BFU790F NPN wideband silicon germanium RF transistor

Rev. 1 — 22 April 2011

Product data sheet

1. Product profile

1.1 General description

NPN silicon germanium microwave transistor for high speed, low noise applications in a plastic, 4-pin dual-emitter SOT343F package.

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

1.2 Features and benefits

- Low noise high linearity microwave transistor
- 110 GHz f_T silicon germanium technology
- High maximum output power at 1 dB compression 20 dBm at 1.8 GHz

1.3 Applications

- High linearity applications
- Medium output power applications
- Wi-Fi / WLAN / WiMAX
- ZigBee
- LTE, cellular, UMTS

NPN wideband silicon germanium RF transistor

1.4 Quick reference data

Table 1. Quick reference data

Parameter	Conditions		Min	Тур	Мах	Unit
collector-base voltage	open emitter		-	-	10	V
collector-emitter voltage	open base		-	-	2.8	V
emitter-base voltage	open collector		-	-	1.0	V
collector current			-	50	100	mA
total power dissipation	$T_{sp} \le 90 \ ^{\circ}C$	[1]	-	-	234	mW
DC current gain	$ I_C = 10 \text{ mA}; V_{CE} = 2 \text{ V}; $		235	410	585	
collector-base capacitance	V _{CB} = 2 V; f = 1 MHz		-	514	-	fF
transition frequency	I_{C} = 100 mA; V_{CE} = 1 V; f = 2 GHz; T_{amb} = 25 °C		-	25	-	GHz
output third-order intercept point	I_{C} = 30 mA; V_{CE} = 2.5 V; f = 1.8 GHz; T_{amb} = 25 °C		-	33	-	dBm
maximum power gain	$\label{eq:lc} \begin{array}{l} I_C = 85 \text{ mA}; \ V_{CE} = 1 \ \text{V}; \\ f = 1.8 \ \text{GHz}; \ T_{amb} = 25 \ ^\circ\text{C} \end{array}$	[2]	-	19.5	-	dB
noise figure	$I_{C} = 20 \text{ mA; } V_{CE} = 2 \text{ V;}$ $\Gamma_{S} = \Gamma_{opt}; \text{ f} = 1.8 \text{ GHz;}$ $T_{amb} = 25 \text{ °C}$		-	0.40	-	dB
output power at 1 dB gain compression	$ I_{C} = 60 \text{ mA}; V_{CE} = 2.5 \text{ V}; Z_{S} = Z_{L} = 50 \Omega; f = 1.8 \text{ GHz}; T_{amb} = 25 \text{ °C} $		-	20	-	dBm
	 collector-base voltage collector-emitter voltage emitter-base voltage collector current total power dissipation DC current gain collector-base capacitance transition frequency output third-order intercept point maximum power gain noise figure output power at 1 dB 	collector-base voltageopen emittercollector-emitter voltageopen baseemitter-base voltageopen collectorcollector currenttotal power dissipation $T_{sp} \le 90 \ ^{\circ}C$ DC current gain $I_C = 10 \ ^{\circ}A; \ ^{\circ}V_{CE} = 2 \ ^{\circ}V; \ ^{\circ}T_j = 25 \ ^{\circ}C$ collector-base $V_{CB} = 2 \ ^{\circ}V; \ f = 1 \ ^{\circ}MHz$ collector-base $V_{CB} = 2 \ ^{\circ}V; \ f = 1 \ ^{\circ}MHz$ collector-base $V_{CB} = 2 \ ^{\circ}V; \ f = 1 \ ^{\circ}MHz$ collector-base $V_{CB} = 2 \ ^{\circ}V; \ f = 1 \ ^{\circ}MHz$ collector-base $V_{CB} = 2 \ ^{\circ}V; \ f = 1 \ ^{\circ}MHz$ collector-base $V_{CB} = 2 \ ^{\circ}V; \ f = 1 \ ^{\circ}MHz$ collector-base $V_{CB} = 2 \ ^{\circ}V; \ f = 1 \ ^{\circ}MHz$ collector-base $I_C = 30 \ ^{\circ}M; \ ^{\circ}V_{CE} = 1 \ ^{\circ}V; \ f = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C$ output third-order $I_C = 85 \ ^{\circ}M; \ ^{\circ}CE = 1 \ ^{\circ}V; \ f = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C$ noise figure $I_C = 20 \ ^{\circ}M; \ ^{\circ}V_{CE} = 2 \ ^{\circ}V; \ ^{\circ}T_{S} = \ ^{\circ}Opi; \ ^{\circ}f = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C$ output power at 1 \ ^{\circ}dB $I_C = 60 \ ^{\circ}M; \ ^{\circ}V_{CE} = 2.5 \ ^{\circ}V; \ ^{\circ}Z_{S} = Z_L = 50 \ ^{\circ}D; \ ^{\circ}C$	$\begin{tabular}{ c c c } \hline collector-base voltage & open emitter \\ \hline collector-emitter voltage & open base \\ \hline emitter-base voltage & open collector \\ \hline collector current \\ \hline total power dissipation & $T_{sp} \le 90\ ^\circ\C$ & [1] \\ \hline DC current gain & $I_C = 10\ mA;\ V_{CE} = 2\ V;\ T_j = 25\ ^\circ\C$ & $C_{j} = 2\ V;\ f = 1\ MHz$ & $C_{cpacitance} & $V_{CB} = 2\ V;\ f = 1\ MHz$ & $C_{cpacitance} & $V_{CB} = 2\ V;\ f = 1\ MHz$ & $C_{cpacitance} & $V_{CB} = 2\ V;\ f = 2\ GHz;\ T_{amb} = 25\ ^\circ\C$ & $output\ third-order & $I_C = 30\ mA;\ V_{CE} = 1\ V;\ f = 1.8\ GHz;\ T_{amb} = 25\ ^\circ\C$ & $maximum\ power\ gain & $I_C = 20\ mA;\ V_{CE} = 2\ V;\ F_S = \ \Gamma_{opt};\ f = 1.8\ GHz;\ T_{amb} = 25\ ^\circ\C$ & $output\ power\ at\ 1\ dB\ gain\ compression & $I_C = 60\ mA;\ V_{CE} = 2.5\ V;\ Z_S = Z_L = 50\ \Omega; & $Z_S = Z_L = 50\ \Omega;$ & $	collector-base voltageopen emitter-collector-emitter voltageopen base-emitter-base voltageopen collector-collector current-total power dissipation $T_{sp} \le 90 \ ^{\circ}C$ [1]DC current gain $I_C = 10 \ ^{\circ}A; \ ^{\vee}V_{CE} = 2 \ ^{\vee}V; \ ^{\top}T_{j} = 25 \ ^{\circ}C$ 235collector-base $V_{CB} = 2 \ ^{\vee}V; \ f = 1 \ ^{\vee}MHz$ -collector-base $V_{CB} = 2 \ ^{\vee}V; \ f = 1 \ ^{\vee}MHz$ -collector-base $V_{CB} = 2 \ ^{\vee}V; \ f = 1 \ ^{\vee}MHz$ -collector-base $V_{CB} = 2 \ ^{\vee}V; \ f = 1 \ ^{\vee}MHz$ -collector-base $V_{CB} = 2 \ ^{\vee}V; \ f = 1 \ ^{\vee}MHz$ -collector-base $V_{CB} = 2 \ ^{\vee}V; \ f = 2 \ ^{\vee}GHz; \ ^{\vee}T_{amb} = 25 \ ^{\circ}C$ -output third-order $I_C = 30 \ ^{\vee}A; \ ^{\vee}V_{CE} = 1 \ ^{\vee}V; \ f = 1.8 \ ^{\vee}GHz; \ ^{\vee}T_{amb} = 25 \ ^{\circ}C$ -maximum power gain $I_C = 85 \ ^{\vee}A; \ ^{\vee}CE = 1 \ ^{\vee}V; \ f = 1.8 \ ^{\vee}GHz; \ ^{\top}T_{amb} = 25 \ ^{\circ}C$ -noise figure $I_C = 20 \ ^{\vee}A; \ ^{\vee}CE = 2 \ ^{\vee}V; \ ^{\top}F_{S} = \ ^{\vee}Opt; \ ^{\vee}f = 1.8 \ ^{\vee}GHz; \ ^{\vee}T_{amb} = 25 \ ^{\circ}C$ -output power at 1 \ ^{\square}AB $I_C = 60 \ ^{\vee}A; \ ^{\vee}V_{CE} = 2.5 \ ^{\vee}V; \ ^{\vee}Z_{S} = Z_{L} = 50 \ ^{\vee}Q;$ -	collector-base voltageopen emittercollector-emitter voltageopen baseemitter-base voltageopen collectorcollector current-50total power dissipation $T_{sp} \le 90 \ ^{\circ}C$ [1]DC current gain $I_C = 10 \ ^{\circ}M; \ ^{\circ}V_{CE} = 2 \ ^{\circ}V; \ ^{T_j} = 25 \ ^{\circ}C$ 235410collector-base $V_{CB} = 2 \ ^{\circ}V; \ f = 1 \ ^{HHz}$ -514collector-base $V_{CB} = 2 \ ^{\circ}V; \ f = 1 \ ^{HHz}$ -514collector-base $V_{CB} = 2 \ ^{\circ}V; \ f = 2 \ ^{\circ}C$ -25collector-base $I_C = 100 \ ^{\circ}M; \ ^{\circ}V_{CE} = 1 \ ^{\circ}V; \ f = 2 \ ^{\circ}G \ ^{\circ}C$ -33transition frequency $I_C = 30 \ ^{\circ}M; \ ^{\circ}V_{CE} = 1 \ ^{\circ}V; \ f = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C \ ^{\circ}C$ 33maximum power gain $I_C = 85 \ ^{\circ}M; \ ^{\circ}V_{CE} = 1 \ ^{\circ}V; \ ^{\circ}F = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C \ ^{\circ}C \ ^{\circ}C \ ^{\circ}S = \Gamma_{opt}; \ ^{\circ}f = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C \ ^{\circ}C \ ^{\circ}S = \Gamma_{opt}; \ ^{\circ}f = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C \ ^{\circ}C \ ^{\circ}S = \Gamma_{opt}; \ ^{\circ}f = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C \ ^{\circ}C \ ^{\circ}S = \Gamma_{opt}; \ ^{\circ}f = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C \ ^{\circ}C \ ^{\circ}S = \Gamma_{opt}; \ ^{\circ}f = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C \ ^{\circ}C \ ^{\circ}S = \Gamma_{opt}; \ ^{\circ}f = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C \ ^{\circ}C \ ^{\circ}S = \Gamma_{opt}; \ ^{\circ}F = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C \ ^{\circ}C \ ^{\circ}S = \Gamma_{opt}; \ ^{\circ}F = 1.8 \ ^{\circ}GHz; \ ^{\circ}T_{amb} = 25 \ ^{\circ}C \ ^{\circ}C \ ^{\circ}S = \Gamma_{opt}; \ ^{\circ$	collector-base voltageopen emitter10collector-emitter voltageopen base2.8emitter-base voltageopen collector1.0collector current-50100total power dissipation $T_{sp} \le 90 \ ^{\circ}C$ 11-234DC current gain $I_C = 10 \ ^{\circ}A; \ V_{CE} = 2 \ ^{\circ}C$ 235410585collector-base $V_{CB} = 2 \ ^{\circ}C = 1 \ ^{\circ}MHz$ -514-collector-base $V_{CB} = 2 \ ^{\circ}C = 1 \ ^{\circ}C$ -33-transition frequency $I_C = 30 \ ^{\circ}A; \ ^{\circ}CE = 1 \ ^{\circ}C = 25 \ ^{\circ}C$ -33-output third-order $I_C = 30 \ ^{\circ}A; \ ^{\circ}CE = 1 \ ^{\circ}C = 25 \ ^{\circ}C$ -33-maximum power gain $I_C = 85 \ ^{\circ}A; \ ^{\circ}CE = 2 \ ^{\circ}C = 10 \ ^{\circ}C $

