



# **Meter-Bus Transceiver**

#### Features

- □ Meter-Bus Transceiver (for Slave) Meets Standard EN-1434-3
- □ Adjustable Constant-Current Sink via Resister
- □ Receiver Logic With Dynamic Level Recognition
- □ Module Supply Voltage Switch
- □ 3.3V Constant Voltage Source
- Remote Powering
- Polarity Independent
- Power Fail Function
- Up to 9600 Baud in Half Duplex for UART Protocol
- □ Slave Power Support
  - Supply From Meter-Bus via Output VDD
  - Supply From Meter-Bus via Output VDD or From Backup Battery
  - Supply From Battery Meter-Bus Active for Data Transmission Only
- □ SOP16 package

#### **General Description**

BL15721A is a single chip transceiver developed for Meter-Bus standard (EN1434-3) applications.

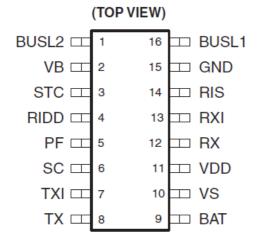
The BL15721A interface circuit adjusts the different potentials between a slave system and the Meter-Bus master. The connection to the bus is polarity independent and supports full galvanic slave isolation with optocouplers.

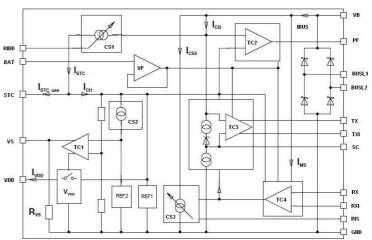
The receiver has dynamic level recognition, and the transmitter has a programmable current sink.

The circuit is supplied by the master via the bus. Therefore, this circuit offers no additional load for the slave battery.

The BL15721A integrates a power-fail function. And a 3.3V voltage regulator, with power reserve for a delayed switch off at bus fault, is integrated.

#### **Order Information**


| Part Number | Package | Packing     |
|-------------|---------|-------------|
|             |         | Tape & Reel |
| BL15721A    | SOP16   | Tube        |




BL15721A

# Pin Diagram

**Block Diagram** 





## **Pin Description**

| Pin # | Name   | Description                              |
|-------|--------|------------------------------------------|
| 1     | BUSL2  | Meter-Bus                                |
| 2     | VB     | Differential bus voltage after rectifier |
| 3     | STC    | Support capacitor                        |
| 4     | RIDD   | Current adjustment input                 |
| 5     | RF     | Power fail output                        |
| 6     | SC     | Sampling capacitor                       |
| 7     | ТХІ    | Data output inverted                     |
| 8     | тх     | Data output                              |
| 9     | BAT    | Logic level adjust                       |
| 10    | VS     | Switch for bus or battery supply output  |
| 11    | VDD    | Voltage regulator output                 |
| 12    | RX     | Data input                               |
| 13    | RXI    | Data input inverted                      |
| 14    | RIS    | Adjust input for modulation current      |
| 15    | GND    | Ground                                   |
| 16    | BUSKL1 | Meter-Bus                                |



#### Data Transmission, Master to Slave

The mark level on the bus lines  $V_{BUS}$  = MARK is defined by the difference of BUSL1 and BUSL2 at the slave. It is dependent on the distance of Master to Slave, which affects the voltage drop on the wire. To make the receiver independent, a dynamic reference level on the SC pin is used for the voltage comparator TC3 (see Figure 1).

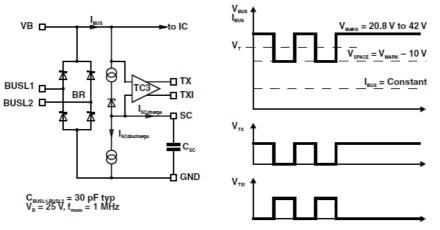



Figure 2. Data Transmission, Master to Slave

Figure 1. Data Transmission, Master to Slave

A capacitor  $C_{SC}$  at pin SC is charged by a current  $I_{SCcharge}$  and is discharged with a current  $I_{SCdischarge}$  where:

 $I_{sCdisharge} = \frac{I_{sCcharge}}{40 (typ)}$ 

There must be sufficient time to recharge the capacitor  $C_{SC}$ . The input level detector TC3 detects voltage modulations from the master, and switches the inverted output TXI and the non-inverted output TX.

