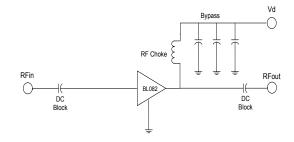
BL082

5-4000 MHz Wideband Low Nosie Amplifier

Part Marking (X:Wafer number)

Device Features

- This can be operated at Vd of 3.3V and 5V
- N.F = 0.88 dB @ 900MHz at Demo board
- 31.6 dBm Output IP3 at 5dBm/tone at 2350MHz
- 20.9 dB Gain at 900MHz
- 19.5 dBm P1dB at 2140 MHz
- Lead-free/Green/RoHS Compliant SOT363 SMT Package


Product Description

BeRex's BL082 is a high performance LNA, based on GaAs material with E-pHEMT process and packaged in a RoHS-compliant with SOT-363 Surface mount package. It is designed for use where low noise and high linearity are required and features low noise and high OIP3 with low current at wideband frequency. It requires a few external matching components. All devices are 100% RF/DC tested and classified as HBM ESD Class 0.

Applications

- Base station Infrastructure/RFID
- Commercial/Industrial/Military wireless system

Applications Circuit

^{*}External matching circuit: refer to the page 4 to 16

Typical Performance¹

Parameter	Frequency							
Vd = 5.0V	900	1900	2140	2350	2650	3500	MHz	
Gain	20.9	17.1	16.2	15.6	14.6	12.5	dB	
S11	-26	-29	-20	-28	-26	-19.3	dB	
S22	-27	-18	-17	-16	-13	-15.2	dB	
OIP3 ²	28	30.3	30.6	31.6	31.4	29.9	dBm	
P1dB	18.8	19.2	19.5	19.3	19	18.6	dBm	
N.F	0.88	1	1.08	1.14	1.14	1.3	dB	

Parameter		Unit					
Vd = 3.3V	900	1900	2140	2350	2650	3500	MHz
Gain	20.7	17	16	15.3	14.5	12.4	dB
S11	-27	-30	-22	-30	-25	-20.6	dB
S22	-26	-20	-19	-19	-16.5	-24.5	dB
OIP3 ³	26.3	28.3	28.5	28.9	28.9	29.6	dBm
P1dB	15.6	15.9	16.2	16.3	16.2	15.5	dBm
N.F	0.85	0.97	1.04	1.09	1.09	1.2	dB

 $^{^1}$ Device performance $_$ measured on BeRex's evaluation board at 25°C, 50 Ω system.

 $^{^3}$ OIP3 _ measured on two tones with a output power 3 dBm/ tone , F2—F1 = 1 MHz.

	Min.	Typical	Max.	Unit
Bandwidth	5		4000	MHz
I_d @ (Vd = 5.0V)	15	27	35	mA
I _d @ (Vd = 3.3V)	12	18	24	
dG/dT		-0.006		dB/°C
R _{TH}		95		°C/W

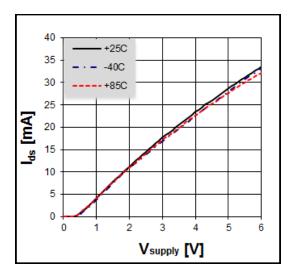
BeRex

•website: www.berex.com

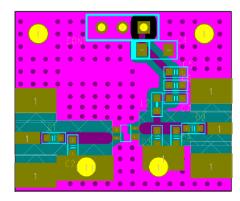
•email: sales@berex.com

1

 $^{^{2}}$ OIP3 _ measured on two tones with a output power 5 dBm/ tone , F2—F1 = 1 MHz.



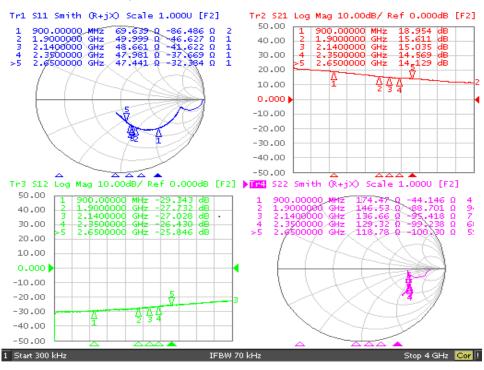
Absolute Maximum Ratings


Parameter	Rating	Unit
Operating Case Temperature	-40 to +85	°C
Storage Temperature	-55 to +155	°C
Junction Temperature	+220	°C
Operating Voltage	+6.0	V
Supply Current	160	mA
Input RF Power	24	dBm

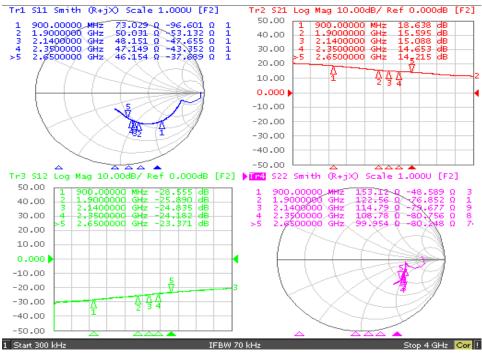
Operation of this device above any of these parameters may result in permanent damage.

