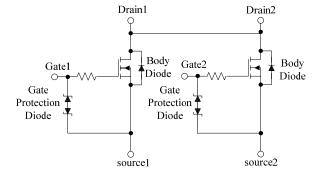


BF9028DNT

20V N-Channel MOSFET

General Description

The BF9028DNT is a dual N-channel MOS Field Effect Transistor, which is applied to electronic systems as a power switch. This device has ESD-protection and low resistance characteristics.


Features

- Can be driven by a 2.3 V power source
- Low on-state resistance

 $\begin{array}{l} R_{DS(on)} = 16.0 m \Omega \ TYP(V_{GS} = 4.5 V, \ I_D = 3.0 A) \\ R_{DS(on)} = 17.5 m \Omega \ TYP(V_{GS} = 3.8 V, \ I_D = 3.0 A) \\ R_{DS(on)} = 22.0 m \Omega \ TYP(V_{GS} = 2.5 V, \ I_D = 3.0 A) \end{array}$

- Built-in G-S protection diode against ESD
- Lead Pb-free and Halogen-free

Absolute Maximum Ratings(T_c = 25°C)

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-Source Voltage		20	V
I _D	Drain Current(continuous)at Tc=25°C		6	А
I _{DM}	Drain Current (pulsed)	(Note a)	24	А
V_{GS}	Gate-Source Voltage		±10	V
PD	Power Dissipation $T_C = 25^{\circ}C$		1.5	W
T _{J,} Tstg	Operating and Storage Temperature Range		-55 to +150	°C
ΤL	Maximum Lead Temperature for Soldering Purpose		150	°C

Ordering Information

Part Number	Package	Packaging
BF9028DNT	TSSOP-8	3000pcs Tape&Reel

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV_{DS}	Drain-source Breakdown Voltage	I _D =250uA,V _{GS} =0V	20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V			10	uA
I _{GSS}	Gate-body Leakage Current	V _{GS} =±12V,V _{DS} =0V			±10	uA
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250uA	0.5	0.8	1.5	V
R _{DS(on)}		V _{GS} =4.5V,I _D =3A		16	22	
	Static Drain-source On Resistance	V _{GS} =3.8V, I _D =3A		17.5	24	mΩ
		V _{GS} =2.5V, I _D =3A		22	29	
C _{iss}	Input Capacitance			800		pF
Coss	Output Capacitance	V _{DS} =15V,f=1MH _Z ,V _{GS} =0V		150		pF
C _{rss}	Reverse Transfer Capacitance			20		pF
t _{d(on)}	Turn-on Delay Time			100		ns
tr	Rise Time	V _{DD} =10V,I _D =3A,V _{GS} =4V, R _G =10Ω		200		ns
$t_{d(off)}$	Turn-off Delay Time	(Note b,c)		2500		ns
t _f	Fall Time			1200		ns
Qg	Total Gate Charge			12		nC
Q_{gs}	Gate-source Charge	V _{DS} =16V,I _D =6A,V _{GS} =4.5V (Note b.c)		2.5		nC
Q_{gd}	Gate-Drain Charge			4		nC
V _{SD} (*)	Forward On Voltage	V _{GS} =0V,I _F =6A		0.7		V

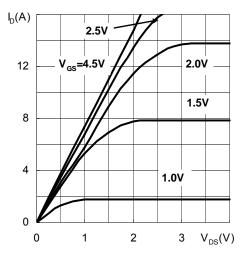
Electrical Characteristics (T_c = 25°C)

Notes

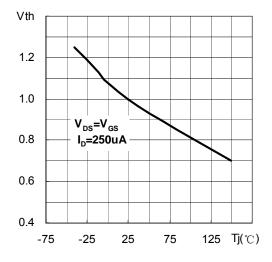
a: Repetitive Rating : Pulse width limited by maximum junction temperature

b: Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2%

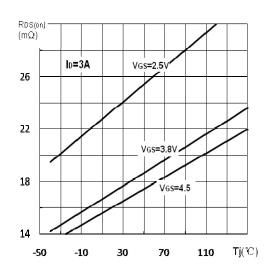
c: Essentially independent of operating temperature

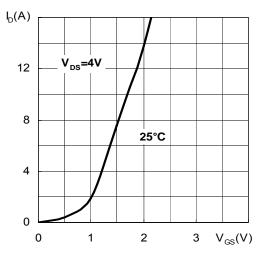

(*)Pulsed:Pulse duration

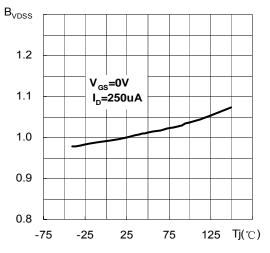
Caution: These values must not be exceeded under any conditions.