### Data Transmission, Slave to Master

The device uses current modulation to transmit information from the slave to the master while the bus voltage remains constant. The current source CS3 modulates the bus current and the master detects the modulation. The constant current source CS3 is controlled by the inverted input RXI or the non-inverted input RX. The current source CS3 can be programmed by an external resistor  $R_{RIS}$ . The modulation supply current  $I_{MS}$  flows in addition to the current source CS3 during the modulation time.

Because the BL15721A is configured for half-duplex only, the current modulation from RX or RXI is repeated concurrently as ECHO on the outputs TX and TXI. If the slave, as well as the master, is trying to send information via the lines, the added signals appear on the outputs TX and TXI, which indicates the data collision to the slave.

The bus topology requires a constant current consumption by each connected slave.



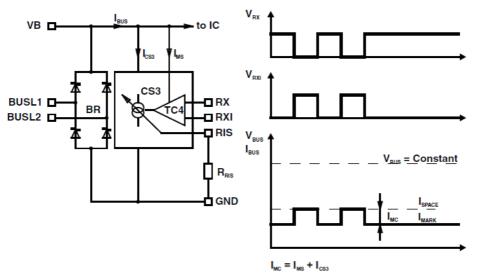



Figure 2. Data Transmission, Slave to Master

To calculate the value of the programming resistor  $R_{RIS}$ , use the formula shown in Figure 3.

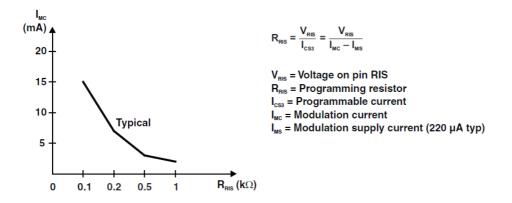
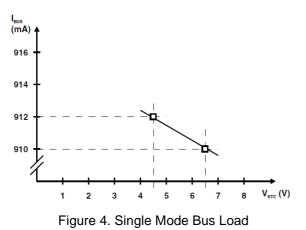



Figure 3. Calculate Programming Resistor R<sub>RIS</sub>

## Slave Supply, 3.3 V

The BL15721A has an internal 3.3V voltage regulator. The output power of this voltage regulator is supplied by the storage capacitor  $C_{STC}$  at pin STC. The storage capacitor  $C_{STC}$  at pin STC is charged with constant current  $I_{STC\_use}$  from the current source CS1. The maximum capacitor voltage is limited to REF1. The charge current  $I_{STC}$  has to be defined by an external resistor at pin RIDD. The adjustment resistor  $R_{RIDD}$  can be calculated using below Equation.

$$\mathsf{R}_{\mathsf{RID}} = 25 \, \frac{\mathsf{V}_{\mathsf{RIDD}}}{\mathsf{I}_{\mathsf{STC}}} = 25 \, \frac{\mathsf{V}_{\mathsf{RIDD}}}{\mathsf{I}_{\mathsf{STC}\_use} + \mathsf{I}_{\mathsf{IC1}}}$$


Where,

$$\begin{split} I_{STC} &= \text{current from current source CS1} \\ I_{STC\_use} &= \text{charge current for support capacitor} \\ I_{CI} &= \text{internal current} \\ V_{RIDD} &= \text{voltage on pin RIDD} \end{split}$$



 $R_{RIDD}$  = value of adjustment resistor

The voltage level of the storage capacitor  $C_{STC}$  is monitored with comparator TC1. Once the voltage  $V_{STC}$  reaches  $V_{VDD_on}$ , the switch  $S_{VDD}$  connects the stabilized voltage  $V_{VDD}$  to pin VDD. VDD is turned off if the voltage  $V_{STC}$  drops below the  $V_{VDD_off}$  level. Voltage variations on the capacitor  $C_{STC}$  create bus current changes (see Figure 4).



At a bus fault the shut down time of VDD ( $t_{off}$ ) in which data storage can be performed depends on the system current  $I_{VDD}$  and the value of capacitor  $C_{STC}$ . See\_Figure 5, which shows a correlation between the shutdown of the bus voltage  $V_{BUS}$  and  $V_{DD_off}$  and  $t_{off}$  for dimensioning the capacitor.

The output VS is meant for slave systems that are driven by the bus energy, as well as from a battery should the bus line voltage fail. The switching of VS is synchronized with VDD and is controlled by the comparator TC1. An external transistor at the output VS allows switching from the Meter-Bus remote supply to battery.

