

Over-Voltage Protection Load Switch With Surge Protection

BCT7915H

Over-Voltage Protection Load Switch with Surge Protection

GENERAL DESCRIPTION

The BCT7915H OVP load switch features surge protection, an internal clamp circuit protects the device from surge voltages up to 100V.

The BCT7915H features an ultra-low $30.7 m\Omega(\text{Typ.})$ R_{dson} nFET load switch. When input voltage exceeds the OVP threshold, the switch is turned off very fast to prevent damage to the protected downstream devices. The IN pin is capable of withstanding fault voltages up to $29V_{DC}$.

The default OVP threshold is 6.8V, the OVP threshold can be adjusted from 4V to 20V through external OVLO pin.

The device features an open-drain output ACOK,when VIN_UVLO < VIN < VIN_OVLO and the switch is on,ACOK will be driven low to indicate a good power input, otherwise it is high impedance.

This device features over-temperature protection that prevents itself from thermal damaging.

The BCT7915H is available in a RoHS compliant 1.8mm × 1.3mm QFNFC1.8X1.3-12L

package.

FEATURES

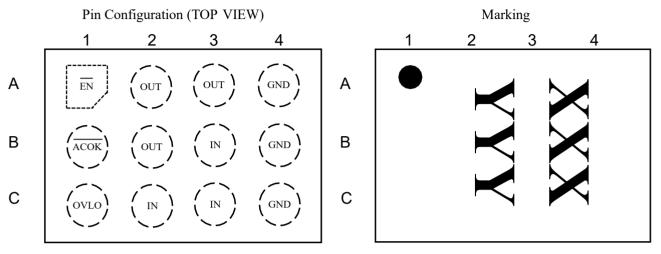
- Highly reliable 1.8mm × 1.3mm
 QFNFC1.8X1.3-12L package
- Surge protection
 - IEC 61000-4-5: > 100V
- Integrated low R_{dson} nFET switch: typical $30.7 m\Omega$
- 4.5A continuous current capability
- Default Over-Voltage Protection (OVP) threshold: 6.8V
- OVP threshold adjustable range: 4V to 20V
- Input maximum voltage rating: 29V_{DC}
- Fast turn-off response: typical 50ns
- Over-Temperature Protection (OTP)
- Under-Voltage Lockout (UVLO)

APPLICATIONS

- Smartphones
- Tablets
- Charging Ports

ORDERING INFORMATION

Order Number	Voltage	Package Type	Temperature Range	Marking	QTY/Reel
BCT7915HEZC-TR	6.8V	QFNFC1.8x1.3-12L	-40°C to +85°C	VQR XXX	3000


Note:

- 1. "VQR" in Marking is product short code for BCT7915HEZC-TR.
- 2. "XXX" in Marking will be appeared as the batch code.

BCT7915H Over-Voltage Protection Load Switch With Surge Protection

XXX – Marking YYY –batch code

Figure 1 Pin Configuration and Top Mark

PIN DESCRIPTION BCT7915H

Pin	Name	Function			
A1	EN	Enable pin, active low			
B1	ACOK	Power good flag, active-low, open-drain			
C1	OVLO	OVP threshold adjustment pin			
C2, C3, B3	IN	Switch input and device power supply			
A2, A3, B2	OUT	Switch output			
A4, B4, C4	GND	Device ground			

Over-Voltage Protection Load Switch With Surge Protection

FUNCTIONAL BLOCK DIAGRAM

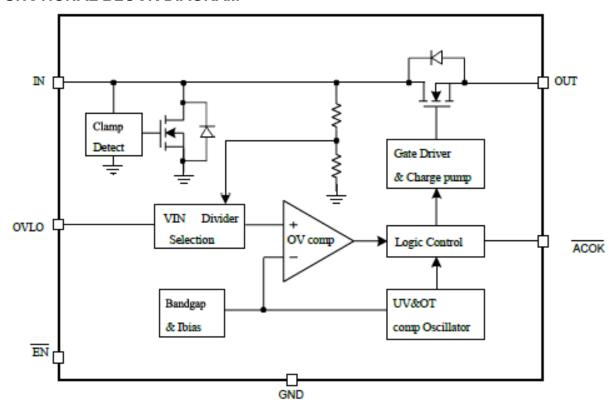


Figure 2 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (IN to GND)	0.3V to 29V
Other Pins(VovLo./ Vacok / VEN)	0.3V to 6V
Out Pin Voltage	
Continuous Power Dissipation (TA = +70°C):	
QFNFC1.8x1.3-12L (derate 15.4mW/°C above +70°C)	1.23W
Maximum Continuous Current of switch IN-OUT.	4.5A
Maximum Peak Current of switch IN-OUT(10ms)	
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+260°C
ESD Susceptibility (HBM)	2KV

Note 1:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Over-Voltage Protection Load Switch With Surge Protection

ELECTRICAL CHARACTERISTICS

TA = -40°C to 85°C unless otherwise noted. Typical values are guaranteed for V_{IN} = 5V, C_{IN} = 0.1 μ F, I_{IN} ≤ 5A and TA = 25°C.

