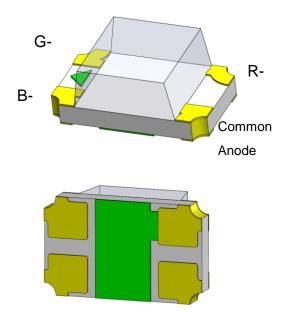


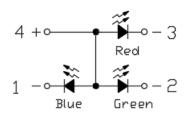
BGRP201208-PCTC3 Multi-Wavelength SMD Type

Features

- Top view 0805 package
- Wide viewing angle
- BGR individual control
- High reliability
- RoHS compliance


Applications

- Optical indicator.
- Switch and Symbol Display.


Description

The BGRP201208-PCTC3 is a high brightness device designed for demanding applications in efficiency and reduced space. An ideal device in emphasizing visual effects, advertisement, decoration as well as general backlighting needs.

Package Outline

Schematic

Absolute Maximum Rating at 25°C

Symbol	Parameters		ings	Units	Notes
lF	Continuous Forward Current	2	5	mA	
IFP	Peak Forward Current	6	0	mA	1
V _R	Reverse Voltage	Ę	5	V	
Topr	Operating Temperature	-40 ~	-40 ~ +85		
T _{stg}	Storage Temperature	-40 ~	+100	0C	
T _{sol}	Soldering Temperature	260		0 C	2
		В	95		
PD	Power Dissipation at(or below) 25°C Free Air Temperature	G	95	mW	
		R	60		

Electro-Optical Characteristics TA = 25°C (unless otherwise specified)

Optical Characteristics(Blue)

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
lv	Luminous Intensity	I⊧=5mA	36	-	90	mcd	3
λ_{D}	Dominant Wavelength	I⊧=5mA	465	-	475	nm	4
θ1/2	Angle of Half Intensity	I⊧=5mA	-	±65	-	deg	

Electrical Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward Voltage	I⊧=5mA	2.4	-	3.1	V	
IR	Reverse Current	V _R =5V	-	-	1	μA	

BGRP201208-PCTC3

Multi-Wavelength SMD Type

Optical Characteristics(Green)

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
lv	Luminous Intensity	I⊧=5mA	180	-	450	mcd	3
λD	Dominant Wavelength	I⊧=5mA	520	-	535	nm	4
θ1/2	Angle of Half Intensity	I⊧=5mA	-	±65	-	deg	

Electrical Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward Voltage	I⊧=5mA	2.3	-	3.0	V	
IR	Reverse Current	V _R =5V	-	-	1	μA	

Optical Characteristics(Red)

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
lv	Luminous Intensity	I⊧=5mA	14.5	-	36.0	mcd	3
λD	Dominant Wavelength	I⊧=5mA	-	633	-	nm	
θ1/2	Angle of Half Intensity	I⊧=5mA	-	±65	-	deg	4

Electrical Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward Voltage	I⊧=5mA	1.6	-	2.1	V	
I _R	Reverse Current	V _R =5V	-	-	1	μA	

Notes:

1. IFP Conditions--Pulse Width $\leq 100 \mu s$ and Duty $\leq 10\%$.

2. Soldering time ≤ 10 seconds.

BGRP201208-PCTC3

Multi-Wavelength SMD Type

3.Bin Range of Luminous Intensity

		Blue		
Bin Code	Min	Max	Unit	Condition
NA	36	57	mad	L
PA	57	90	mcd	l⊧=5mA
		Green		
S	180	285	mad	I⊧=5mA
Т	285	450	mcd	IF=5MA
		Red		
LA	14.5	22.5	mad	I⊧=5mA
MA	22.5	36.0	mcd	Amc=₁

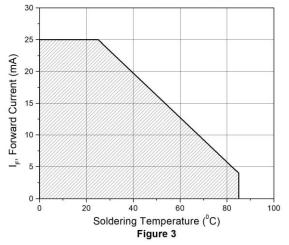
Tolerance of: Luminous Intensity $\pm 10\%$

