

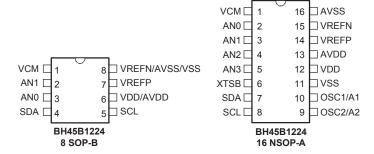
Features

- Wide operating voltage: 2.4V~5.5V
- Internal Programmable Gain Amplifier
- Internal I²C interface for external communication
- 5Hz~1.6kHz ADC output data rate
- Internal temperature sensor for compensation
- Package Types: 8-pin SOP/16-pin NSOP

Applications

- Instrumentation
- · Health Monitoring Equipment
- · Precision Sensing

General Description


The BH45B1224 is a multi-channel 24-bit Delta Sigma A/D converter which includes a programmable gain amplifier and is designed for applications that interface differentially to analog signals. The device has the benefits of low noise and high accuracy and communicates with external hardware using an internal I²C bus. This highly functionally integrated Delta Sigma analog to digital converter with its high accuracy and low power specifications offers a superior solution for interfacing to external sensors especially for battery powered applications.

Block Diagram

Pin Assignment

Pin Description

Pin Name	Туре	Description	
AN0	Al	ADC input channel 0	
AN1	Al	ADC input channel 1	
AN2	Al	ADC input channel 2	
AN3	Al	ADC input channel 3	
VERFP	Al	Positive reference input voltage	
VERFN	Al	Negative reference input voltage	
SCL	I	I ² C clock line	
SDA	I/O	I ² C data line	
XTSB	I	Low: external crystal, High: internal oscillator	
OSC1/A1	OSC	Oscillator input	
USCIIAI	I	I ² C slave address select	
OSC2/A2	OSC	Oscillator output	
USCZIAZ	I	I ² C slave address select	
VCM	AO	ADC internal Common mode voltage output	
VDD	PWR	Digital power supply	
AVDD	PWR	Analog power supply	
VSS	PWR	Digital negative power supply	
AVSS	PWR	nalog negative power supply	

Pin Type Legend

Pin Type	Description
I	Digital Input
I/O	Digital Input/Output
OSC	Oscillator
Al	Analog Input
AO	Analog Output
PWR	Power

Rev. 1.00 2 January 04, 2018

Absolute Maximum Ratings

Supply VoltageV _{SS} -0.3V toV _{SS} +6.0V	Iol Total 80mA
Input Voltage V_{SS} -0.3V to V_{DD} +0.3V	I _{OH} Total80mA
Storage Temperature50°C to 125°C	Total Power Dissipation
Operating Temperature40°C to 85°C	

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

Operating Temperature: -40°C to 85°C, Ta=25°C, Typical

Symbol	Parameter		Test Conditions	Min.	Tim	Max.	Unit
Syllibol	Symbol Parameter		Conditions		Тур.	IVIAX.	Ullit
			f _{SYS} =f _{HXT} =4MHz	2.4	_	5.5	V
V_{DD}	Operating Voltage (HXT)	_	$f_{SYS}=f_{HXT}=8MHz$	2.4	_	5.5	V
V DD			f _{SYS} =f _{HXT} =12MHz	2.4	_	5.5	V
	Operating Voltage (HIRC)	_	f _{SYS} =f _{HIRC} =4.9152MHz	2.4	_	5.5	V
	Operating Current (HXT)	3V	No load, all peripherals off,	_	500	750	μΑ
ļ.		5V	f _{SYS} =f _{HXT} =4MHz	_	1	1.5	mA
I _{DD}	Operating Current (HIRC)	3V	No load, all peripherals off,	_	400	600	μA
	Operating Current (FIRC)	5V	f _{SYS} =f _{HIRC} =4.9152MHz	_	8.0	1.2	mA
1	Standby Current	3V	No. 1 d II was sinda a - I #	_	_	1	μΑ
I _{STB}	Standby Current	5V	No load, all peripherals off	_	_	2	μA
	Pull-high resistance for Input		_	20	60	100	kΩ
RPH	Ports (XTSB, A1, A2)	5V	_	10	30	50	kΩ

A.C. Characteristics

Operating Temperature: -40°C to 85°C, Ta=25°C, Typical

Symbol	Parameter		Test Conditions		Tun	Max.	Unit
Syllibol	Symbol Parameter		Conditions	Min.	Тур.	IVIAX.	Ollit
	System Clock (HXT)	2.4V~5.5V	f _{SYS} =f _{HXT} =4MHz	_	4	_	MHz
f _{SYS}	System Clock (HAT)	2.4V~5.5V	f _{SYS} =f _{HXT} =8MHz	_	8	_	MHz
	System Clock (HIRC)	2.4V~5.5V	f _{SYS} =f _{HIRC} =4.9152MHz	_	4.9152	_	MHz
		3V	Ta=25°C	-2%	4.9152	+2%	MHz
		3V±0.3V	Ta=0°C~70°C	-5%	4.9152	+5%	MHz
f _{HIRC}	High Speed Internal RC Oscillator (HIRC)	3V±0.3V	Ta=-40°C~85°C	-10%	4.9152	+10%	MHz
		2.4V~5.5V	Ta=0°C~70°C	-7%	4.9152	+7%	MHz
		2.4V~5.5V	Ta=-40°C~85°C	-10%	4.9152	+10%	MHz

Rev. 1.00 3 January 04, 2018

I²C Electrical Characteristics

Operating Temperature: -40°C to 85°C, Ta=25°C, Typical

Complete			Test Conditions	Min	T	Marr	I I m i 4
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
	I ² C Standard Mode (100kHz) f _{SYS} Frequency	_	No clock debounce	2	_	_	MHz
		_	2 system clock debounce	4	_	_	MHz
_		_	4 system clock debounce	8	_	_	MHz
f _{I2C}	I ² C Fast Mode (400kHz)	_	No clock debounce	5	_	_	MHz
		_	2 system clock debounce	10	_	_	MHz
	f _{SYS} Frequency		4 system clock debounce	20	_	_	MHz

D/A Converter Electrical Characteristics

Operating Temperature: -40°C to 85°C, Ta=25°C, Typical

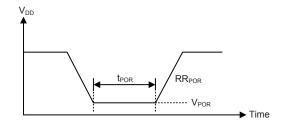
Symbol	Donomotor		Conditions		Tren	May	Unit
Syllibol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
V _{DACO}	Output Voltage Range	_	_	Vss	_	V_{REF}	V
V _{REF}	Reference Voltage	_	_	1.25	_	V _{DD}	V
I _{DAC}	Additional Current for DAC Enable	_	V _{REF} =5V	_	_	450	μΑ
DNL	Differential Non-linearity	_	$2.4V \le V_{DD} \le 5.5V$	_	_	±6	LSB
INL	Integral Non-linearity	_	$2.4V \le V_{DD} \le 5.5V$	_	_	±12	LSB