V-I Characteristics

BeRex SOT363 Evaluation Board


^{*}Dielectric constant _ 4.2 *RF pattern width 52mil *31mil thick FR4 PCB

^{*}Without vias under device degrade device performance.



Typical Device Data

S-parameters (V_d=5.0V, I_d=27mA , T=25°C)

S-parameters (V_d =3.3V, I_d =18mA, T=25°C)

BeRex

•website: www.berex.com

•email: sales@berex.com

BL082

5-4000 MHz Wideband Low Nosie Amplifier

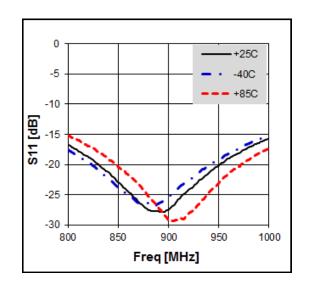
S-Parameter

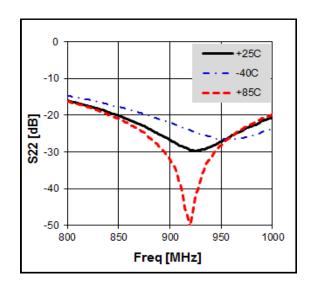
(Vd=5.0V,Id = 27mA, T = 25 °C, calibrated to device leads)

Freq	S11	S11	S21	S21	S12	S12	S22	S22
[MHz]	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
40	-2.29	-9.57	21.16	173.05	-31.23	24.95	-4.34	-9.36
70	-2.68	-8.88	20.91	173.03	-30.11	16.14	-4.85	-6.90
250	-3.06	-14.48	20.59	165.75	-29.65	12.76	-5.18	-3.93
500	-3.48	-25.67	20.04	154.53	-29.99	14.93	-5.02	-4.99
1000	-4.71	-44.66	18.70	134.90	-29.41	27.50	-4.70	-9.27
1500	-6.24	-57.52	17.06	119.30	-28.47	37.06	-4.49	-14.47
2000	-7.73	-67.16	15.37	108.77	-27.42	45.98	-4.28	-19.09
2500	-9.35	-74.58	14.48	100.78	-26.01	53.57	-4.15	-23.65
3000	-11.37	-82.86	13.26	88.64	-24.72	57.28	-4.17	-27.99
3500	-13.11	-92.60	11.93	82.51	-23.60	61.17	-4.19	-32.00
4000	-14.38	-106.14	11.17	75.97	-22.65	65.89	-4.18	-36.72

(Vd=3.3V,Id = 18mA, T = 25 °C, calibrated to device leads)

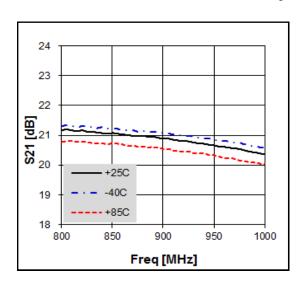
Freq	S11	S11	S21	S21	S12	S12	S22	S22
[MHz]	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
40	-2.15	-9.04	20.49	173.81	-31.08	29.96	-4.65	-9.19
70	-2.50	-8.01	20.28	173.95	-30.30	17.90	-5.13	-6.78
250	-2.81	-13.25	20.03	166.99	-29.76	14.00	-5.41	-4.91
500	-3.17	-23.56	19.58	156.45	-29.61	19.15	-5.34	-7.16
1000	-4.19	-41.48	18.43	137.29	-28.16	34.34	-5.22	-12.77
1500	-5.48	-54.34	16.94	121.73	-27.05	43.05	-5.08	-18.34
2000	-6.84	-64.40	15.37	110.94	-25.54	50.93	-5.07	-23.51
2500	-8.20	-72.33	14.54	102.36	-23.83	53.63	-5.04	-28.30
3000	-9.96	-81.09	13.36	90.17	-22.60	55.62	-5.22	-32.49
3500	-11.49	-91.30	12.07	83.52	-21.37	58.79	-5.38	-36.88
4000	-12.73	-104.77	11.33	76.62	-20.49	59.04	-5.62	-41.44