### Power On/Off

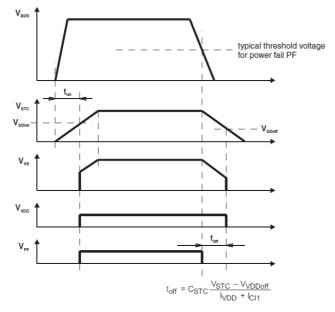



Figure 5. Power On/Off Timing



#### **Power Fail Function**

Because of the rectifier bridge BR at the input, BUSL1, and BUSL2, the BL15721A is polarity independent. The pin VB to ground (GND) delivers the bus voltage V<sub>VB</sub> less the voltage drop over the rectifier BR. The voltage comparator TC2 monitors the bus voltage. If the voltage V<sub>VB</sub> > V<sub>STC</sub> + 0.8 V, then the output PF = 1. The output level PF = 0 (power fail) provides a warning of a critical voltage drop to the microcontroller to save the data immediately.

### **Absolute Maximum Ratings**

Over operating free-air temperature range(unless otherwise noted)

| V <sub>MB</sub>  | Voltage, BUSL1 to BUSL2           |            | $\pm$ 50V        |
|------------------|-----------------------------------|------------|------------------|
| VI               | Input voltage range               | RX and RXI | - 0.3 V to 5.5 V |
|                  |                                   | BAT        | - 0.3 V to 5.5 V |
| T <sub>A</sub>   | Operating free-air temperature ra | inge       | –25℃ to 85℃      |
| T <sub>STG</sub> | Storage temperature range         |            | - 65℃ to 150℃    |

#### Recommended Operating Conditions (note1)

|                   |                                |             | Min  | Max | Unit |
|-------------------|--------------------------------|-------------|------|-----|------|
| V <sub>MB</sub>   | Bus voltage,  BUSL2-BUSL1      | Receiver    | 10.8 | 42  | V    |
| V MB              | Bus voltage,  BUSE2-BUSE1      | Transmitter | 12   | 42  | v    |
|                   |                                | VB(receive  | 9.3  |     |      |
| VI                | Input voltage                  | mode)       | 9.5  |     | V    |
|                   |                                | BAT(note2)  | 2.5  | 3.8 |      |
| R <sub>RIDD</sub> | RIDD resistor                  |             | 13   | 80  | KΩ   |
| R <sub>RIS</sub>  | RIS resistor                   |             | 100  |     | Ω    |
| T <sub>A</sub>    | Operating free-air temperature |             | -25  | 85  | °C   |

Note1: All voltage values are measured with respect to the GND terminal unless otherwise noted.

Note2:  $V_{BAT}(max) \le V_{STC} - 1 V$ 

### **Electrical Characteristics(note1)**

over operating free-air temperature range (unless otherwise noted)

| Symbol            | Parameter                          | Conditions                                                               |                                                                   |      | Spec |      | Unit |
|-------------------|------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|------|------|------|------|
| Symbol            | Farameter                          | CON                                                                      | ultions                                                           | Min. | Тур. | Max. | Unit |
| $\Delta V_{BR}$   | Voltage drop at rectifier BR       | l <sub>BUS</sub> = 3 mA                                                  |                                                                   |      | 1.03 | 1.5  | V    |
| $\Delta V_{CS1}$  | Voltage drop at current source CS1 | R <sub>RIDD</sub> = 13 kΩ                                                |                                                                   |      | 0.95 | 1.8  | V    |
|                   | BUS current                        | V <sub>STC</sub> =6.5V,                                                  | $R_{RIDD} = 13 \ k\Omega$                                         |      | 2.84 | 3.3  | mA   |
| I <sub>BUS</sub>  |                                    | I <sub>MC</sub> =0mA                                                     | $R_{RIDD} = 30 \ k\Omega$                                         |      | 1.34 | 1.8  | ША   |
| ΔI <sub>BUS</sub> | BUS current accuracy               | ΔV <sub>BUS</sub> = 10V, Ι <sub>№</sub><br>13 kΩ to 30 kΩ                | $_{HC} = 0 \text{ mA},  \text{R}_{\text{RIDD}} =$                 |      |      | 2    | %    |
| lcc               | Supply current                     | V <sub>STC</sub> = 6.5 V, I <sub>M</sub><br>3.8 V, R <sub>RIDD</sub> = 1 | $M_{C} = 0 \text{ mA}, V_{BAT} = 3 \text{ k}\Omega(\text{note2})$ |      | 480  | 650  | μA   |