PGA+ADC+VCM Electrical Characteristics

V_{DD}=AV_{DD}, Operating temperature: -40°C to 85°C, Ta=25°C, Typical

VIDE-AVID, Operating temperature40 G to						,	, .,,
Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
Cymbol	, aramotor		Conditions		Typ.	max.	Oilit
AV _{DD}	Supply Voltage for VCM, ADC, PGA	_	_	2.4	_	5.5	V
V _{OUT_VCM}	VCM Output Voltage (VCM Pin)	_	AV _{DD} =3.3V, No load	- 5%	1.25	+5%	V
ТСусм	VCM Temperature Coefficient	_	Ta=-40°C~85°C, AV _{DD} =3.3V, I _{LOAD} =10μA	_	_	0.24	mV/°C
$\Delta V_{\text{LINE}_{-}}$	VCM Line Regulation	_	2.4V ≤ AV _{DD} ≤ 3.3V, No load	_	_	0.3	%/V
tvcms	VCM Turn-on Stable Time	_	AV _{DD} =3.3V, No load	_	_	10	ms
I _{OH}	Source Current for VCM Pin	_	AV _{DD} =3.3V, ΔV _{OUT_VCM} = -2%	3	_	_	mA
I _{OL}	Sink Current for VCM Pin	_	AV _{DD} =3.3V, ΔV _{OUT_VCM} = +2%	3	_	_	mA
ADC & A	ADC Internal Reference Voltage (Sig	ma [Delta ADC)				
			VCM enable, VRBUFP=1 and VRBUFN=1	_	_	1120	μA
I _{ADC}	Additional Current for ADC Enable	_	VCM enable, VRBUFP=0 and VRBUFN=0	_	820	970	μA
			VCM disable, VRBUFP=0 and VRBUFN=0	_	500	650	μA
I _{ADSTB}	Standby Current	_	System HALT, no load	_	_	1	μΑ
RS _{ADC}	Resolution	_	_	_	_	24	bit
INL	Integral Non-linearity		AV _{DD} =3.3V, V _{REF} =1.25V, ΔSI=±450mV, PGA Gain=1	_	±50	±200	ppm
NFB	Noise Free Bits	_	PGA Gain=128, Data rate=10Hz, V _{REF} =1.25V	_	15.4	_	Bit
ENOB	Effective Number of Bits	_	PGA Gain=128, Data rate=10Hz, V _{REF} =1.25V	_	18.1	_	Bit

Rev. 1.00 4 January 04, 2018



Cumbal	Parameter		Test Conditions	Min.	Turn	May	I Imit
Symbol	Parameter	V _{DD}	Conditions	IVIII.	Тур.	Max.	Unit
f _{ADCK}	ADC Clock Frequency	_	_	40	409.6	440	kHz
£	ADC Output Data Data		f _{MCLK} =4.9152MHz, FLMS[2:0]=000B	5		640	Hz
f _{ADO}	ADC Output Data Rate	_	f _{MCLK} =4.9152MHz, FLMS[2:0]=010B	12.5	_	1600	Hz
V _{REFP}		-		V _{REFN} + 0.8	_	AV_{DD}	V
V _{REFN}	External Reference Input Voltage		VRBUFN=0	0	_	V _{REFP} - 0.8	V
V_{REF}		_	V _{REF} =(V _{REFP} -V _{REFN})×VGS	0.80	_	1.75	V
PGA							
V _{CM_PGA}	Common Mode Voltage Range	_	_	0.4	_	AV _{DD} - 0.95	V
ΔD_1	Differentail Input Voltage Range	_	$\begin{aligned} &\text{Gain=PGS}{\times} &\text{AGS}, \\ &\Delta &\text{D}_{\text{I}}{=} &\text{DI-} \end{aligned}$	-V _{REF} / Gain	_	+V _{REF} / Gain	V
Tempera	ature Sensor						
TCTS	Temperature Sensor Temperature Coefficient	_	Ta=-40°C~85°C, V _{REF} =1.25V, VGS[1:0]=00B (Gain=1), VRBUFP=0, VRBUFN=0	_	175	_	μV/°C

Power-on Reset Electrical Characteristics

Operating Temperature: -40°C to 85°C, Ta=25°C, Typical

Symbol Parameter		Те	st Conditions	Min.	Typ.	Max.	Unit
		V_{DD}	Conditions	IVIIII.	тур.	IVIAX.	Ullit
V _{POR}	V _{DD} Start Voltage to Ensure Power-on Reset	_	_	_	_	100	mV
RR _{POR}	V _{DD} Rising Rate to Ensure Power-on Reset	_	_	0.035	_	_	V/ms
t _{POR}	Minimum Time for V _{DD} Stays at V _{POR} to Ensure Power-on Reset	_	_	1	_	_	ms

Rev. 1.00 5 January 04, 2018

Functional Description

The BH45B1224 is a high accuracy multi-channel 24-bit Delta Sigma type analog-to-digital converter which can directly interface to external analog signals, such as that from sensors or other control signals and convert these signals directly into a 24bit digital value. In addition to the core analog to digital converter circuitry, the device also includes an internal Programmable Gain Amplifier PGA. The PGA gain control, ADC gain control and ADC reference gain control determine the overall amplification gain for ADC input signal, giving users a flexible way of setting up an overall gain to achieve an optimum amplification of the input signal for their specific applications. The converter has a total of four inputs allowing the formation of two differential input channels. The converter output is filtered via a SINC filter and the result stored as a 24-bit value in three data registers. An internal voltage regulator and reference sources are also included as well as a temperature sensor for A/D converter compensation due to temperature effects.

Internal Registers

The device is setup and operated using a series of internal registers. Device commands and data are written to and read from the device using its internal I²C bus. This list provides a summary of all internal registers, their detailed operation is described under their relevant section in the functional description.

Register Initial Values

The following table shows the internal value of the individual register after a power on reset.