[1] T_{sp} is the temperature at the solder point of the emitter lead.

[2] $G_{p(max)}$ is the maximum power gain, if K > 1. If K < 1 then $G_{p(max)}$ = Maximum Stable Gain (MSG).

2. Pinning information

Table 2.	Discrete pinning		
Pin	Description	Simplified outline	Graphic symbol
1	emitter		_
2	base	3 4	4
3	emitter		2
4	collector		1 , 3
		2 1	mbb159

3. Ordering information

Type number	Package		
	Name	Description	Version
BFU790F	-	plastic surface-mounted flat pack package; reverse pinning; 4 leads	SOT343F

All information provided in this document is subject to legal disclaimers.

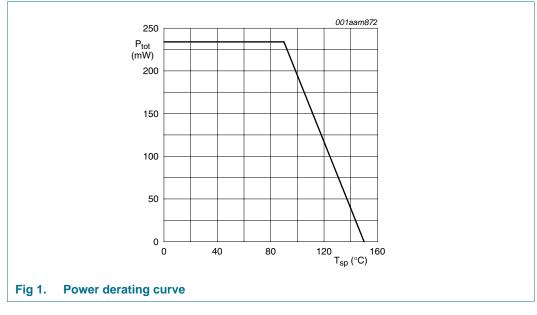
BFU790F

NPN wideband silicon germanium RF transistor

4. Marking

Table 4. Marking		
Type number	Marking	Description
BFU790F	D8*	* = p : made in Hong Kong
		* = t : made in Malaysia
		* = w : made in China

5. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CBO}	collector-base voltage	open emitter	-	10	V
V _{CEO}	collector-emitter voltage	open base	-	2.8	V
V_{EBO}	emitter-base voltage	open collector	-	1.0	V
I _C	collector current		-	100	mA
P _{tot}	total power dissipation	$T_{sp} \le 90 \ ^{\circ}C$	<u>[1]</u> -	234	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	150	°C

[1] T_{sp} is the temperature at the solder point of the emitter lead.

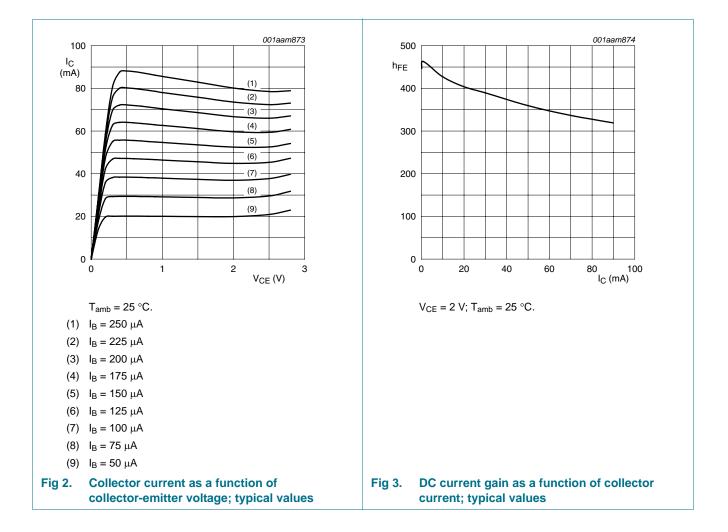
6. Thermal characteristics

Table 6.	Thermal characteristics			
Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-sp)}	thermal resistance from junction to solder point		256	K/W