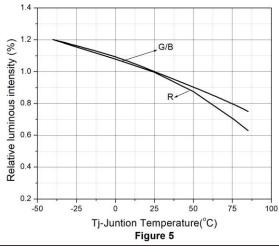
4.Bin Range of Dominant Wavelength(Blue)

Bin Code	Min	Max	Unit	Condition
A6	465	470		I 5 m A
A7	470	475	nm	I _F =5mA

5.Bin Range of Dominant Wavelength(Green)

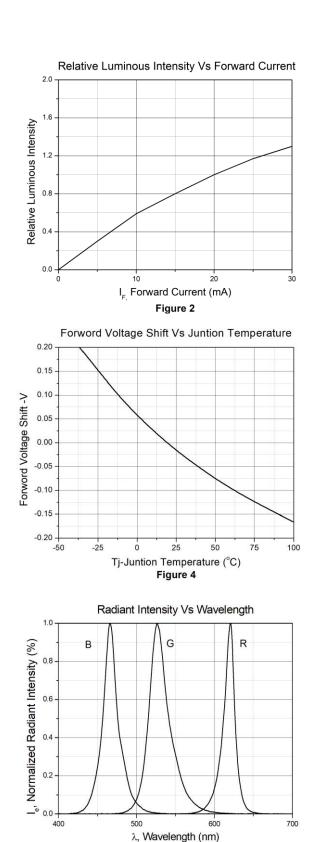
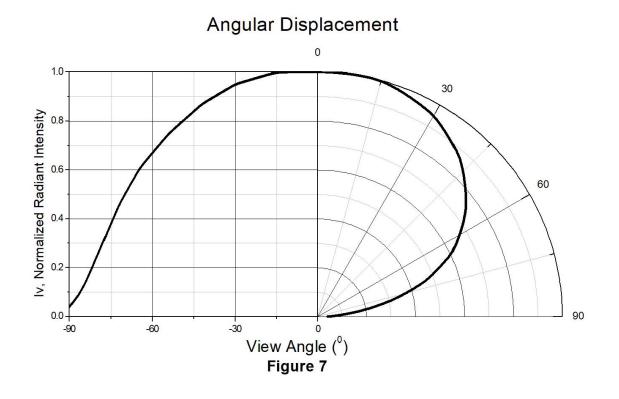
Bin Code	Min	Max	Unit	Condition
A5	520	525		
A6	525	530	nm	I⊧=5mA
A7	530	535		

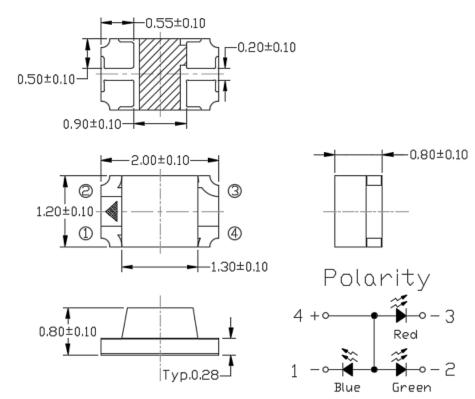

Tolerance of Dominant Wavelength: ±1nm.


Typical Characteristic Curves

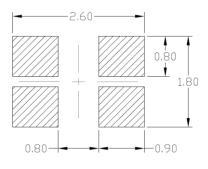
Forward Current Vs Soldering Temperature