	_
Register	Power On Reset Value
PWRC	0
PGAC0	-000 0000
PGAC1	-000 000-
PGACS	00 0000
ADRL	xxxx xxxx
ADRM	xxxx xxxx
ADRH	xxxx xxxx
ADCR0	0010 0000
ADCR1	0000 000-
ADCS	0 0000
DAH	0000 0000
DAL	0000
DACC	0 0
SIMC0	0 0 0
SIMTOC	0000 0000
HIRCC	0 0 1
HXTC	000

Table Legend

Item	Description
*	Warm reset
-	Not implemented
u	Unchanged
х	Unknown

Address	Register				В	it			
71441000	Name	7	6	5	4	3	2	1	0
00H	PWRC	VCMEN	_	_	_	_	_	_	_
01H	PGAC0	_	VGS1	VGS0	AGS1	AGS0	PGS2	PGS1	PGS0
02H	PGAC1	_	INIS	INX1	INX0	DCSET2	DCSET1	DCSET0	_
03H	PGACS	_	_	CHSN2	CHSN1	CHSN0	CHSP2	CHSP1	CHSP0
04H	ADRL	D7	D6	D5	D4	D3	D2	D1	D0
05H	ADRM	D15	D14	D13	D12	D11	D10	D9	D8
06H	ADRH	D23	D22	D21	D20	D20	D19	D18	D17
07H	ADCR0	ADRST	ADSLP	ADOFF	ADOR3	ADOR2	ADOR1	ADOR0	VREFS
08H	ADCR1	FLMS2	FLMS1	FLMS0	VRBUFN	VRBUFP	ADCDL	EOC	_
09H	ADCS	_	_	_	ADCK4	ADCK3	ADCK2	ADCK1	ADCK0
0BH	DAH	D11	D10	D9	D8	D7	D6	D5	D4
0CH	DAL	_	_	_	_	D3	D2	D1	D0
0DH	DACC	DACEN	DACVRS	_	_	_	_	_	_
0EH	SIMC0	SIMS	_	_	_	SIMDEB1	SIMDEB0	_	_
10H	SIMTOC	SIMTOEN	SIMTOF	SIMTOS5	SIMTOS4	SIMTOS3	SIMTOS2	SIMTOS1	SIMTOS0
11H	HIRCC	_	_	_	_	_	HIRCO	HIRCF	HIRCEN
12H	HXTC	_	_	_	_	_	HXTM	HXTF	HXTEN

Rev. 1.00 6 January 04, 2018

Internal Power Supply

This device contains the VCM for the regulated power supply. The VCM can be used as the reference voltage for ADC module. The VCM function is controlled by the VCMEN bit and can be powered off to reduce the power consumption.

Reference Voltages

An internal voltage reference source, known as the VCM, is used as a converter reference. The VCM is sourced from a bandgap reference generator thus providing a temperature stable reference and has a output voltage level fixed at 1.25V. The VCM function is controlled by the VCMEN bit and can be switched off to reduce the power consumption.

The converter reference voltage range is supplied on two external reference pins, VREFP and VREFN. These offer a full reference voltage range of AV_{SS} to $AV_{DD}.$ This externally supplied reference voltage can be attenuated by 0.5 or 0.25 using the VREFGN bits in the PGAC0 register.

An internal DAC is also provided as an additional reference voltage source. The DAC has two reference voltages which define the maximum value, supplied by either AVDD or VCM. The DAC 12-bit value is setup using two data registers, DAL and DAH and selected using the DACVRS bit in the DACC register. The overall enable bit for the DAC is the DACEN bit in the DACC register.

• DAH Register - 0BH

Bit	7	6	5	4	3	2	1	0
Name	D11	D10	D9	D8	D7	D6	D5	D4
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D11~D4**: DAC output control code

• DAL Register - 0CH

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	D3	D2	D1	D0
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3~0 **D3~D0**: DAC output control code

Note: writing to this register only writes to a shadow buffer. Not until data is written to the DAH register will the actual data be written into the DAL register.

Rev. 1.00 7 January 04, 2018

• DACC Register - 0DH

Bit	7	6	5	4	3	2	1	0
Name	DACEN	DACVRS	_	_	_	_	_	_
R/W	R/W	R/W	_	_	_	_	_	_
POR	0	0	_	_	_	_	_	_

Bit 7 DACEN: DAC enable or disable control bit

0: Disable 1: Enable

Bit 6 DACVRS: DAC reference voltage selection

0: DAC reference voltage sourced from AVDD

1: DAC reference voltage sourced from VCM

Bit 5~0 Unimplemented, read as "0"

Power and Reference Control

The following table shows the overall control of the power and voltage sources.

Regi	sters	Output voltage			
ADOFF	VCMEN	Bandgap	VCM		
1	0	Off	Disable		
1	1	On	Enable		
0	0	On	Disable		
0	1	On	Enable		

Power Control Table

Power Control Registers

• PWRC Register - 00H

Bit	7	6	5	4	3	2	1	0
Name	VCMEN	_	_	_	_	_	_	_
R/W	R/W	_	_	_	_	_	_	_
POR	0	_	_	_	_	_	_	_

Bit 7 VCMEN: VCM function enable control

0: Disable1: Enable

If the VCM is disabled, there will be no power consumption and VCM output pin is floating.

Bit 6~0 Unimplemented, read as "0"

Rev. 1.00 8 January 04, 2018

Oscillators

There are two kinds of oscillators used in this device, a fully internal oscillator and an external crystal oscillator. The device can operate using both the internal oscillator or an external crystal oscillator, selecting which oscillator is used is determined by the XTSB pin.

XTSB Pin	Oscillator Type
0	External Crystal
1	Internal Oscillator

Oscillator Control Registers

There are two control registers for the device oscillators, one for the internal oscillator and one for the external oscillator. Which oscillator is used in the device is determined by the XTSB pin. Note that if the HIRC oscillator is selected then a full 16 clock cycle time is required for the oscillator to stabilise.

• HIRCC Register - 11H

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	HIRCO	HIRCF	HIRCEN
R/W	_	_	_	_	_	R/W	R	R/W
POR	_	_	_	_	_	0	0	1

Bit 7~3 Unimplemented, read as "0"

Bit 2 HIRCO: HIRC clock output

This bit must be reserved at "0"

Bit 1 HIRCF: HIRC oscillator stable flag

0: Unstable1: Stable

The HIRC stable time will spend 16 clocks when HIRCEN is enabled.

Bit 0 HIRCEN: HIRC oscillator enable control

0: Disable1: Enable

HXTC Register – 12H

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	HXTM	HXTF	HXTEN
R/W	_	_	_	_	_	R/W	R	R/W
POR	_	_	_	_	_	0	0	0

Bit 7~3 Unimplemented, read as "0"

Bit 2 **HXTM**: HXT mode selection

0: $HXT \le 10MHz - small sink/source current$

1: HXT > 10MHz – large sink/source current

Note that if HXTEN=1, then changing this bit will have no effect.

