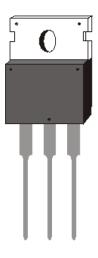


BF90880SNL

80V N-Channel MOSFET


General Description

This Power MOSFET device has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced high-efficiency, high-frequency isolated DC-DC converters for Telecom and Computer applications. It is also intended for any application with low gate drive requirement.

Features

- V_{DS} =80 V
- I_D =80A
- Typical R_{DS(ON)} =8m Ω (V_{GS}=10V,I_D=40A)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

TO220

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-Source Voltage		80	V
I _D	Drain Current(continuous)at Tc=25°C	80	А	
I _{DM}	Drain Current (pulsed)	(Note1)	320	А
V _{GS}	Gate-Source Voltage		±20	V
E _{AS}	Single Pulse Avalanche Energy	(Note2)	1200	mJ
I _{AR}	Avalanche Current (Note1)		33	А
P _D	Power Dissipation (T _C = 25°C)	178	W	
T _J ,Tstg	Operating junction and Storage Temperature Range		-55 to +150	$^{\circ}\! \mathbb{C}$
T _L	Maximum Lead Temperature for Soldering Purpose	300	$^{\circ}$ C	

Ordering Information

Part Number	Package	Packaging		
BF90880SNL	TO-220	Tube		

Thermal Data

Symbol	ymbol Parameter		Unit	
Rthj-Case Thermal Resistance Junction-Case		0.7	°C/W	
Rthj-Amb	Rthj-Amb Thermal Resistance Junction-Ambient		°C/W	

Electrical Characteristics ($T_c = 25^{\circ}$)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	I _D =250uA, V _{GS} =0V	80			V
	Zero Gate Voltage Drain Current	V _{DS} =80V, V _{GS} =0V,Tc=25℃			1	uA
I _{DSS}		V _{DS} =80V,V _{GS} =0V ,Tc=125℃			10	uA
I _{GSS}	Gate-Body Leakage Current	V _{GS} =±20V ,V _{DS} =0V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} ,I _D =250uA	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On Resistance	V _{GS} =10V ,I _D =40A		8	10	mΩ
C _{iss}	Input Capacitance			4575		pF
Coss	Output Capacitance	V _{DS} =25V,f=1MHZ,V _{GS} =0V		376		pF
C _{rss}	Reverse Transfer Capacitance			41		pF
$t_{\text{d(on)}}$	Turn-On Delay Time			36		ns
t _r	Rise Time	V_{DD} =40V, I_{D} =30A V_{GS} =10V , R_{G} =4.7 Ω (Note3, 4)		35.8		ns
$t_{\text{d(off)}}$	Turn-Off Delay Time			99.4		ns
t _f	Fall Time			31.5		ns
Qg	Total Gate Charge	V _{DS} =64V, I _D =80A V _{GS} =4.5V (Note3, 4)		110		nC
Q _{gs}	Gate-Source Charge			16		nC
Q _{gd}	Gate-Drain Charge	(11000)		40		nC
V _{SD} (*)	Forward On Voltage	I _{SD} =80A ,V _{GS} =0V			1.5	V
T _{rr}	Reverse Recovery Time	V _{DD} =30V,I _F =80A,di/dt=100A/us (Note3)		120		ns

Notes:

- 1. Repetitive Rating : Pulse width limited by maximum junction temperature
- 2. V_{DD} = 40V, L = 2mH, Starting T_J = 25°C 3. Pulse Test : Pulse width ≤ 300 μ s, duty cycle ≤ 2%
- 4. Essentially independent of operating temperature (*)Pulsed:Pulse duration

Typical characteristics (25℃ unless noted)

Figure 1 Output Characteristics

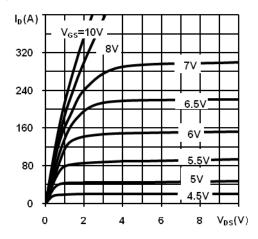


Figure 3 Normalized Threshold Voltage Vs.Temperature

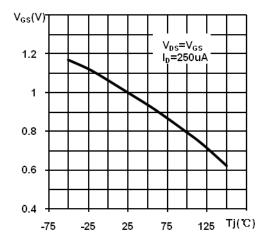
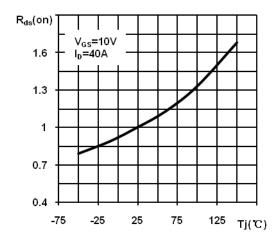