# **BL15721A**

| I <sub>CL1</sub>                    | CI1 current          | V <sub>STC</sub> = 6.5 V, I <sub>MC</sub><br>3.8 V, R <sub>RIDD</sub> = 13<br>V, RX/RXI = off ( | $k\Omega$ , $V_{BUS} = 6.5$                                                 |                           |      | 350              | μA |
|-------------------------------------|----------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------|------|------------------|----|
| I <sub>BAT</sub>                    | BAT current          |                                                                                                 | , ,                                                                         | -0.5                      |      | 0.5              | μA |
| I <sub>BAT</sub> + I <sub>VDD</sub> | BAT plus VDD current | $V_{BUS} = 0 V, V_{STC}$                                                                        | = 0 V                                                                       | -0.5                      |      | 0.5              | μA |
| V <sub>VDD</sub>                    | VDD voltage          | $-I_{VDD} = 1 \text{ mA}, V_S$                                                                  | <sub>STC</sub> = 6.5 V                                                      | 3.1                       | 3.25 | 3.5              | V  |
| R <sub>VDD</sub>                    | VDD resistance       | $-I_{VDD} = 2 \text{ to } 8 \text{ m/s}$                                                        | A, V <sub>STC</sub> = 4.5 V                                                 |                           | 2    | 5                | Ω  |
|                                     |                      | VDD = on, VS =                                                                                  | on                                                                          | 5.6                       | 6.16 | 6.4              |    |
| V <sub>STC</sub>                    | TC STC voltage       | VDD = off, VS =                                                                                 | DD = off, VS = off                                                          |                           | 4.0  | 4.3              | V  |
|                                     |                      | I <sub>VDD &lt;</sub> I <sub>STC_use</sub>                                                      |                                                                             | 6.5                       | 7.18 | 7.7              |    |
| I <sub>STC use</sub>                | STC current          | V <sub>STC</sub> = 5 V                                                                          | $R_{RIDD}=30 \ k\Omega$                                                     | 0.65                      |      | 1.2              | mA |
| ISIC_use                            |                      |                                                                                                 | $R_{RIDD}=13 \ k\Omega$                                                     | 1.85                      |      | 2.5              |    |
| V <sub>RIDD</sub>                   | RIDD voltage         | $R_{RIDD} = 30 \ k\Omega$                                                                       |                                                                             | 1.23                      |      | 1.33             | V  |
| V <sub>VS</sub>                     | VS voltage           | $VDD = on, I_{VS} =$                                                                            | –5 μA                                                                       | V <sub>STC</sub> -0.4     |      | V <sub>STC</sub> | V  |
| R <sub>VS</sub>                     | VS resistance        | VDD = off                                                                                       |                                                                             | 0.3                       |      | 1                | MΩ |
|                                     |                      |                                                                                                 | V <sub>VB</sub> = V <sub>STC</sub> +<br>1.2 V, I <sub>PF</sub> =<br>-100 μA | V <sub>ВАТ</sub> -<br>0.6 |      | V <sub>BAT</sub> |    |
| Vpf                                 | PF voltage           | V <sub>STC</sub> =6.5V                                                                          | $V_{VB} = V_{STC} +$<br>0.5 V, I <sub>PF</sub> = 1<br>$\mu$ A               | 0                         |      | 0.6              | V  |
|                                     |                      |                                                                                                 | $V_{VB} = V_{STC} +$<br>0.5 V, I <sub>PF</sub> = 5<br>$\mu$ A               | 0                         |      | 0.9              |    |

Note1: All voltage values are measured with respect to the GND terminal, unless otherwise noted. Note2: Inputs RX/RXI and outputs TX/TXI are open,  $_{ICC} = I_{CI1} + I_{CI2}$ 

## **Receiver Section Electrical Characteristics(note1)**

over operating free-air temperature range (unless otherwise noted)