BFU790F

NPN wideband silicon germanium RF transistor

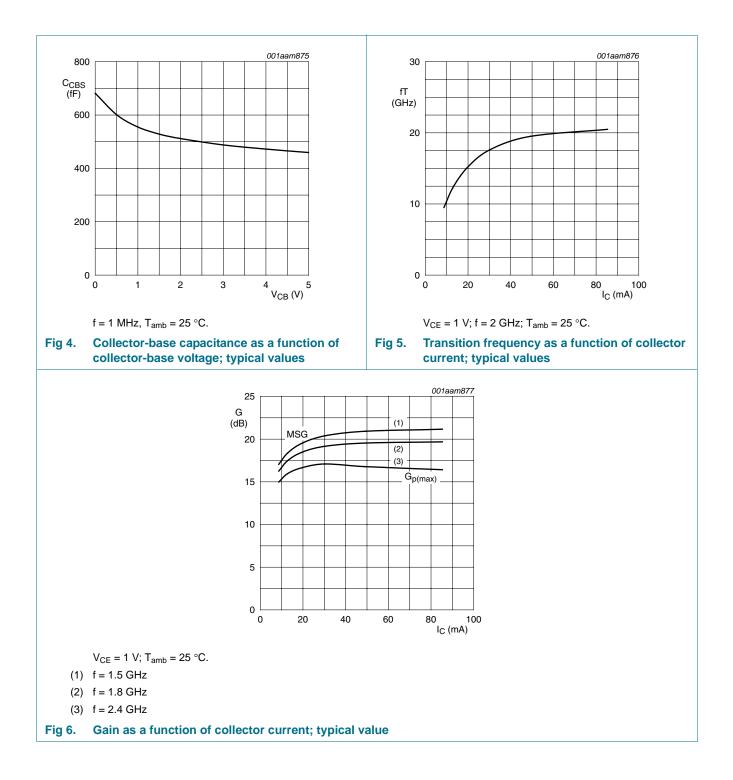
7. Characteristics


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{(BR)CBO}	collector-base breakdown voltage	$I_{\rm C} = 2.5 \ \mu \text{A}; I_{\rm E} = 0 \ \text{mA}$	10	-	-	V
V _{(BR)CEO}	collector-emitter breakdown voltage		2.8	-	-	V
V(BR)CEO	collector current		-	50	100	мА
I _{CBO}	collector-base cut-off current	I _E = 0 mA; V _{CB} = 4.5 V		-	100	nA
h _{FE}	DC current gain	$I_{\rm C} = 10$ mA; $V_{\rm CB} = 4.5$ V	235	410	585	ПА
C _{CES}	collector-emitter capacitance	$V_{CB} = 2 V; f = 1 MHz$	-	527	-	fF
C _{EBS}	emitter-base capacitance	$V_{EB} = 0.5 \text{ V}; f = 1 \text{ MHz}$	_	2817		fF
C _{CBS}	collector-base capacitance	$V_{CB} = 2 \text{ V}; \text{ f} = 1 \text{ MHz}$	_	514	-	fF
осво f _T	transition frequency	$I_{C} = 100 \text{ mA}; V_{CE} = 1 \text{ V}; f = 2 \text{ GHz};$	-	25	_	GHz
1		$T_{amb} = 25 \degree C$	-	20		0112
G _{p(max)}	maximum power gain	I_C = 85 mA; V_{CE} = 1 V; T_{amb} = 25 °C	<u>[1]</u>			
		f = 1.5 GHz	-	21	-	dB
		f = 1.8 GHz	-	19.5	-	dB
		f = 2.4 GHz	-	16.5	-	dB
s ₂₁ ²	insertion power gain	I_C = 85 mA; V_{CE} = 1 V; T_{amb} = 25 °C				
		f = 1.5 GHz	-	14.5	-	dB
		f = 1.8 GHz	-	13	-	dB
		f = 2.4 GHz	-	10.5	-	dB
NF	noise figure	I_{C} = 20 mA; V_{CE} = 2 V; Γ_{S} = Γ_{opt} ; T_{amb} = 25 °C				
		f = 1.5 GHz	-	0.40	-	dB
		f = 1.8 GHz	-	0.40	-	dB
		f = 2.4 GHz	-	0.50	-	dB
G _{ass}	associated gain	I_{C} = 20 mA; V_{CE} = 2 V; Γ_{S} = Γ_{opt} ; T_{amb} = 25 °C				
		f = 1.5 GHz	-	19	-	dB
		f = 1.8 GHz	-	17.5	-	dB
		f = 2.4 GHz	-	15.7	-	dB
P _{L(1dB)}	output power at 1 dB gain compression	I _C = 60 mA; V _{CE} = 2.5 V; Z _S = Z _L = 50 Ω; T _{amb} = 25 °C				
		f = 1.5 GHz	-	20	-	dBm
		f = 1.8 GHz	-	20	-	dBm
		f = 2.4 GHz	-	19	-	dBm
IP3	third-order intercept point	$ I_C = 30 \text{ mA}; \text{V}_{CE} = 2.5 \text{V}; \text{Z}_{\text{S}} = \text{Z}_{\text{L}} = 50 \Omega; \\ \text{T}_{\text{amb}} = 25 ^{\circ}\text{C} $				
		f = 1.5 GHz	-	33	-	dBm
		f = 1.8 GHz	-	33	-	dBm
		f = 2.4 GHz	-	34	-	dBm
		f = 5.8 GHz	-	33	-	dBm

 $[1] \quad G_{p(max)} \text{ is the maximum power gain, if } K > 1. \text{ If } K < 1 \text{ then } G_{p(max)} = MSG.$