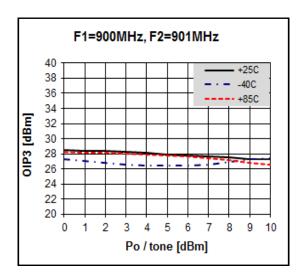


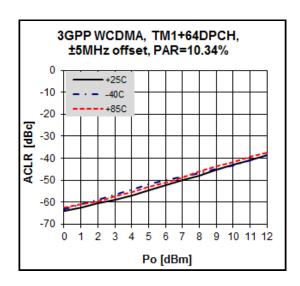

Application Circuit: 900 MHz

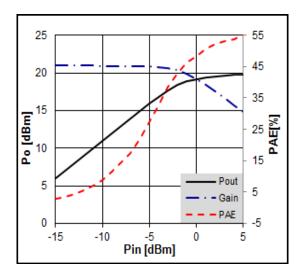
Schematic Diagram		вом	Tolerance
	C1	10uF	± 20%
O Vdd	C2	1nF	± 5%
T _{C3} T _{C2} T _{C1}	C 3	100pF	±5%
}L1	C4	100pF	±5%
	C 5	100pF	±5%
Input O BL082 Output	C6	0.5pF	± 5%
C4 L2 \downarrow L3 C5 \uparrow C6	L1	100nH	±5%
	L2	10nH	±5%
	L3	10nH	±5%

Typical Performance


 $V_d = 5V$, $I_d = 27mA$



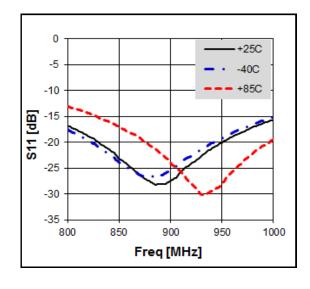


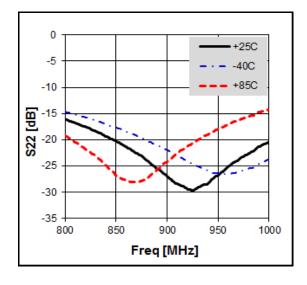


 $V_d = 5V$, $I_d = 27mA$

Noise Figure Temperature Performance

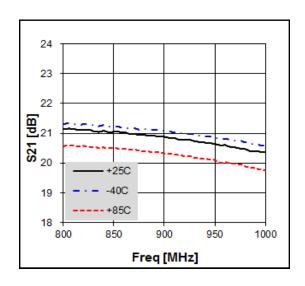
(Vds = 5.0V, Ids = 27.0mA)

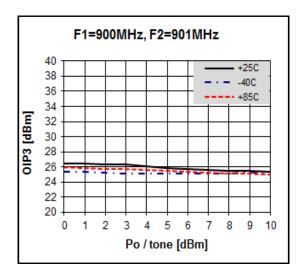


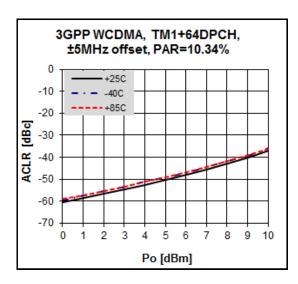

Application Circuit: 900 MHz

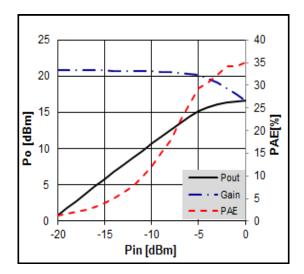
Schematic Diagram		вом	Tolerance
	C1	10uF	± 20%
O Vdd	C2	1nF	± 5%
	C 3	100pF	±5%
}L1	C4	100pF	±5%
	C 5	100pF	±5%
Input O—II——————————————————————————————————	C6	0.5pF	± 5%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L1	100nH	±5%
	L2	10nH	±5%
- -	L3	10nH	±5%