Bit 1 **HXTF**: HXT oscillator stable flag

0: Unstable1: Stable

When bit HXTEN is enable, this bit will be cleared to "0" and will be set after the HXT clock is stable.

The HXT stable time will spend some clock when bit HXTEN is enabled.

Bit 0 **HXTEN**: HXT oscillator enable control

0: Disable1: Enable

Input Signal Gain Control Amplifier - PGA

An internal programmable gain amplifier is provided to amplify the differential input signal before being converted. All input signals to the analog to digital converter must pass through the PGA. This preprocessing of the input signal enables an optimal signal range to be setup to obtain a converted value with optimal resolution.

PGA Registers

The PGA is controlled using a series of registers to setup the gain value and also to select the input source.

• PGAC0 Register - 01H

Bit	7	6	5	4	3	2	1	0
Name	_	VGS1	VGS0	AGS1	AGS0	PGS2	PGS1	PGS0
R/W	_	R/W						
POR	_	0	0	0	0	0	0	0

Bit 7 Unimplemented, read as "0"

Bit 6~5 VGS1~VGS0: REFP/REFN differential reference voltage gain selection

00: VREFGN=1 01: VREFGN=1/2 10: VREFGN=1/4 11: Reserved

Bit 4~3 AGS1~AGS0: ADC converter PGAOP/PGAON differential input signal gain selection

00: ADGN=1

01: ADGN=2 (for Gain=128=PGAGN×ADGN=64×2)

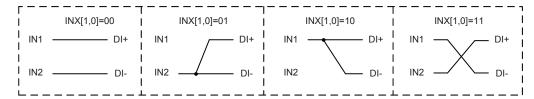
10: Reserved11: Reserved

Bit 2~0 PGS2~PGS0: PGA DI+/DI- differential channel input gain selection

000: PGAGN=1 001: PGAGN=2 010: PGAGN=4 011: PGAGN=8 100: PGAGN=16 101: PGAGN=32 110: PGAGN=64 111: Reserved

• PGAC1 Register - 02H

Bit	7	6	5	4	3	2	1	0
Name	_	INIS	INX1	INX0	DCSET2	DCSET1	DCSET0	_
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	_
POR	_	0	0	0	0	0	0	_


Bit 7 Unimplemented, read as "0".

Bit 6 INIS: Selected input terminals IN1/IN2 internal connection

0: Not connected

1: Connected

Bit 5~4 INX1, INX0: The selected input ends ,IN1/IN2 and the PGA differential input ends, DI+/DI- connection control bits

Bit 3~1 **DCSET2~DCSET0**: Differential input signal PGAOP/PGAON offset selection

000: DCSET=+0V

001: DCSET= $+0.25 \times \Delta VR$ I

010: DCSET= $+0.5 \times \Delta VR$ I

011: DCSET= $+0.75 \times \Delta VR_I$

100: DCSET=+0V

101: DCSET= $-0.25 \times \Delta VR_I$

110: DCSET= $-0.5 \times \Delta VR$ I

111: DCSET= $-0.75 \times \Delta VR$ I

The voltage, ΔVR_I , is the differential reference voltage which is amplified by the specific gain selection based on the selected inputs.

Bit 0 Unimplemented, read as "0"

PGA Input Channel Selection

In addition to the external analog input to be measured by the converter, there are several other internal analog voltage lines which can be connected to the converter. These come from a range of sources such as the temperature sensor and are normally used for calibration purposes.

• PGACS Register - 03H

Bit	7	6	5	4	3	2	1	0
Name	_	_	CHSN2	CHSN1	CHSN0	CHSP2	CHSP1	CHSP0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	_	0	0	0	0	0	0

Bit 7~6 Unimplemented, read as "0"

Bit 5~3 CHSN2~CHSN0: PGA negative input end IN2 selection

000: AN1 001: AN3 010: Reserved 011: Reserved 100: VDACO 101: AVSS 110: VCM

111: VTSN - Temperature sensor negative output

These bits are used to select the negative input, IN2. If the IN2 input is selected as a single end input, the VCM voltage must be selected as the positive input on IN1 for single end input applications. It is recommended that when the VTSN signal is selected as the negative input, the VTSP signal should be selected as the positive input for proper operations.

Bit 2~0 CHSP2~CHSP0: Positive input end IN1selection

000: AN0 001: AN2 010: Reserved 011: Reserved 100: VDACO 101: Reserved 110: VCM

111: VTSP – Temperature sensor positive output

These bits are used to select the positive input, IN1. If the IN1 input is selected as a single end input, the VCM voltage must be selected as the negative input on IN2 for single end input applications. It is recommended that when the VTSP signal is selected as the positive input, the VTSN signal should be selected as the negative input for proper operations.

Rev. 1.00 12 January 04, 2018

Analog to Digital Converter Operation

The analog to digital converter received a differential analog signal from the PGA output and converts in using a Delta Sigma converter into a 24-bit digital value. The overall operation of the converter is controlled by a series of control registers.

• ADCR0 Register - 07H

Bit	7	6	5	4	3	2	1	0
Name	ADRST	ADSLP	ADOFF	ADOR3	ADOR2	ADOR1	ADOR0	VREFS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	1	0	0	0	0	0

Bit 7 ADRST: A/D converter software reset enable control

0: Disable

1: Enable

This bit is used to reset the A/D converter internal digital SINC filter. This bit is set low for A/D normal operations. However, if set high, the internal digital SINC filter will be reset and the current A/D converted data will be aborted. A new A/D data conversion process will not be initiated until this bit is set low again.

Bit 6 ADSLP: A/D converter sleep mode enable control

0: Normal mode

1: Sleep mode

This bit is used to determine whether the A/D converter enters the sleep mode or not when the A/D converter is powered on by setting the ADOFF bit low. When the A/D converter is powered on and the ADSLP bit is low, the A/D converter will operate normally. However, the A/D converter will enter the sleep mode if the ADSLP bit is set high as the A/D converter has been powered on. The whole A/D converter circuit will be switched off except the PGA and internal Bandgap circuit to reduce the power consumption and VCM start-up stable time.

Bit 5 ADOFF: A/D converter module power on/off control

0: Power on

1: Power off

This bit controls the power of the A/D converter module. This bit should be cleared to zero to enable the A/D converter. If the bit is set high then the A/D converter will be switched off reducing the device power consumption. As the A/D converter will consume a limited amount of power, even when not executing a conversion, this may be an important consideration in power sensitive battery powered applications.

