LDMOS transistor


7. Application information

7.1 Narrowband RF figures

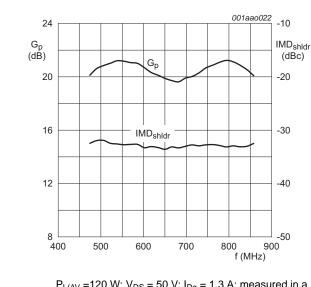
7.1.1 2-Tone

UHF power LDMOS transistor


7.1.2 DVB-T

 V_{DS} = 50 V; I_{Dq} = 1.3 A; measured in a common source narrowband 860 MHz test circuit.

Fig 4. DVB-T power gain and intermodulation distortion shoulder as function of load power; typical values


7.2.1 DVB-T

7.2 Broadband RF figures

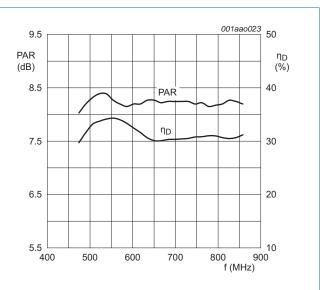
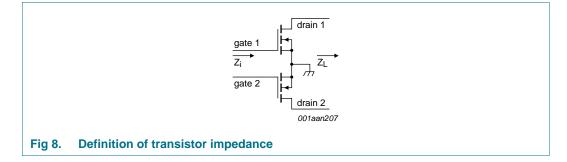

 V_{DS} = 50 V; I_{Dq} = 1.3 A; measured in a common source narrowband 860 MHz test circuit.

Fig 5. DVB-T peak-to-average ratio and drain efficiency as function of load power; typical values

 $P_{L(AV}$ =120 W; V_{DS} = 50 V; I_{Dq} = 1.3 A; measured in a common source broadband test circuit as described in <u>Section 8</u>.

 $P_{L(AV}$ =120 W; V_{DS} = 50 V; I_{Dq} = 1.3 A; measured in a common source broadband test circuit as described in <u>Section 8</u>.

Fig 7. DVB-T peak-to-average ratio and drain efficiency as function of frequency; typical values

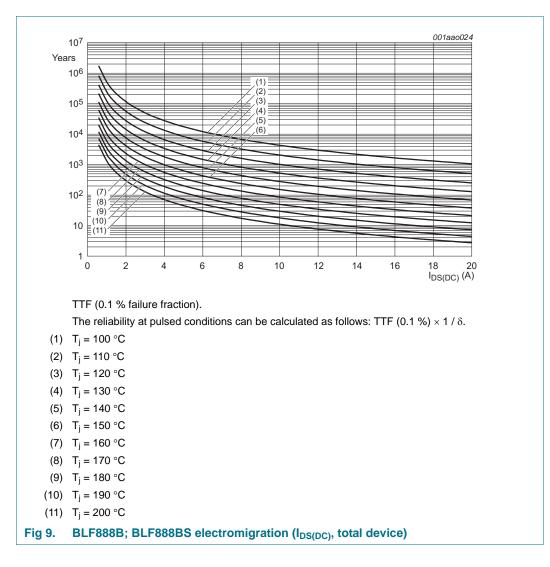

All information provided in this document is subject to legal disclaimers.

BLF888B BLF888BS

6 of 17

UHF power LDMOS transistor

7.3 Impedance information


Table 8. Typical push-pull impedance

Simulated Z_i and Z_L device impedance; impedance info at $V_{DS} = 50$ V and $P_{L(AV)} = 120$ W (DVB-T).

f	Zi	ZL
MHz	Ω	Ω
300	0.617 – j1.715	4.792 + j0.947
325	0.635 – j1.355	4.707 + j0.994
350	0.655 – j1.026	4.619 + j1.035
375	0.677 – j0.721	4.528 + j1.069
400	0.702 – j0.435	4.435 + j1.097
425	0.731 – j0.164	4.340 + j1.118
450	0.762 + j0.096	4.243 + j1.134
475	0.798 + j0.347	4.147 + j1.143
500	0.839 + j0.592	4.049 + j1.146
525	0.884 + j0.833	3.952 + j1.144
550	0.936 + j1.072	3.855 + j1.136
575	0.995 + j1.310	3.759 + j1.123
600	1.063 + j1.549	3.663 + j1.105
625	1.141 + j1.791	3.569 + j1.083
650	1.230 + j2.037	3.477 + j1.055
675	1.334 + j2.289	3.385 + j1.024
700	1.456 + j2.548	3.296 + j0.989
725	1.599 + j2.814	3.209 + j0.949
750	1.768 + j3.090	3.123 + j0.907
775	1.971 + j3.376	3.039 + j0.861
800	2.214 + j3.671	2.958 + j0.812
825	2.510 + j3.975	2.879 + j0.761
850	2.873 + j4.282	2.801 + j0.706
875	3.320 + j4.584	2.726 + j0.650
900	3.875 + j4.865	2.654 + j0.591
925	4.562 + j5.095	2.583 + j0.530
950	5.409 + j5.223	2.514 + j0.467
975	6.426 + j5.166	2.448 + j0.403
1000	7.587 + j4.807	2.384 + j0.337