Typical Performance


 $V_d = 3.3V$, $I_d = 18mA$



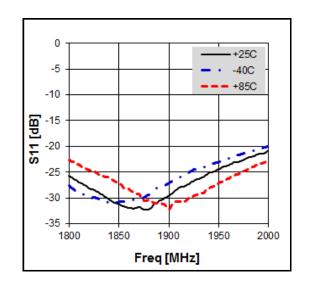


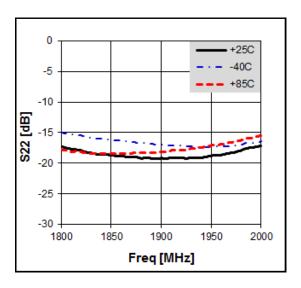


 $V_d = 3.3V$, $I_d = 18mA$

Noise Figure Temperature Performance

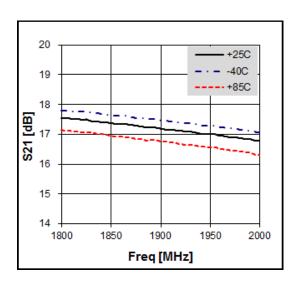
(Vds = 3.3V, Ids = 18.0mA)

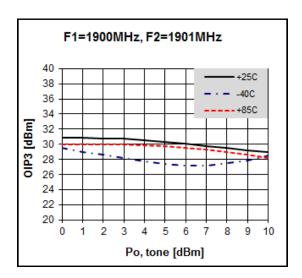


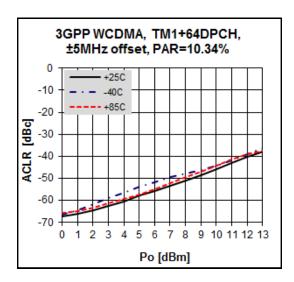

Application Circuit: 1900 MHz

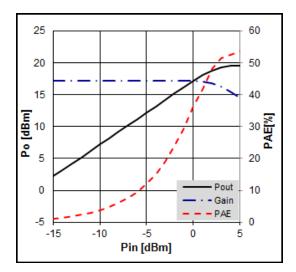
Schematic Diagram	вом		Tolerance
	C1	10uF	± 20%
O Vdd	C2	1nF	± 5%
	C 3	100pF	±5%
}L1	C4	100pF	±5%
	C 5	100pF	±5%
Input O BL082 Output	C6	0.75pF	± 5%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L1	27nH	±5%
	L2	3.3nH	±5%
	L3	4.7nH	±5%

Typical Performance


 $V_d = 5V, I_d = 27mA$



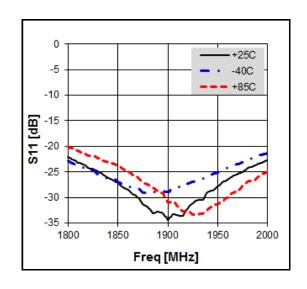


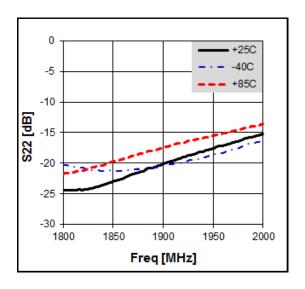


 $V_d = 5V$, $I_d = 27mA$

Noise Figure Temperature Performance

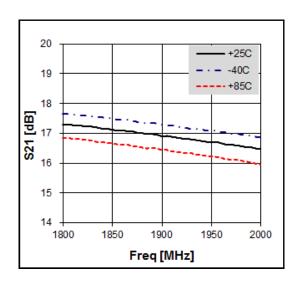
(Vds = 5.0V, Ids = 27.0mA)

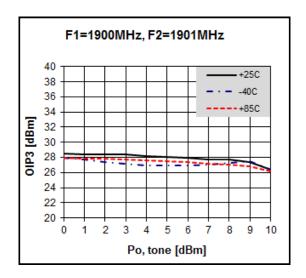


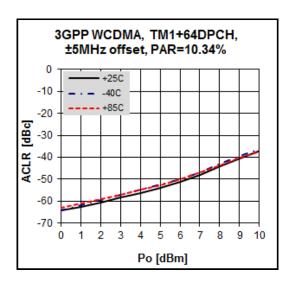

Application Circuit: 1900 MHz

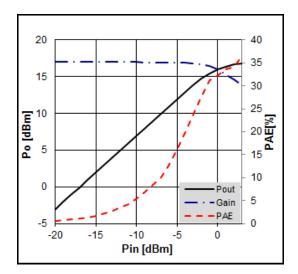
Schematic Diagram	вом		Tolerance
	C1	10uF	± 20%
O Vdd	C2	1nF	± 5%
	C 3	100pF	±5%
\\ \L_1 \\ _ \\ _ \\ _ \\	C4	100pF	±5%
	C 5	100pF	±5%
Input O BL082 Output	C6	0.75pF	± 5%
$ \begin{array}{c cccc} C4 & L2 & L3 & C5 \\ & \hline \end{array} $	L1	27nH	±5%
	L2	3.3nH	±5%
	L3	4.7nH	±5%