It is recommended to set the ADOFF bit high before the device enters the IDLE/SLEEP mode for saving power. Setting the ADOFF bit high will power down the A/D converter module regardless of the ADSLP and ADRST bit settings.

Bit 4~1 ADOR3~ADOR0: A/D conversion oversampling rate selection

0000: Oversampling rate OSR=16384

0001: Oversampling rate OSR=8192

0010: Oversampling rate OSR=4096

0011: Oversampling rate OSR=2048

0100: Oversampling rate OSR=1024

0101: Oversampling rate OSR=512

0110: Oversampling rate OSR=256

0111: Oversampling rate OSR=128

1xxx: Oversampling rate OSR=32768

Bit 0 **VREFS**: A/D converter reference voltage pair selection

0: Internal reference voltage pair – V_{CM} & AV_{SS}

1: External reference voltage pair – V_{REFP} & V_{REFN}

• ADCR1 Register - 08H

Bit	7	6	5	4	3	2	1	0
Name	FLMS2	FLMS1	FLMS0	VRBUFN	VRBUFP	ADCDL	EOC	_
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
POR	0	0	0	0	0	0	0	_

Bit 7~5 FLMS2~FLMS0: A/D converter clock divided ratio selection

000: $f_{ADCK} = f_{MCLK}/30$, N=30 010: $f_{ADCK} = f_{MCLK}/12$, N=12

Others: Reserved

Bit 4 VRBUFN: A/D converter negative reference voltage input (VRN) buffer control

0: Disable input buffer and enable bypass function

1: Enable input buffer and disable bypass function

Bit 3 **VRBUFP**: A/D converter positive reference voltage input (VRP) buffer control

0: Disable input buffer and enable bypass function

1: Enable input buffer and disable bypass function

Bit 2 ADCDL: A/D converted data latch function enable control

0: A/D converted data updated

1: A/D converted data not updated

If the A/D converted data latch function is enabled, the latest converted data value will be latched and not be updated by any subsequent converted results until this function is disabled. Although the converted data is latched into the data registers, the A/D converter circuits remain operational and EOC flag will not change state. It is recommended that this bit should be set high before reading the converted data in the ADRL, ADRM and ADRH registers. After the converted data has been read out, the bit can then be cleared to zero to disable the A/D converter data latch function and allow further conversion values to be stored. In this way, the possibility of obtaining undesired data during A/D converter conversions can be prevented.

Bit 1 **EOC**: End of A/D conversion flag

0: A/D conversion in progress

1: A/D conversion ended

This flag will be automatically set high by the hardware when a conversion process has completed but must be cleared by the application software.

Bit 0 Unimplemented, read as "0"

Rev. 1.00 14 January 04, 2018

A/D Data Rate Definition

The Delta Sigma ADC data rate can be calculated by the equation list below.

$$\begin{aligned} \text{Data Rate} &= f_{\text{ADCK}} / \left(2 \times \text{OSR}\right) \\ &= \left(f_{\text{MCLK}} / N\right) / \left(2 \times \text{OSR}\right) \\ &= f_{\text{MCLK}} / \left(N \times 2 \times \text{OSR}\right) \end{aligned}$$

fadck: fmclk/N

 f_{MCLK} : f_{SYS} or $f_{SYS}/2/(ADCK+1)$ using the ADCK bit

N: 30 or 12 determined by the FLMS bit field.

OSR: Oversampling rate determined by the ADOR field.

For example; if a data rate of 10Hz is desired. An f_{MCLK} clock source with a frequency of 4.9152MHz ADC can be selected. Then set the FLMS field to "000" to obtain an "N" equal to 30. Finally, set the ADOR field to "0001" to select an oversampling rate equal to 8192. Therefore, the Data Rate = $4.9152MHz/(30\times2\times8192)=10Hz$.

Note that the A/D converter has a notch rejection function for an A/C power supply with a frequency of 50Hz or 60Hz when the data rate is equal to 10Hz.

A/D Converter Clock Source

The clock source for the A/D converter should be typically fixed at a value of 4.9152 MHz, which originates from the system clock f_{SYS} . This can be chosen to be either f_{SYS} or a subdivision of f_{SYS} . The division ratio value is determined by the ADCK4~ADCK0 bits in the ADCS register to obtain a 4.9152 MHz clock source for the ADC.

Internal OSC=4.9152MHz, $f_{ADCK}=f_{MCLK}/30$.

Data Rate (Hz)	ADCK4~0	ADOR3~0	FLMS2~0
10	11111	0001	000

Internal OSC=4.9152MHz, $f_{ADCK}=f_{MCLK}/12$.

Data Rate (Hz)	ADCK4~0	ADOR3~0	FLMS2~0
25	11111	0001	010

• ADCS Register - 09H

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	ADCK4	ADCK3	ADCK2	ADCK1	ADCK0
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
POR	_	_	_	0	0	0	0	0

Bit 7~5 Unimplemented, read as "0"

Bit 4~0 ADCK4~ADCK0: A/D converter clock source f_{MCLK} divided ratio selection

 $00000 \sim 11110$: $f_{MCLK} = f_{SYS}/2/(ADCK[4:0] + 1)$

11111: $f_{MCLK} = f_{SYS}$

Rev. 1.00 15 January 04, 2018

A/D Operating Modes

The A/D Converter has four operating modes, which are the Normal mode, Power down mode, Sleep mode and Reset mode. These modes are controlled by a combination of the ADOFF, ADSLP and ADRST bits in the ADCR0 register as shown in the accompanying table. The ADOFF controls the overall on/off condition and if high will power down the A/D converter to reduce power. When the ADOFF bit is high, the converter will be powered on and the ADSLP bit will determine if the converter is in the normal operating mode or in the sleep mode.

ADOFF	ADSLP	ADRST	Operating Mode	Description
1	х	х	Power down mode	Bandgap off, PGA off, ADC off, Temperature sensor off, VRN/VRP buffer off, SINC filter off
0	1	х	Sleep mode	Bandgap on, PGA on, ADC off, Temperature sensor off, VRN/VRP buffer off, SINC filter on
0	0	0	Normal mode	Bandgap on, PGA on, ADC on, Temperature sensor on/off, VRN/VRP buffer on/off, SINC filter on
0	0	1	Reset mode	Bandgap on, PGA on, ADC on, Temperature sensor on/off, VRN/VRP buffer on/off, SINC filter Reset

"x" unknown

A/D Operating Mode Summary

Notes: 1. The VCM generator can be switched on or off by configuring the VCMEN bit.