UHF power LDMOS transistor

7.4 Reliability

UHF power LDMOS transistor

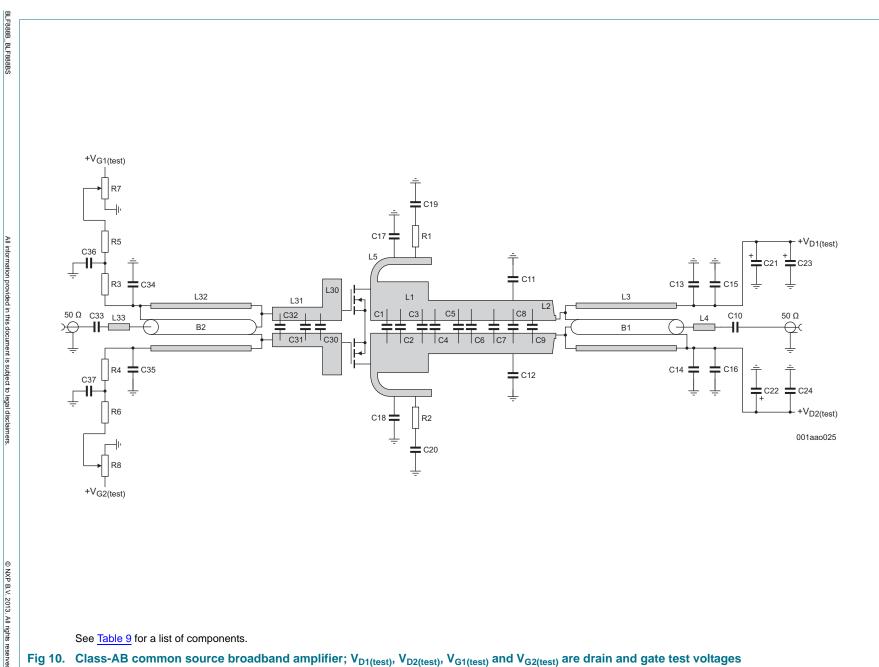
8. Test information

Table 9. List of components For test circuit, see Figure 10, Figure 11 and Figure 12. Component Description Value Remarks B1, B2 semi rigid coax 25 Ω; 49.5 mm UT-090C-25 (EZ 90-25) [1] C1 multilayer ceramic chip capacitor 12 pF [1] C2, C3, C4, C5, multilayer ceramic chip capacitor 8.2 pF C6 C7 multilayer ceramic chip capacitor 6.8 pF [2] [2] C8 multilayer ceramic chip capacitor 2.7 pF [2] C9 2.2 pF multilayer ceramic chip capacitor C10, C13, C14 multilayer ceramic chip capacitor 100 pF [3] C11, C12 [2] multilayer ceramic chip capacitor 10 pF Kemet C1210X475K5RAC-TU or C15, C16 4.7 μF, 50 V multilayer ceramic chip capacitor capacitor of same quality. 100 pF [2] C17, C18, C23, multilayer ceramic chip capacitor C24 C19, C20 multilayer ceramic chip capacitor TDK C570X7R1H106KT000N or 10 µF, 50 V capacitor of same quality. C21, C22 470 μF; 63 V electrolytic capacitor [4] C30 multilayer ceramic chip capacitor 10 pF [4] C31 multilayer ceramic chip capacitor 9.1 pF [4] C32 multilayer ceramic chip capacitor 3.9 pF [4] C33, C34, C35 multilayer ceramic chip capacitor 100 pF TDK C4532X7R1E475MT020U or C36. C37 multilayer ceramic chip capacitor 4.7 μF, 50 V capacitor of same quality. L1 [5] (W \times L) 15 mm \times 13 mm microstrip _ L2 [5] $(W \times L) 5 mm \times 26 mm$ microstrip L3. L32 [5] $(W \times L) 2 \text{ mm} \times 49.5 \text{ mm}$ microstrip _ [5] L4 microstrip $(W \times L)$ 1.7 mm \times 3.5 mm _ L5 [5] $(W \times L) 2 \text{ mm} \times 9.5 \text{ mm}$ microstrip -L30 [5] $(W \times L) 5 \text{ mm} \times 13 \text{ mm}$ microstrip -L31 microstrip _ [5] $(W \times L) 2 \text{ mm} \times 11 \text{ mm}$ L33 [5] $(W \times L) 2 mm \times 3 mm$ microstrip -R1, R2 **10** Ω wire resistor R3, R4 SMD resistor 5.6 Ω 0805 R5. R6 wire resistor **100** Ω 10 kΩ R7, R8 potentiometer

[1] American technical ceramics type 800R or capacitor of same quality.