Typical Performance


 $V_d = 3.3V$, $I_d = 18mA$



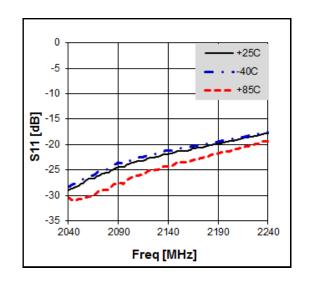


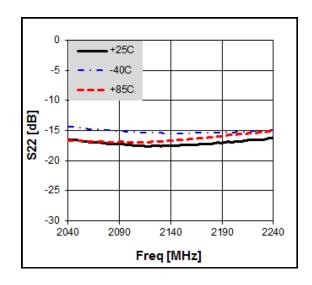


 $V_d = 3.3V$, $I_d = 18mA$

Noise Figure Temperature Performance

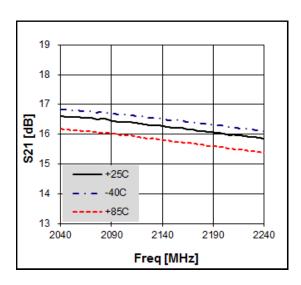
(Vds = 3.3V, Ids = 18.0mA)

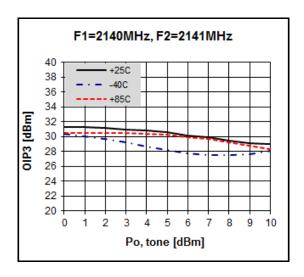


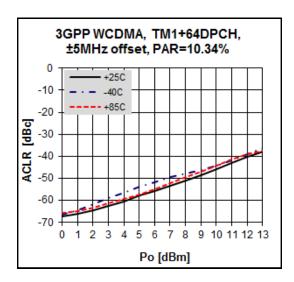

Application Circuit: 2140 MHz

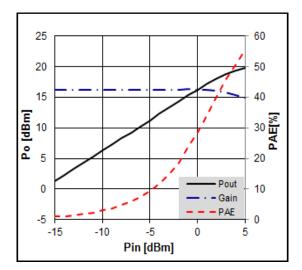
Schematic Diagram	вом		Tolerance
	C1	10uF	± 20%
O Vdd	C2	1nF	± 5%
	C 3	100pF	±5%
\\ \L_1 \\ ______\	C4	100pF	±5%
	C 5	100pF	±5%
Input O BL082 Output	C6	0.5pF	± 5%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L1	22nH	±5%
	L2	3.3nH	±5%
	L3	3.9nH	±5%

Typical Performance


 $V_d = 5V$, $I_d = 27mA$



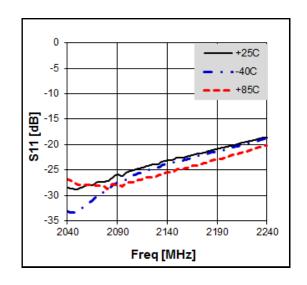


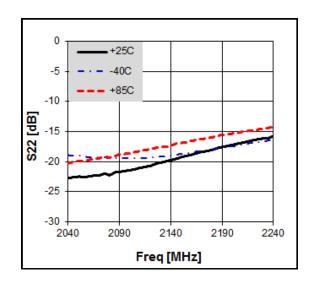


 $V_d = 5V$, $I_d = 27mA$

Noise Figure Temperature Performance

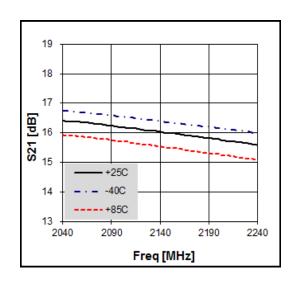
(Vds = 5.0V, Ids = 27.0mA)