Description Symi		Test Conditions	Min	Тур	Max	Unit	
Input clamp voltage	V _{IN_CLAMP}	I _{IN} = 10mA		30.8		V	
Switch on resistance	R _{dson}	VIN = 5V, IOUT = 1A,		30.7		mΩ	
Input quiescent current	Iα	VIN = 5V, VOVLO=0V, IOUT = 0A		65	130		
Input current at over-voltage condition	I _{IN_OVLO}	VIN = 5V, VOVLO=3V, VOUT = 0V		60	120	uA	
OVLO set threshold	$V_{\text{OVLO_TH}}$		1.16	1.20	1.24		
OVP threshold adjustable range	$V_{\text{OVLO}_{\text{RNG}}}$		4		20	V	
External OVLO select threshold	O _{VLO rising} Hysteresis		0.19	0.26	0.33	V	
OVLO pin leakage current	IovLo	Vovlo=Vovlo_th	-0.2	0.00	0.2	uA	
Protection	IOVLO	VOVEO-VOVEO_IH	-0.2		0.2	uA	
OVP trip level		V _{IN} rising	6.60	6.80	7.00		
V _{IN_OVLO}		Hysteresis	0.00	0.14	7.00		
- 114_0420		V _{IN} rising		2.9 3.0			
UVLO trip level	$V_{\text{IN_UVLO}}$	Hysteresis		0.1	0.0	V	
Shutdown temperature	T _{SDN}	- Typio. Solo		150			
Shutdown temperature						$^{\circ}\!\mathbb{C}$	
Hysteresis	$T_{\mathtt{SDN_HYS}}$		20				
Output discharge resistance	R _{DCHG}	Vout=7V,Vovlo=3V		50		Ω	
Digital Logical Interface		1	I	l	I		
/ACOK output low voltage	V _{oL}	Isink=1mA		0.4		V	
/ACOK leakage current	I _{LEAK_ACOK}	V _{IO} =5V,/ACOK de-asserted	-0.5		0.5	uA	
/EN input high voltage	V _{IH}		1.2			\ /	
/EN input low voltage	VIL				0.5	V	
/EN leakage current	I _{LEAK_EN}	VEN = 5V	0		2	uA	
Timing Characteristics	_	1	l .	ı			
Debounce time	t _{DEB}	From Vin > Vin_uvlo to 10% Vout		15			
Start-up time	t _{start}	From VIN > VIN_UVLO to ACOK low		30		ms	
Switch turn-on time	t _{on}	R _L = 100Ω, C _L = 22uF, V _{OUT} from 10% V _{IN} to 90% V _{IN}		2			
Switch turn-off time	t _{off}	C _L = 0uF, R _L = 100Ω, V _{IN} > V _{IN_OVLO} to V _{OUT} stop rising, V _{IN} rise at 10V/s		50		ns	

Over-Voltage Protection Load Switch With Surge Protection

TIMING DIAGRAM

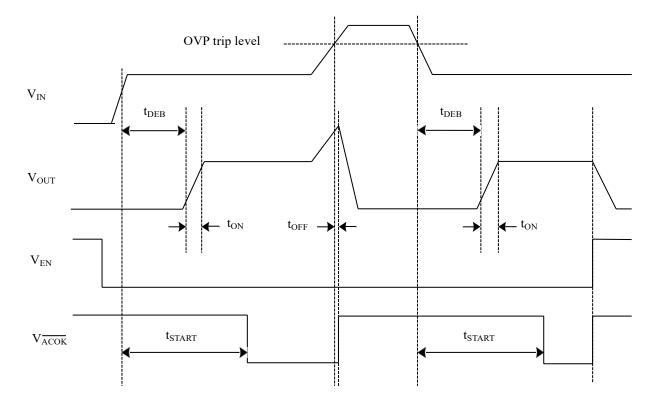


Figure 3 Timing diagram

Over-Voltage Protection Load Switch With Surge Protection

TYPICAL APPLICATION CIRCUITS

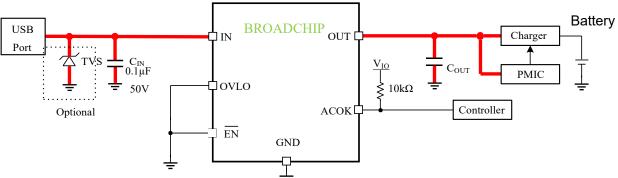


Figure 4 BCT7915H typical application circuit(using default OVP threshold)