- 2. The Temperature sensor can be switched on or off by configuring the CHSN[2:0] or CHSP[2:0] bits
- 3. The VRN buffer can be switched on or off by configuring the VRBUFN bit while the VRP buffer can be switched on or off by configuring the VRBUFP bit

A/D Conversion Process

To enable the A/D Converter, the first step is to disable the ADC power down and sleep mode by clearing the ADOFF and ADSLP bits to make sure the A/D Converter is powered up. The ADRST bit in the ADCR0 register is used to start and reset the A/D converter after power on. To set ADRST bit from low to high and then low again, an analog to digital converted data in SINC filter will be initiated. After this setup is complete, the A/D Converter is ready for operation. These three bits are used to control the overall start operation of the internal analog to digital converter.

The EOC bit in the ADCR1 register is used to indicate when the analog to digital conversion process is complete. This bit will be automatically set to "1" by the Hardware after a conversion cycle has ended. The ADC converted data will be updated continuously by new converted data. If the ADC converted data latch function is enabled, the latest converted data will be latched and the following new converted data will be discarded until this data latch function is disabled.

The differential reference voltage supply to the A/D Converter can be supplied from either the internal power supply, VCM and AVSS, or from an external reference source supplied on pins VREFP and VREFN. The desired selection is made using the VREFS bit in the ADCR0 register.

Summary of A/D conversion steps

- Step 1
 Enable the power VCM for PGA and ADC.
- Step 2 Select the PGA, ADC, reference voltage gains by PGAC0 register
- Step 3
 Select the PGA settings for input connection, VCM voltage level and buffer option by PGAC1 register
- Step 4
 Select the required A/D conversion clock source 4.9152MHz by correctly programming bits ADCK4~ADCK0 in the ADCS register.
- Step 5
 Select output data rate by cofiguring the ADOR[2:0] bits in the ADCR0 register and FLMS[2:0] bits in the ADCR1 register.
- Step 6
 Select which channel is to be connected to the internal PGA by correctly programming the CHSP2~CHSP0 and CHSN2~CHSN0 bits which are also contained in the PGACS register.
- Step 7
 Release the power down mode and sleep mode by clearing the ADOFF and ADSLP bits in ADCR0 register.
- Step 8
 Reset the A/D by setting the ADRST to high in the ADCR0 register and clearing this bit to zero to release reset status.

• Step 9

To check when the analog to digital conversion process is complete, the EOC bit in the ADCR1 register can be polled. The conversion process is complete when this bit goes high. When this occurs the A/D data registers ADRL, ADRM and ADRH can then be read to obtain the conversion value.

A/D Transfer Function

As the converted value is 24-bits its full-scale converted digitised value has a decimal value of 8388607 to -8388608. The converted data format is formed by a two's complement binary value. The MSB of the converted data is the signed bit. Since the full-scale analog input value is equal to the amplified value of the VCM or differential reference input voltage, ΔVR_I , selected by the VREFS bit in ADCR0 register, this gives a single bit analog input value of ΔVR_I divided by 8388608.

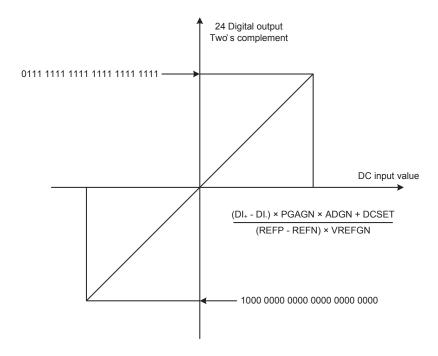
The A/D Converter input voltage value can be calculated using the following equation:

$$\Delta SI_I = (PGAGN \times ADGN \times \Delta DI\pm) + DCSET$$

 $\Delta VR_I = VREFGN \times \Delta VR \pm$
 $ADC_Conversion_Data = (\Delta SI_I / \Delta VR_I) \times K$

Where K is equal to 2^{23} .

Notes: 1. The PGAGN, ADGN, VREFGN values are determined by the PGS, AGS, VGS control bits


- 2. ΔSI_I is the differential input signal after amplification and offset adjustment
- 3. PGAGN: Programmable Gain Amplifier gain
- 4. ADGN: A/D Converter gain
- 5. VREFGN: Reference voltage gain
- 6. ΔDI±: Differential input signal derived from external channels or internal signals
- 7. DCSET: Offset voltage
- 8. ΔVR±: Differential reference voltage
- 9. ΔVR_I: Differential reference input voltage after amplification

Due to the digital system design of the converter, the maximum A/D converted value is 8388607 and the minimum value is -8388608, therefore the centre value is 0. The ADC_Conversion_Data equation illustrates this range of converted data variation.

Converted Data 2's compliment Hex value	Decimal Value
0x7FFFF	8388607
0x800000	-8388608

A/D Conversion Data Range

The following diagram shows the relationship between the DC input value and the ADC converted data which is presented in Two's Complement format.

A/D Converted Data

The A/D converter data is stored in three individual registers, ADRL, ADRM and ADRH. The converted data is related to the input voltage and the PGA selection setup and is generated in a two's complement binary code formal. The length of this output code is 24 bits and the MSB is a signed bit. When the MSB is "0", this indicates that the input is "positive", while if the MSB is "1", this indicates that the input is "negative". The maximum value is 8388607 and the minimum value is -8388608. If the input signal exceeds the maximum value, the converted data is limited to 8388607, and if the input signal is less than the minimum value, the converted data is limited to -8388608.

ADRL Register – 04H

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R	R	R	R	R	R	R	R
POR	Х	Х	Х	Х	Х	Х	Х	х

Bit 7~0 A/D conversion data register bit 7~bit 0

• ADRM Register - 05H

Bit	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8
R/W	R	R	R	R	R	R	R	R
POR	х	х	Х	Х	Х	х	Х	Х

Bit 7~0 A/D conversion data register bit 15~bit 8

• ADRH Register - 06H

Bit	7	6	5	4	3	2	1	0
Name	D23	D22	D21	D20	D19	D18	D17	D16
R/W	R	R	R	R	R	R	R	R
POR	Х	Х	Х	Х	Х	Х	Х	Х

Bit 7~0 A/D conversion data register bit 23~bit 16

Converting the Digital Value to a Voltage

The analog voltage value can be recovered using the following equations:

If the MSB=0 for positive value converted data:

Input Voltage=
$$\frac{\text{(Converted data)} \times \text{LSB - DCSET}}{\text{PGA} \times \text{ADGN}}$$

If the MSB=1 for negative converted data:

$$Input\ voltage = \frac{(Two's_complement_of_Converted_data) \times LSB - DCSET}{PGA \times ADGN}$$

Note: Two's complement=One's complement +1

Rev. 1.00 18 January 04, 2018

Temperature Sensor

The device includes a fully internal temperature sensor to allow for compensation due to temperature effects. By selecting the PGA input channels to VTSP and VTSN signals, the A/D Converter can **obtain temperature informa**tion and then use the result to compensate the A/D converted data to minimise the effects of temperature.