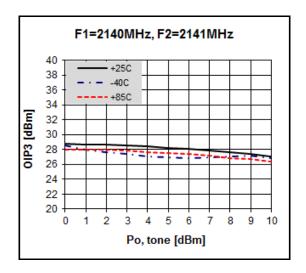


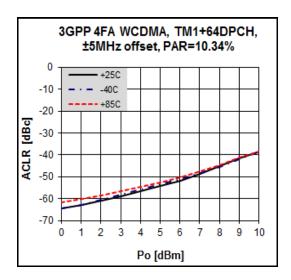

Application Circuit: 2140 MHz

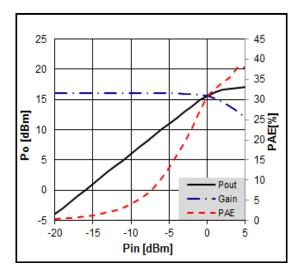
Schematic Diagram		вом	Tolerance
	C1	10uF	± 20%
O Vdd	C2	1nF	± 5%
	C 3	100pF	±5%
}L1 🛓 🛓	C4	100pF	±5%
	C 5	100pF	±5%
Input O BL082 Output	C6	0.5pF	± 5%
$ \begin{array}{c cccc} C4 & L2 & L3 & C5 \\ \hline + & C6 & & & \\ \end{array} $	L1	22nH	±5%
	L2	3.3nH	±5%
	L3	3.9nH	±5%

Typical Performance


 $V_d = 3.3V$, $I_d = 18mA$



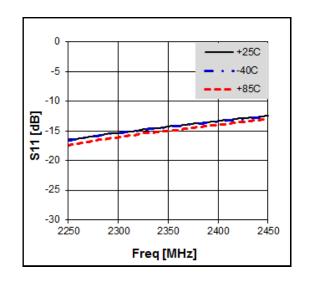


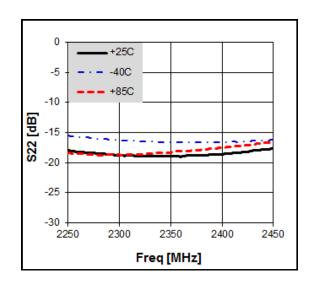


 $V_d = 3.3V$, $I_d = 18mA$

Noise Figure Temperature Performance

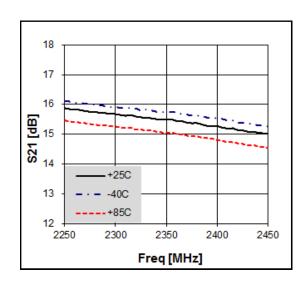
(Vds = 3.3V, Ids = 18.0mA)

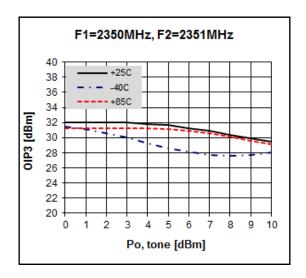


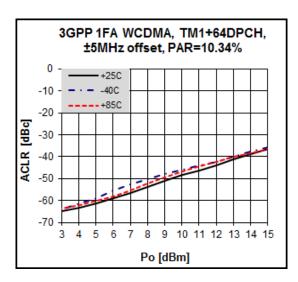

Application Circuit: 2350 MHz

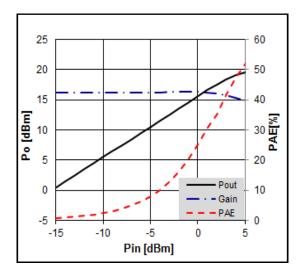
Schematic Diagram		вом	Tolerance
	C1	10uF	± 20%
Input \bigcirc	C2	1nF	± 5%
	C3	100pF	±5%
	C4	100pF	±5%
	C 5	100pF	±5%
	C6	0.5pF	± 5%
	L1	15nH	±5%
	L2	3.3nH	±5%
	L3	3.3nH	±5%

Typical Performance


 $V_d = 5V, I_d = 27mA$



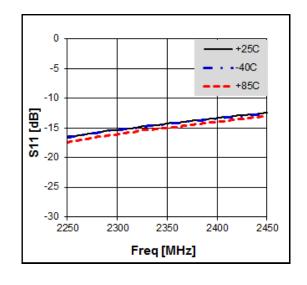


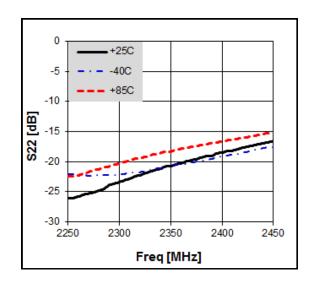


 $V_d = 5V$, $I_d = 27mA$

Noise Figure Temperature Performance

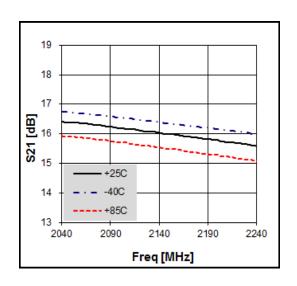
(Vds = 5.0V, Ids = 27.0mA)