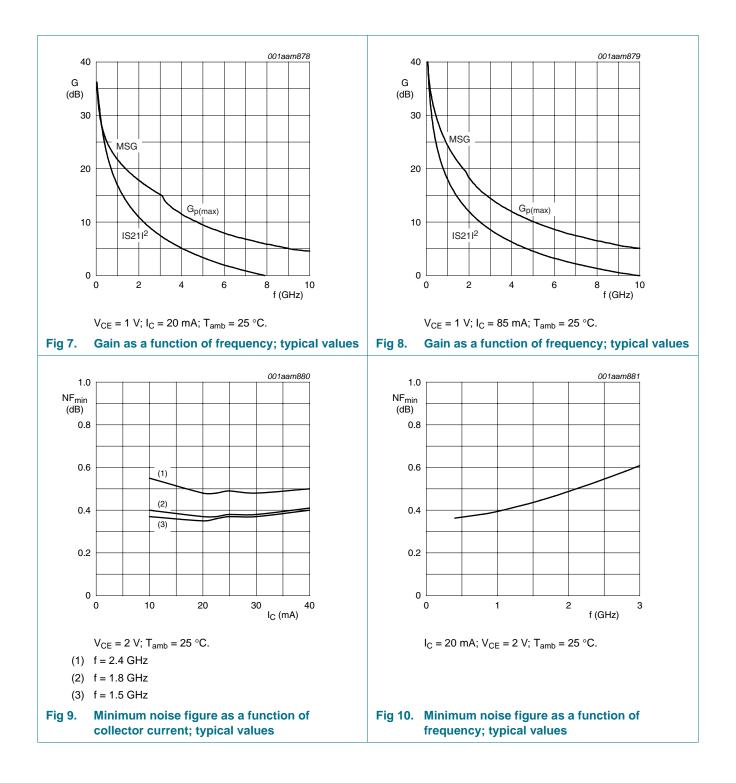
NXP Semiconductors

BFU790F

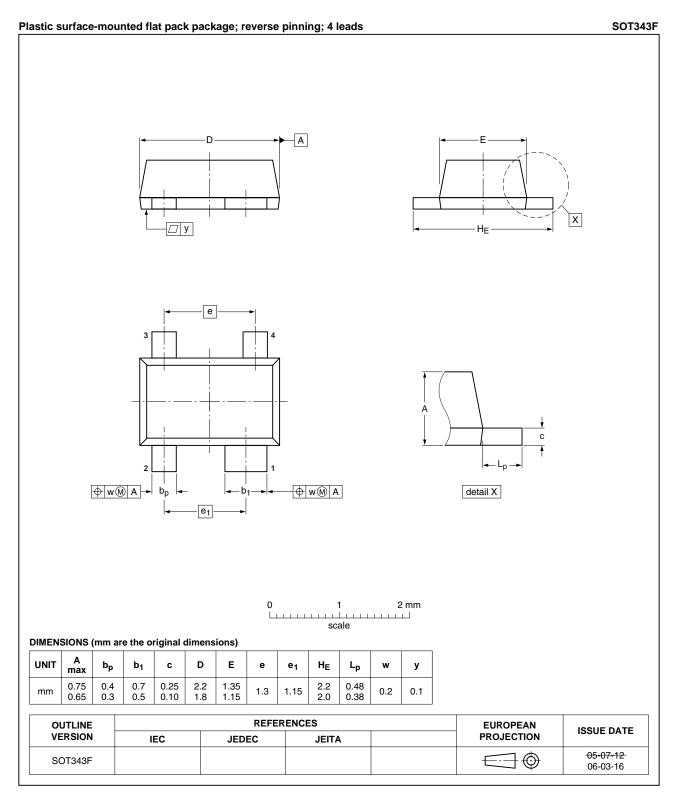

NPN wideband silicon germanium RF transistor

NXP Semiconductors

BFU790F


NPN wideband silicon germanium RF transistor

NXP Semiconductors


BFU790F

NPN wideband silicon germanium RF transistor

NPN wideband silicon germanium RF transistor

8. Package outline

Fig 11. Package outline SOT343F

All information provided in this document is subject to legal disclaimers.

BFU790F

NPN wideband silicon germanium RF transistor

9. Abbreviations

Table 8.	Abbreviations				
Acronym	Description				
DC	Direct Current				
LTE	Long Term Evolution				
NPN	Negative-Positive-Negative				
RF	Radio Frequency				
UMTS	Universal Mobile Telecommunications System				
WiMAX	Worldwide Interoperability for Microwave Access				
WLAN	Wireless Local Area Network				

10. Revision history

Table 9. Revision hi	story			
Document ID	Release date	Data sheet status	Change notice	Supersedes
BFU790F v.1	20110422	Product data sheet	-	-

NPN wideband silicon germanium RF transistor

11. Legal information

11.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

11.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

11.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

BFU790F

10 of 12

NPN wideband silicon germanium RF transistor

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any

12. Contact information

liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

11.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NPN wideband silicon germanium RF transistor

13. Contents

1	Product profile 1
1.1	General description 1
1.2	Features and benefits 1
1.3	Applications 1
1.4	Quick reference data 2
2	Pinning information 2
3	Ordering information 2
4	Marking 3
5	Limiting values 3
6	Thermal characteristics 3
7	Characteristics 4
8	Package outline 8
9	Abbreviations9
10	Revision history 9
11	Legal information 10
11.1	Data sheet status 10
11.2	Definitions 10
11.3	Disclaimers 10
11.4	Trademarks 11
12	Contact information 11
13	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2011.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 April 2011 Document identifier: BFU790F