| Symbol          | Parameter      | Conditions                                 | Min                | Тур   | Max                      | Unit |
|-----------------|----------------|--------------------------------------------|--------------------|-------|--------------------------|------|
| V <sub>T</sub>  |                |                                            | MARK-              |       | MARK-                    | V    |
|                 |                |                                            | 0.82               |       | 5.7                      |      |
| V <sub>SC</sub> | SC voltage     |                                            |                    |       | V <sub>VB</sub>          | V    |
| SCcharge        | SC charge      | $V_{SC} = 24 \text{ V}, V_{VB} = 36$       | -15                | -24.7 | -40                      | μA   |
|                 | current        | V                                          |                    |       |                          |      |
| SCdischarge     | SC discharge   | $V_{SC} = V_{VB} = 24 V$                   | 0.3                |       | -0.033X                  | μA   |
|                 | current        |                                            |                    |       | I <sub>SCdischarge</sub> |      |
| V <sub>OH</sub> | High-level     | $I_{TX}/I_{TXI} = -100 \ \mu A$ ,          | V <sub>BAT</sub> - |       | V <sub>BAT</sub>         | V    |
|                 | output voltage |                                            | 0.6                |       |                          |      |
|                 | (TX, TXI)      |                                            |                    |       |                          |      |
|                 | Low-level      | I <sub>TX</sub> /I <sub>TXI</sub> = 100 μA | 0                  | 0.47  | 0.6                      |      |
| V <sub>OL</sub> | output         |                                            |                    |       |                          | V    |
|                 | voltage(TX,    | I <sub>TX</sub> = 1.1 mA                   | 0                  | 1.0   | 1.5                      |      |



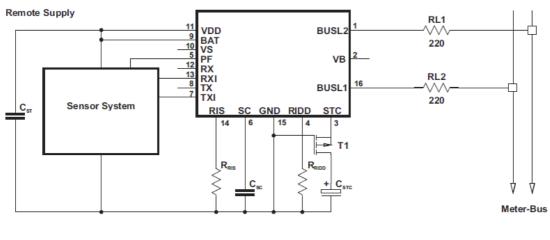
# BL15721A

|                  | TXI)    |    |                                |   |     |    |    |
|------------------|---------|----|--------------------------------|---|-----|----|----|
| $I_{TX} I_{TXI}$ | TX, T   | XI | $V_{TX} = 7.5V, V_{VB} = 12$   | 0 | 0.8 | 10 | μA |
|                  | current |    | V, $V_{STC}$ = 6V, $V_{BAT}$ = |   |     |    |    |
|                  |         |    | 3.8 V                          |   |     |    |    |

Note1: All voltage values are measured with respect to the GND terminal, unless otherwise noted.

# Transmitter Section Electrical Characteristics(note1)

Over operating free-air temperature range(unless otherwise noted)


| Symbol           | Parameter        | Conditions                                | Min                | Тур | Мах  | Unit |
|------------------|------------------|-------------------------------------------|--------------------|-----|------|------|
| I <sub>MC</sub>  | MC voltage       | R <sub>RIS</sub> =100Ω                    | 11.5               |     | 19.5 | mA   |
| V <sub>RIS</sub> | RIS voltage      | $R_{RIS}=100\Omega$                       | 1.4                |     | 1.7  | V    |
|                  |                  | R <sub>RIS</sub> =1000Ω                   | 1.5                |     | 1.8  |      |
| V <sub>IH</sub>  | High-level input | See Figure 2(note2)                       | V <sub>BAT</sub> - |     | 5.5  | V    |
|                  | voltage(RX,RXI)  |                                           | 0.8                |     |      |      |
| V <sub>IL</sub>  | Low-level input  | See Figure 2                              | 0                  |     | 0.8  | V    |
|                  | voltage(RX,RXI)  |                                           |                    |     |      |      |
| I <sub>RX</sub>  | RX current       | $V_{RX} = V_{BAT} = 3V, V_{VB} = V_{STC}$ | -0.5               |     | 0.5  | μA   |
|                  |                  | = 0V                                      |                    |     |      |      |
|                  |                  | $V_{RX} = 0V, V_{BAT} = 3V, V_{STC} =$    | -10                |     | -40  |      |
|                  |                  | 6.5 V                                     |                    |     |      |      |
| I <sub>RXI</sub> | RXI current      | $V_{RXI} = V_{BAT} = 3V, V_{VB} =$        | 10                 |     | 40   | μA   |
|                  |                  | $V_{STC} = 0V$                            |                    |     |      |      |
|                  |                  | $V_{RXI} = V_{BAT} = 3 V, V_{STC} =$      | 10                 |     | 40   |      |
|                  |                  | 6.5 V                                     |                    |     |      |      |

Note1: All voltage values are measured with respect to the GND terminal, unless otherwise noted.

Note 2:  $V_{IH}(max) = 5.5 \text{ V}$  is valid only when  $V_{STC} > = 6.5 \text{ V}$ .