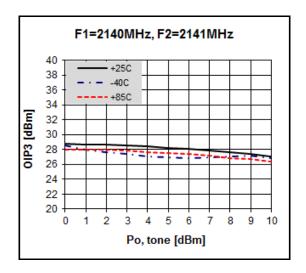


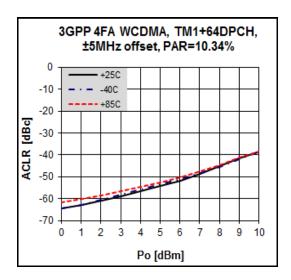

Application Circuit: 2350 MHz

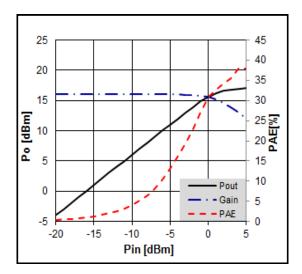
Schematic Diagram		вом	Tolerance
	C1	10uF	± 20%
Input O $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C2	1nF	± 5%
	C 3	100pF	±5%
	C4	100pF	±5%
	C 5	100pF	±5%
	C6	0.5pF	± 5%
	L1	15nH	±5%
	L2	3.3nH	±5%
	L3	3.3nH	±5%

Typical Performance


 $V_d = 3.3V$, $I_d = 18mA$



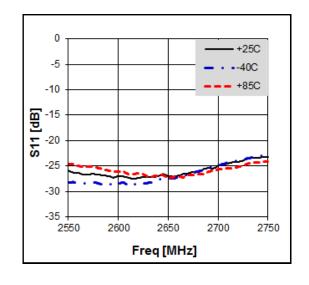


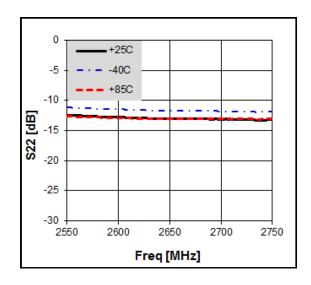


 $V_d = 3.3V$, $I_d = 18mA$

Noise Figure Temperature Performance

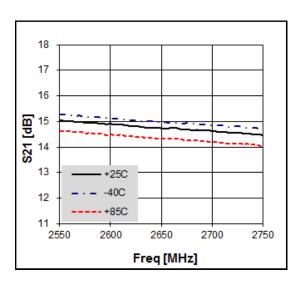
(Vds = 3.3V, Ids = 18.0mA)

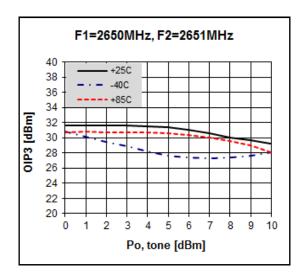


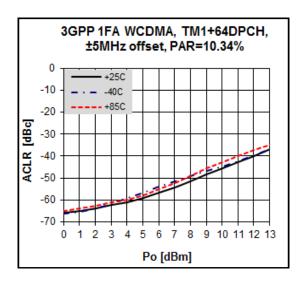

Application Circuit: 2650 MHz

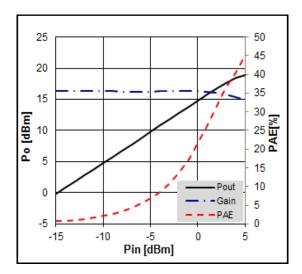
Schematic Diagram		вом	Tolerance
	C1	10uF	± 20%
Input O $C4$ $C4$ $C5$ $C5$ $C5$ $C5$ $C6$ $C6$ $C6$ $C6$ $C6$ $C6$ $C7$ $C8$ $C9$ $C9$ $C9$ $C9$ $C9$ $C9$ $C9$ $C9$	C2	1nF	± 5%
	C 3	100pF	±5%
	C4	22pF	±5%
	C 5	22pF	±5%
	C6	0.3pF	± 5%
	L1	10nH	±5%
	L2	2.2nH	±5%
	L3	2.7nH	±5%