Effective Number of Bits - ENOB

Although the analog to digital converter is a 24-bit type various factors such as the PGA gain and the data rate affect the actual number of effective number of converted bits. To determine the number of effective bits the following tables should be consulted.

• Conditions: AVDD=3.3V, VREF=1.25V, FLMS[2:0]=000

Data Rate	PGA Gain										
(SPS)	1	2	4	8	16	32	64	128			
5	19.7	19.8	19.6	19.7	19.7	19.6	19.2	18.6			
10	19.4	19.3	19.3	19.3	19.3	19.1	18.7	18.1			
20	19.0	18.8	18.7	18.9	18.8	18.6	18.2	17.5			
40	18.4	18.3	18.3	18.3	18.3	18.1	17.7	17.0			
80	18.1	17.9	18.0	17.9	17.9	17.6	17.2	16.5			
160	17.6	17.4	17.4	17.4	17.3	17.1	16.6	15.9			
320	15.8	15.8	15.9	15.8	15.9	15.9	15.8	15.3			
640	14.1	14.0	14.0	14.1	14.1	14.0	14.1	14.4			

• Conditions: AV_{DD}=3.3V, V_{REF}=1.25V, FLMS[2:0]=010

Data Rate	PGA Gain										
(SPS)	1	2	4	8	16	32	64	128			
12.5	19.4	18.8	18.7	18.8	18.8	18.7	18.9	18.1			
25	19.0	18.3	18.3	18.3	18.3	18.2	17.9	17.3			
50	18.5	17.8	17.8	17.8	17.9	17.7	17.4	16.8			
100	18.2	18.2	18.1	18.2	18.1	17.8	17.2	16.4			
200	17.9	17.8	17.8	17.8	17.6	17.3	16.7	15.9			
400	17.4	17.2	17.2	17.2	17.1	16.8	16.2	15.4			
800	16.2	16.1	16.1	16.1	16.1	15.9	15.5	14.8			
1600	14.5	14.5	14.5	14.4	14.5	14.5	14.3	14.0			

Rev. 1.00 19 January 04, 2018

Programming Considerations

During microcontroller operations where the A/D converter is not being used, the A/D internal circuitry can be switched off to reduce power consumption, by setting bit ADOFF high in the ADCR0 register. When this happens, the internal A/D converter circuits will not consume power irrespective of what analog voltage is applied to their input lines.

When writing to the DAC registers, DAH and DAL, note that this must be carried out in a special sequence. This is because when writing to the DAL register, the data is only written into a shadow buffer register. Only when data is written to the DAH register will data in the shadow buffer be transferred to the DAL register. Therefore when writing data to the DAC registers first write data to the DAL register and then to the DAH register.

External Interface Communication

The device communicates with external hardware using its internal I²C interface. Originally developed by Philips, the I²C interface is a two line low speed serial interface for synchronous serial data transfer. With the advantage of only two lines for communication, a relatively simple communication protocol and the ability to accommodate multiple devices on the same bus has made it an extremely popular interface type for many applications.

I²C Interface Operation

The I²C serial interface is a two line interface, a serial data line, SDA, and serial clock line, SCL. As many devices may be connected together on the same bus, their outputs are both open drain types. For this reason it is necessary that external pull-high resistors are connected to these outputs. Note that no chip select line exists, as each device on the I²C bus is identified by a unique address which will be transmitted and received on the I²C bus. When two devices communicate with each other on the bidirectional I²C bus, one is known as the master device and one as the slave device. Both master and slave can transmit and receive data, however, it is the master device

that has overall control of the bus, and it is only the master that will drive the SCL clock line. This device only operates in the slave mode, and will therefore only operate in response to the master. There are two methods for this device to transfer data on the I²C bus, the slave transmit mode and the slave receive mode.

Several registers control the overall operation of the I²C bus interface.

I²C Address and Register Write/Read

I²C Address Selection

As this device only operates as a slave, and as it may be connected to a common I²C bus along with other I²C devices, it will require a specific address for it to be communicated to by the external master. The address of the device is setup using the A1 and A2 pins which allows for 4 different address values.

If pin XTSB is 0, pin OSC1/A1 is functioned as OSC1, OSC2/A2 is functioned as OSC2, and I²C address is 0xA0.

If pin XTSB is 1, pin OSC1/A1 is functioned as A1, OSC2/A2 is functioned as A2, and I²C address depends on [A2:A1],

$$00 \rightarrow 0xA0$$
, $01 \rightarrow 0xB0$
 $10 \rightarrow 0xC0$, $11 \rightarrow 0xD0$

Note: 8-pin package I²C address is fixed at 0xD0.

XTSB Pin	OSC2/A2	OSC1/A1	I ² C Address
0	OSC2	OSC1	0xA0
1	A2	A1	$00 \rightarrow 0xA0$ $01 \rightarrow 0xB0$ $10 \rightarrow 0xC0$ $11 \rightarrow 0xD0$

Rev. 1.00 20 January 04, 2018

• SIMC0 Register - 0EH

Bit	7	6	5	4	3	2	1	0
Name	SIMS	_	_	_	SIMDEB1	SIMDEB0	_	_
R/W	R/W	_	_	_	R/W	R/W	_	_
POR	0	_	_	_	0	0	_	_

Bit 7 SIMS

0: Normal operation

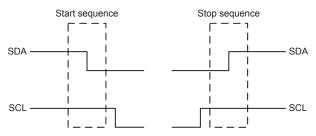
1: Results in unpredictable behavior

This bit must be kept at a zero value for normal operation

Bit 6~4 Unimplemented, read as "0"

Bit 3~2 **SIMDEB1~SIMDEB0**: I²C debounce time selection

00: No debounce


01: 2 system clock debounce 10: 4 system clock debounce

11: 4 system clock debounce

Bit 1~0 Unimplemented, read as "0"

Start and Stop Operations

Normally the SDA line can only change when the SCL line is low. There are two exceptions however and that is for the Start and Stop operations, where the SCL line will be forced high by the master and the SDA line will change sate. As the diagram shows when the SCL line is high, a high to low SDA line transition indicates a start operation and a low to high SDA line transition indicates a stop operation.