### **Application Information**



| R <sub>RIDD</sub> = 30 kΩ | С <sub>этс</sub> =< 220 µF | single load 1UL |
|---------------------------|----------------------------|-----------------|
| $R_{RIDD} = 13 \ k\Omega$ | C <sub>sτc</sub> =< 470 μF | double load 2UL |



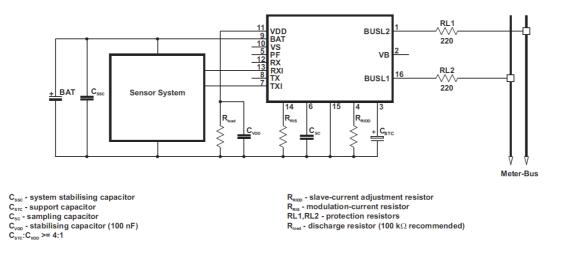



Figure 7. Basic Application Circuit for Supply From Battery



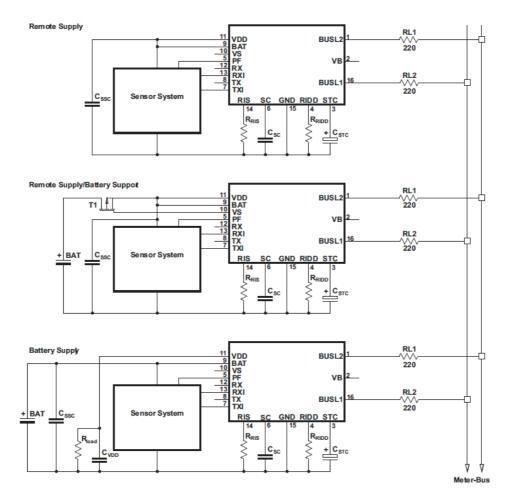



Figure 8. Basic Applications for Different Supply Modes

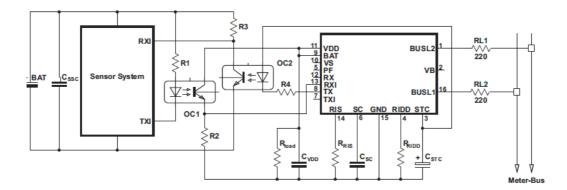
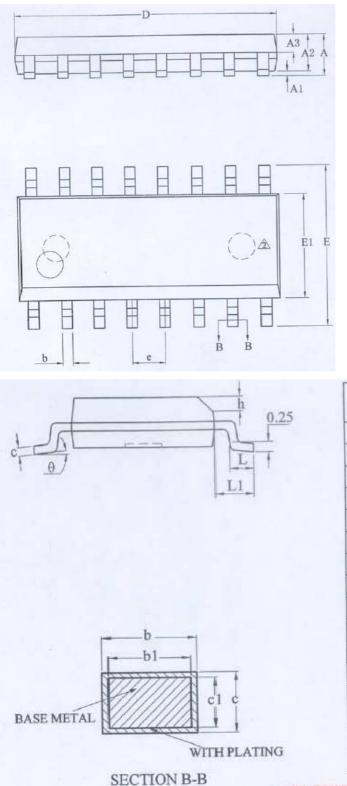




Figure 9. Basic Optocoupler Application



# **Outline Dimension (SOP-16)**



| an mes | MI   | MILLIMETER |       |   |  |  |
|--------|------|------------|-------|---|--|--|
| SYMBOL | MIN  | NOM        | MAX   |   |  |  |
| A      | -    | -          | 1.75  |   |  |  |
| AI     | 0.05 | -          | 0.225 | A |  |  |
| A2     | 1.30 | 1.40       | 1.50  |   |  |  |
| A3     | 0.60 | 0.65       | 0.70  |   |  |  |
| b      | 0.39 |            | 0.48  |   |  |  |
| bI     | 0.38 | 0.41       | 0.43  |   |  |  |
| c      | 0.21 | -          | 0.26  |   |  |  |
| ¢1     | 0,19 | 0.20       | 0.21  |   |  |  |
| D      | 9.70 | 9.90       | 10.10 |   |  |  |
| Е      | 5.80 | 6.00       | 6.20  |   |  |  |
| El     | 3.70 | 3.90       | 4.10  |   |  |  |
| ¢      |      | 1.27BS     | 0     |   |  |  |
| h      | 0.25 | -          | 0.50  |   |  |  |
| L      | 0.50 | -          | 0.80  |   |  |  |
| Ll     | 1    | 1.05BS     | С     |   |  |  |
| 0      | 0    |            | 8     |   |  |  |