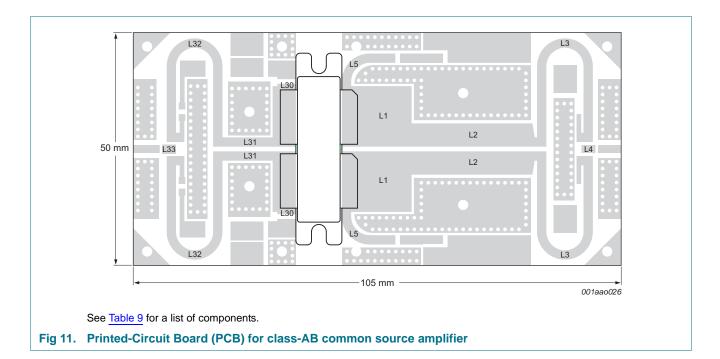
[2] American technical ceramics type 800B or capacitor of same quality.

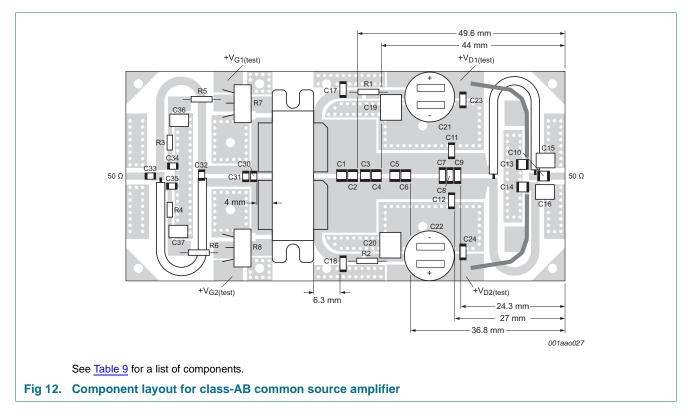
[3] American technical ceramics type 180R or capacitor of same quality.


[4] American technical ceramics type 100A or capacitor of same quality.

[5] Printed-Circuit Board (PCB): Taconic RF35; ε_r = 3.5 F/m; height = 0.762 mm; Cu (top/bottom metallization); thickness copper plating = 35 μ m.