• I2C Bus Data Transfer

Data is transferred on the I²C bus in 8 bit packets, first transmitting the MSB which is the most significant bit and lastly the LSB bit, the least significant bit. When the data has been setup on the SDA line, the SCL line then generates a high pulse to latch the data. When the SCL line is high the SDA line is not permitted to change state. After 8-bits have been transmitted, the device will then send a 9th bit which is the acknowledge bit. Therefore in total there are 9 bits transmitted and subsequently 9 SCL clock pulses to transfer each 8-bits or byte of data. When the receiving device sends back a low ACK bit, this is to acknowledge that it has received the 8-bits of data and is ready to receive another byte. If a high ACK bit is sent back, this indicates that it is unable to receive any further data and the master should then send a stop sequence.

I²C Register Write/Read

Write Process

Bit	7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0		
Start		De	vice	e Ad	ldre	ss		Write	ACK		R	legi	ster	Add	dres	s		ACK			Re	gist	er D	ata			ACK	Stop

Read Process

Bit	7 6 5 4 3 2 1	0		7 6	5	5 4	1 3	3	2	1	0			7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0		
Start	Device Address	Write	ACK	Re	egi	ste	er A	١d٥	dre	ess	3	ACK	Start	D	ev)	ice	e A	dd	lre	ss	Read	ACK		F	Reç	jist	er	Da	ata	l	ACK	Sto

• I2C Bus Start Signal

The START signal can only be generated by the master device connected to the I²C bus and not by the slave device. This START signal will be detected by all devices connected to the I²C bus. A START condition occurs when a high to low transition on the SDA line takes place when the SCL line remains high.

Slave Address

The transmission of a START signal by the master will be detected by all devices on the I²C bus. To determine which slave device the master wishes to communicate with, the address of the slave device will be sent out immediately following the START signal.

I²C Bus Slave Address Acknowledge Signal

After the master has transmitted a calling address, any slave device on the I²C bus, whose own internal address matches the calling address, must generate an acknowledge signal. The acknowledge signal will inform the master that a slave device has accepted its calling address. If no acknowledge signal is received by the master then a STOP signal must be transmitted by the master to end the communication.

• I2C Bus Data and Acknowledge Signal

The transmitted data is 8-bits wide and is transmitted after the slave device has acknowledged receipt of its slave address. The order of serial bit transmission is the MSB first and the LSB last. After receipt of 8-bits of data, the receiver must transmit an acknowledge signal, level 0, before it can receive the next data byte. If the slave transmitter does not receive an acknowledge bit signal from the master receiver, then the slave transmitter will release the SDA line to allow the master to send a STOP signal to release the I²C Rus

I²C Timeout Function

The I²C interface includes a timeout function which is controlled by a single register. This register sets the overall enable/disable function as well as the timeout value in system clock units. Determining whether the I²C bus has timed out is implemented by reading the SIMTOF bit. This bit will be automatically set high when the I²C bus times out, but needs to be cleared manually by the application program.

• SIMTOC Register - 10H

Bit	7	6	5	4	3	2	1	0
Name	SIMTOEN	SIMTOF	SIMTOS5	SIMTOS4	SIMTOS3	SIMTOS2	SIMTOS1	SIMTOS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

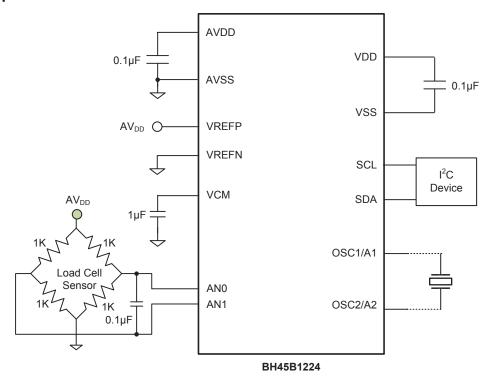
Bit 7 **SIMTOEN**: I²C time-out control

0: Disable 1: Enable

Bit 6 **SIMTOF**: I²C time-out flag

0: Not occurred1: Occurred

The bit is set by time-out function and is cleared by the application program.


Bit 5~0 SIMTOS5~SIMTOS0: I²C time-out selection time

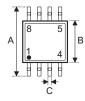
The I²C Time-Out clock source is $f_{SUB}/32$. ($f_{SUB}=f_{SYS}/128$)

The I²C Time-Out time is ([SIMTOS5:SIMTOS0]+1) \times (32/f_{SUB})

Application Circuits

Package Information

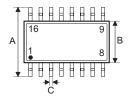
Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>.

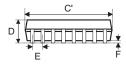

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

Rev. 1.00 24 January 04, 2018

8-pin SOP (150mil) Outline Dimensions


Cumbal		Dimensions in inch	
Symbol	Min.	Nom.	Max.
А	_	0.236 BSC	_
В	_	0.154 BSC	_
С	0.012	_	0.020
C'	_	0.193 BSC	_
D	_	_	0.069
E	_	0.050 BSC	_
F	0.004	_	0.010
G	0.016	_	0.050
Н	0.004	_	0.010
α	0°	_	8°


Complete		Dimensions in mm	
Symbol	Min.	Nom.	Max.
A	_	6.00 BSC	_
В	_	3.90 BSC	_
С	0.31	_	0.51
C'	_	4.90 BSC	_
D	_	_	1.75
E	_	1.27 BSC	_
F	0.10	_	0.25
G	0.40	_	1.27
Н	0.10	_	0.25
α	0°	_	8°

Rev. 1.00 25 January 04, 2018

16-pin NSOP (150mil) Outline Dimensions

Symbol		Dimensions in inch	
Symbol	Min.	Nom.	Max.
A	_	0.236 BSC	_
В	_	0.154 BSC	_
С	0.012	_	0.020
C'	_	0.390 BSC	_
D	_	_	0.069
Е	_	0.050 BSC	_
F	0.004	_	0.010
G	0.016	_	0.050
Н	0.004	_	0.010
α	0°	_	8°

Cumbal		Dimensions in mm	
Symbol	Min.	Nom.	Max.
A	_	6.0 BSC	_
В	_	3.9 BSC	_
С	0.31	_	0.51
C'	_	9.9 BSC	_
D	_	_	1.75
E	_	1.27 BSC	_
F	0.10	_	0.25
G	0.40	_	1.27
Н	0.10	_	0.25
α	0°	_	8°

Rev. 1.00 26 January 04, 2018

Copyright[©] 2018 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Rev. 1.00 27 January 04, 2018