Typical Performance


 $V_d = 5V$, $I_d = 27mA$



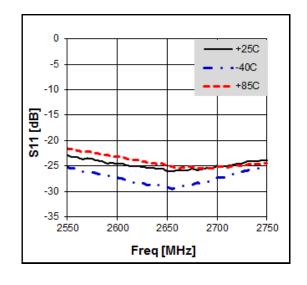


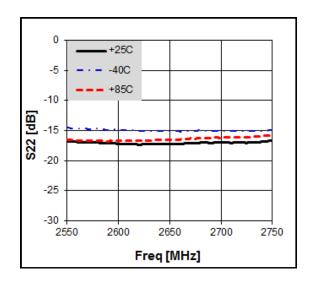


 $V_d = 5V$, $I_d = 27mA$

Noise Figure Temperature Performance

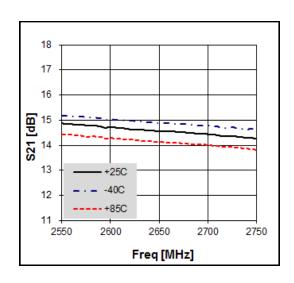
(Vds = 5.0V, Ids = 27.0mA)

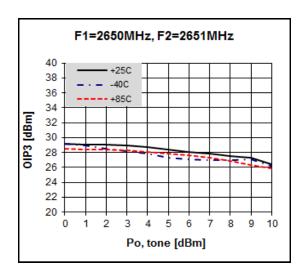


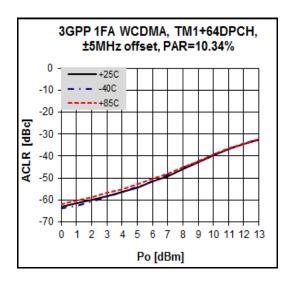

Application Circuit: 2650 MHz

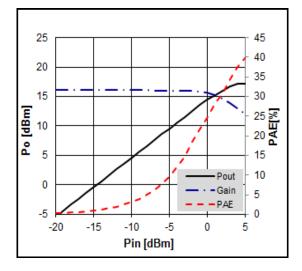
Schematic Diagram		вом	Tolerance
	C1	10uF	± 20%
O Vdd	C2	1nF	± 5%
T _{C3} T _{C2} T _{C1}	С3	100pF	±5%
}L1 🛓 🛓	C4	22pF	±5%
Input O BL082 C4 L2 C6 C6 C6 C6 C7 C7 C7 C7 C7 C7	C 5	22pF	±5%
	C6	0.3pF	± 5%
	L1	10nH	±5%
	L2	2.2nH	±5%
	L3	2.7nH	±5%

Typical Performance

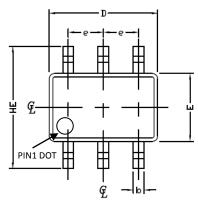

 $V_d = 3.3V$, $I_d = 18mA$

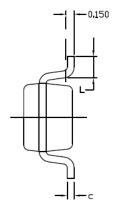




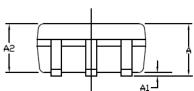


 $V_d = 3.3V$, $I_d = 18mA$



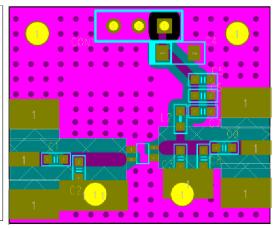

Noise Figure Temperature Performance

(Vds = 3.3V, Ids = 18.0mA)



Package Outline Dimension

SYMBOL	MIN	MAX	
Ε	1.15	1,35	
D	1,85	2,25	
HE	2,00	2,30	
A	0.80	1,00	
A2	0.80	0.91	
A1	0.00	0.09	
е	0.65 BSC		
b	0.15	0.30	
U	0.08	0.25	
┙	0.21	0.41	



Suggested PCB Land Pattern and PAD Layout

PCB Land Pattern

0.380 0.460 0.450 0.450 0.450 0.450 0.450 0.745 1.420 Notes: 1. Do not need Center Ground Via. 2. Each GND PAD(PIM≠ 1,2,4,5) separation by silk line.

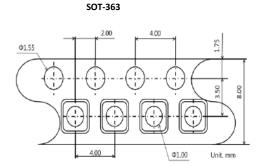
PCB Mounting

Note: All dimension _ millimeters

PCB lay out _ on BeRex website

BL082

5-4000 MHz Wideband Low Nosie Amplifier



Package Marking

BL8X • X = Wafer No.

Pin 1

Tape & Reel

Packaging information:

Tape Width (mm): 8

Reel Size (inches): 7

Device Cavity Pitch (mm): 4

Devices Per Reel: 3000

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating: Class 0

Value: Passes <200V

Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114B

MSL Rating: Level 1 at +265°C convection reflow

Standard: JEDEC Standard J-STD-020

NATO CAGE code:

2 N	9	6	F
-----	---	---	---