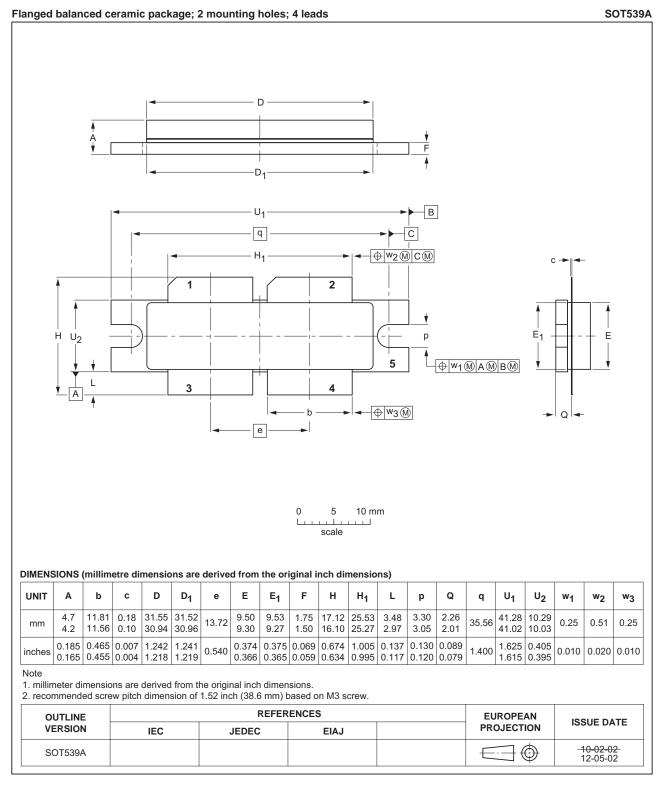
Product data sheet




_F888B; BLF888BS

NXP Semiconductors

BLF888B; BLF888BS


UHF power LDMOS transistor

UHF power LDMOS transistor

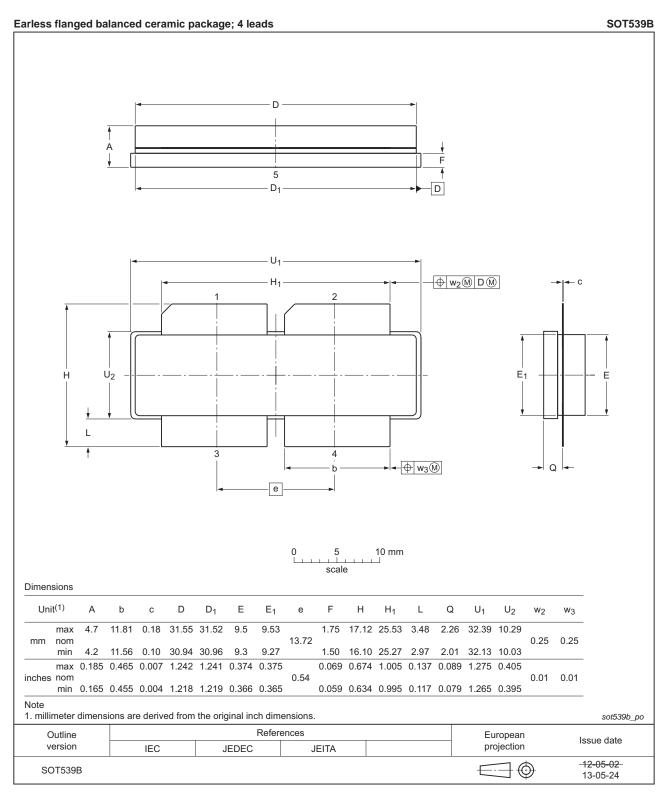

9. Package outline

Fig 13. Package outline SOT539A

All information provided in this document is subject to legal disclaimers.

UHF power LDMOS transistor

Fig 14. Package outline SOT539B

All information provided in this document is subject to legal disclaimers.

10. Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

11. Abbreviations

Table 10.	Abbreviations
Acronym	Description
CCDF	Complementary Cumulative Distribution Function
DVB	Digital Video Broadcast
DVB-T	Digital Video Broadcast - Terrestrial
LDMOS	Laterally Diffused Metal-Oxide Semiconductor
LDMOST	Laterally Diffused Metal-Oxide Semiconductor Transistor
OFDM	Orthogonal Frequency Division Multiplexing
PAR	Peak-to-Average power Ratio
RF	Radio Frequency
SMD	Surface Mounted Device
TTF	Time-To-Failure
UHF	Ultra High Frequency
VSWR	Voltage Standing-Wave Ratio

12. Revision history

Table 11. Revision histor	у			
Document ID	Release date	Data sheet status	Change notice	Supersedes
BLF888B_BLF888BS v.2	20130712	Product data sheet	-	BLF888B_BLF888BS v.1
Modifications:	 The package 	ge outline <u>Figure 14</u> is up	odated.	
	 Translation 	disclaimer added to the	legal text.	
BLF888B_BLF888BS v.1	20111017	Product data sheet	-	-

13. Legal information

13.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

13.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

UHF power LDMOS transistor

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

14. Contact information

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

13.4 Licenses

ICs with DVB-T or DVB-T2 functionality

Use of this product in any manner that complies with the DVB-T or the DVB-T2 standard may require licenses under applicable patents of the DVB-T respectively the DVB-T2 patent portfolio, which license is available from Sisvel S.p.A., Via Sestriere 100, 10060 None (TO), Italy, and under applicable patents of other parties.

13.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

UHF power LDMOS transistor

15. Contents

1	Product profile 1	
1.1	General description 1	
1.2	Features and benefits 1	
1.3	Applications 1	
2	Pinning information 2	2
3	Ordering information	2
4	Limiting values	2
5	Thermal characteristics	3
6	Characteristics	3
7	Application information	5
7.1	Narrowband RF figures 5	5
7.1.1	2-Tone	5
7.1.2	DVB-T	3
7.2	Broadband RF figures	3
7.2.1	DVB-T	3
7.3	Impedance information	7
7.4	Reliability 8	3
8	Test information)
9	Package outline 12	2
10	Handling information 14	ł
11	Abbreviations 14	ļ
12	Revision history 14	ł
13	Legal information 15	5
13.1	Data sheet status 15	5
13.2	Definitions 15	5
13.3	Disclaimers	5
13.4	Licenses	3
13.5	Trademarks 16	3
14	Contact information 16	5
15	Contents 17	7

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 12 July 2013 Document identifier: BLF888B_BLF888BS