Relative Luminous Intensity Vs Juntion Temperature


Figure 6

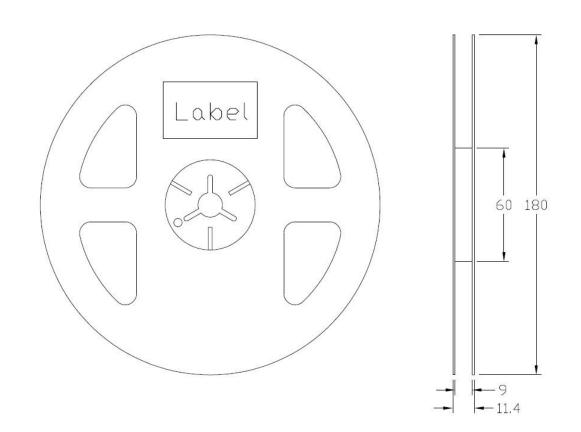
Typical Characteristic Curves



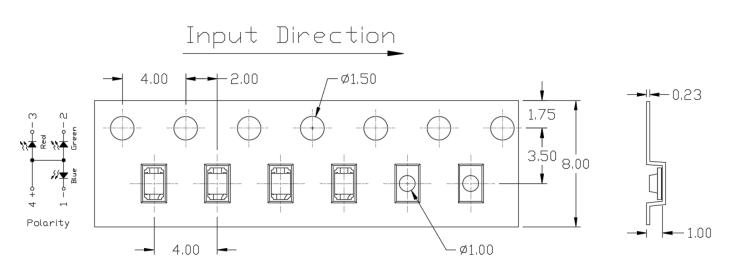
Package Dimension All dimensions are in mm, unless otherwise stated

Note: Tolerance unless mentioned is ± 0.1 mm.

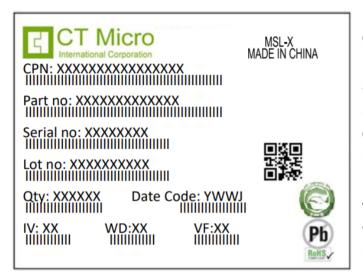
Recommended Soldering Mask All dimensions are in mm, unless otherwise stated


Note: Tolerance unless mentioned is ±0.1mm.

Ordering Information


Part Number	Description	Quantity
BGRP201208-PCTC3	Tape & Reel	3000 pcs

Reel Dimension All dimensions are in mm, unless otherwise stated

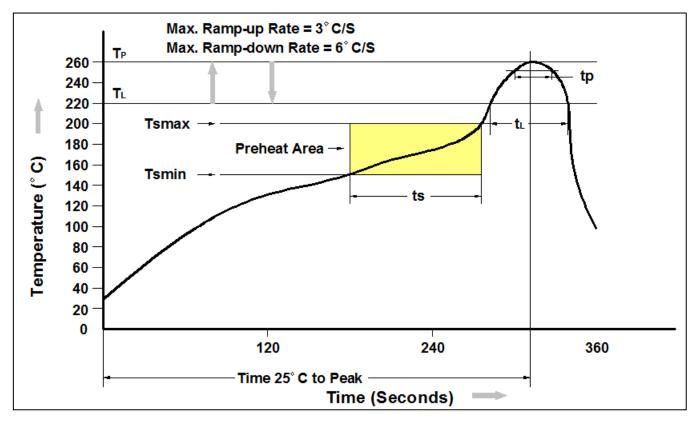

Tape Dimension All dimensions are in mm, unless otherwise stated

Note: Tolerance unless mentioned is ± 0.1 mm.

Label Form Specification

CPN : Customer Part Number Part no: CTM Production Number Serial no: Production Number Lot no: Lot number Q'ty: Packing Quantity Date Code: Manufacture Date IV : Bin Code of Luminous Intensity WD : Bin Code of Dominant Wavelength VF : Bin Code of Forward Voltage MADE IN CHINA: Production Place

Storage Condition


- 1. Do not open moisture proof bag before the products are ready to use.
- 2. The moisture barrier bag should be stored at 30°C and 90%R.H. max. before opening. Shelf life of non-opened bag is 12 months after the bag sealing date.
- 3. After opening the moisture barrier bag floor life is 1 year at 30°C/60%RH. max. Unused LEDs should be resealed into moisture barrier bag. (Refer to J-STD-020 Standard)
- 4. If the moisture absorbent material has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the J-STD-033 Standard conditions.

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t∟ to t⊳)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T_P to T_L)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.