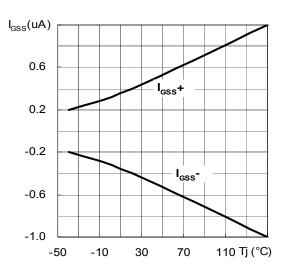

Remark: The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

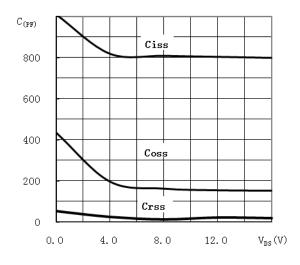
Typical characteristics (25℃ unless noted)


Figure 1 Output Characteristics


Figure 3 Normalized Vth vs. Temperature


Figure 5 R_{DSON} vs. Temperature


Figure 2 Transfer Characteristics


Figure 4 Normalized BV_{DSS} vs. Temperature

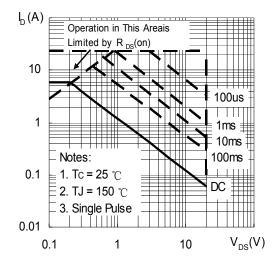

Figure 6 I_{GSS} vs Environment Temperature

Figure 7 Capacitance

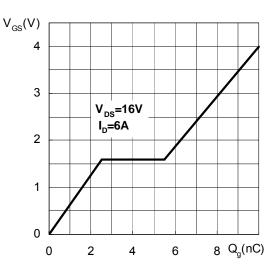
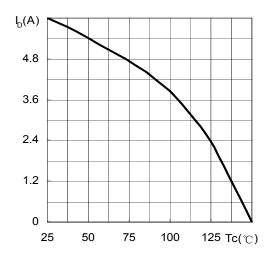
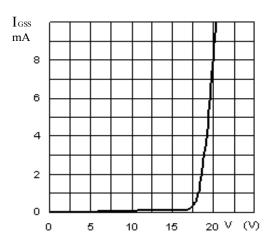
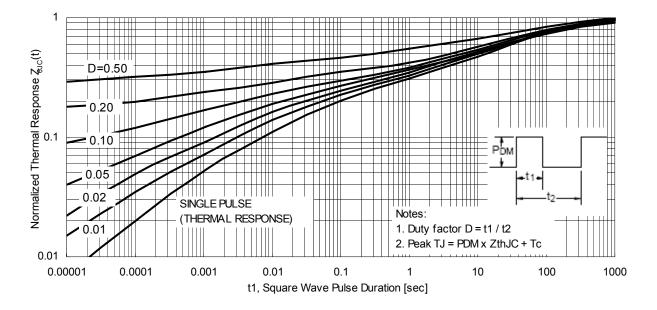
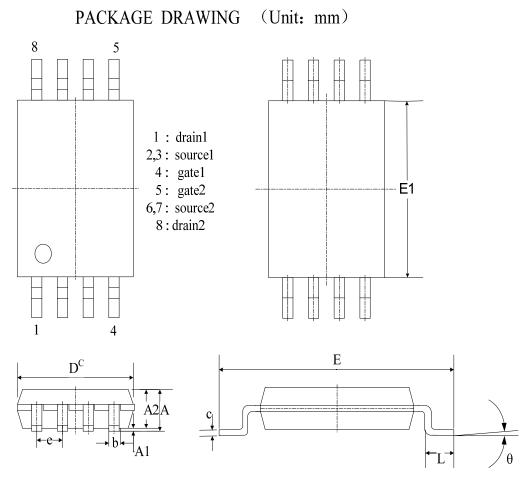

Figure 9 Safe Operating Area

Figure 11 Rdson vs. V_{GS}

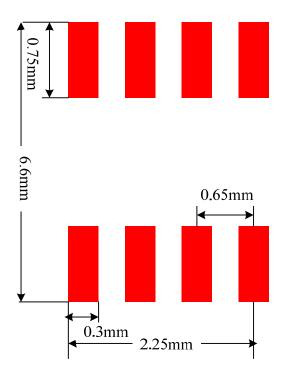
Figure 8 Gate Charge

Figure 10 Maximum I_{DSS} vs. Case Temperature


Figure 12 Gate-Current vs.Gate-Source Voltage

Package Drawing:



Dimensions

D	DIM.	А	A1	A2	b	С	D ^C	Е	E1	е	L	θ
mm	MIN.	0.820	0.020	0.800	0.170	0.090	2.900	6.200	4.300	0.650 - BSC	0.450	0°
	NOM.	-	I	-	-	-	-	6.400	4.400		0.600	4°
	MAX.	1.200	0.150	1.050	0.300	0.200	3.100	6.600	4.500		0.750	8°

Note c. Dimension 'D' does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.

PCB Layout Guide

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- BYD Microelectronics Co., Ltd. (short for BME) exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing BME products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that BME products are used within specified operating ranges as set forth in the most recent BME products specifications.
- The BME products listed in this document are intended for usage in general electronics applications (personal equipment, office equipment, domestic appliances, etc.). These BME products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of BME products listed in this document shall be made at the customer's own risk.
- BME is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.