Figure 5 Normalized on Resistance Vs. Temperature

Figure 2 Transfer Characteristics

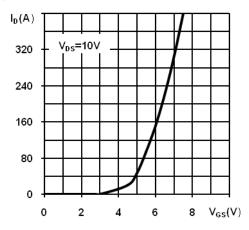


Figure 4 Normalized BV_{DSS} Vs.Temperature

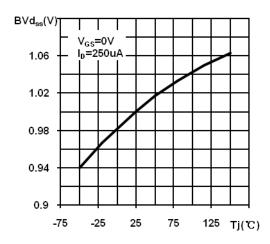


Figure 6 Source-Drain Diode Forward Characteristics

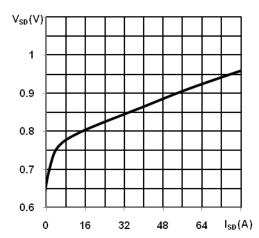


Figure 7 Capacitance

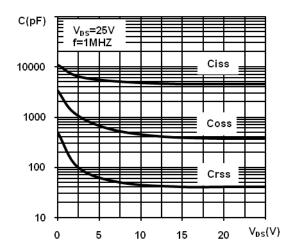


Figure 9 Safe Operating Area

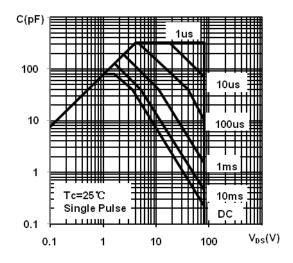


Figure 8 Gate Charge

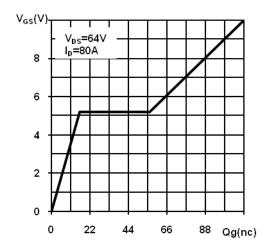


Figure 10 Maximum Drain Current Vs. Case Temperature

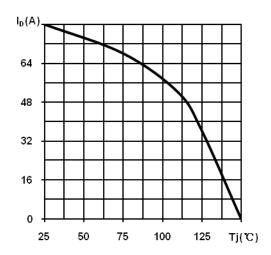
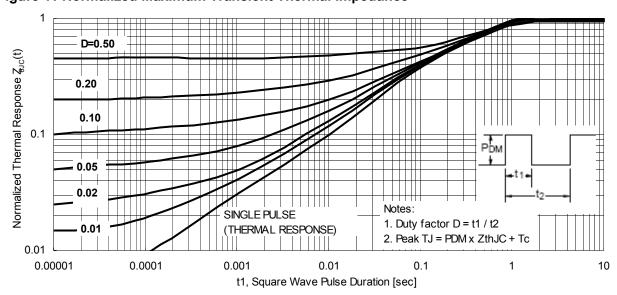
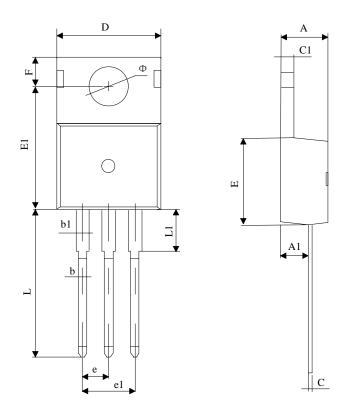




Figure 11 Normalized Maximum Transient Thermal Impedance

Package Drawing

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	4.45	4.55	0.175	0.179	
A 1	2.38	2.42	0.093	0.095	
b	0.70	0.90	0.028	0.035	
b1	1.42	1.62	0.056	0.064	
С	0.45	0.55	0.018	0.022	
c1	1.25	1.35	0.049	0.053	
D	9.85	9.95	0.388	0.392	
E	9.11	9.29	0.359	0.366	
E1	12.85	12.95	0.506	0.510	
е	2.540TYP		0.100TYP		
e1	5.04	5.12	0.198	0.202	
F	2.77	2.83	0.109	0.111	
L	12.98	13.18	0.511	0.519	
L1	2.97	3.03	0.117	0.119	
Φ	3.58	3.62	0.141	0.143	

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- BYD Microelectronics Co., Ltd. (short for BME) exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing BME products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that BME products are used within specified operating ranges as set forth in the most recent BME products specifications.
- The BME products listed in this document are intended for usage in general electronics applications (personal equipment, office equipment, domestic appliances, etc.). These BME products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of BME products listed in this document shall be made at the customer's own risk.
- BME is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.

Datasheet TS-MOS-PD-0066 Rev.A/0 Page 6 of 6