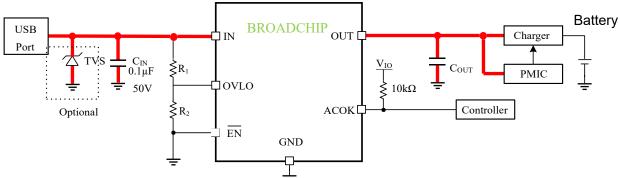


Figure 5 BCT7915H typical application circuit (using external resistors set OVP threshold)

Note:R1 and R2 are used for OVP threshold adjustment, to use default OVP threshold, connect OVLO to ground.

Notice for Typical Application Circuits:

- 1. If VBUS is required to pass surge voltage greater than 100V, external TVS is needed, the maximum clamping voltage of the TVS should be below 34V.
- 2. When the default OVP threshold is used, connect OVLO pin to GND directly or through a 0Ω resistor. OVLO pin cannot be left floating.
- 3. If R1 and R2 are used to adjust the OVP threshold, it is better to use 1% precision resistors to improve the OVP threshold precision.
- 4. If ACOK is not used, it can be left floating, or short to GND.
- 5. $C_{IN} = 0.1 \mu F$ is recommended for typical application, larger C_{IN} is also acceptable. The rated voltage of C_{IN} should be larger than the TVS maximum clamping voltage, if no TVS is applied and only BCT7915H is used, the rated voltage of C_{IN} should be 50V.
- 6. Cout = 1μF is recommended for typical application, larger Cout is also acceptable. The rated voltage of Cout should be larger than the OVP threshold. For example, if the OVP threshold is 6.80V, the rated voltage of Cout should be 10V or higher.

BROADCHIP

BCT7915H

Over-Voltage Protection Load Switch With Surge Protection

FUNCTIONAL DESCRIPTION

Device Operation

If the BCT7915H is enabled and the input voltage is between UVLO and OVP threshold, the internal charge pump begins to work after debounce time, the gate of the nFET switch will be slowly charged high till the switch is fully on. ACOK will be driven low about 30ms after V_{IN} valid, indicating the switch is on with a good power input. If the input voltage exceeds the OVP trip level, the switch will be turned off in about 50ns. If EN is pulled high, or input voltage falls below UVLO threshold, or over-temperature happens, the switch will also be turned off.

Surge Protection

The BCT7915H integrates a clamp circuit to suppress input surge voltage. For surge voltages between V_{IN_OVLO} and V_{IN_CLAMP} , the switch will be turned off but the clamp circuit will not work. For surge voltages greater than V_{IN_CLAMP} , the internal clamp circuit will detect surge voltage level and discharge the surge energy to ground. The device can suppress surge voltages up to 100V.

Over-Voltage Protection

If the input voltage exceeds the OVP rising trip level, the switch will be turned off in about 50ns. The switch will remain off until VIN falls below the OVP falling trip level.

OVP Threshold Adjustment

If the default OVP threshold is used, OVLO pin must be grounded. If OVLO pin is not grounded, and by connecting external resistor divider to OVLO pin as shown in the typical application circuit, between IN and GND, the OVP threshold can be adjusted as following:

$$V_{IN_OVLO} = \frac{R1 + R2}{R_2} V_{OVLO_TH}$$

For example, if we select R_1 = 1M Ω and R_2 = 100k Ω , then the new OVP threshold calculated from the above formula is 13.2V. The OVP threshold adjustment range is from 4V to 20V. When the OVLO pin voltage V_{OVLO} exceeds V_{OVLO} (0.26V typical), V_{OVLO} is compared with the reference voltage V_{OVLO} typical) to judge whether input supply is over-voltage.

ACOK Output

The device features an open-drain output ACOK, it should be connected to the system I/O rail through a pull- up resistor. If the device is enabled and $V_{IN_UVLO} < V_{IN} < V_{IN_OVLO}$, ACOK will be driven low indicating the switch is on with a good power input. If OVP, UVLO, or OT occurs, or EN is pulled high, the switch will be turned off and ACOK will be pulled high.

Over-Voltage Protection Load Switch With Surge Protection

USB On-The-Go (OTG) Operation

If V_{IN} = 0V and OUT is supplied by OTG voltage, the body diode of the load switch conducts current from OUT to IN and the voltage drop from OUT to IN is approximately 0.7V. When V_{IN} > V_{IN_UVLO} , internal charge pump begins to open the load switch after debounce time (about 15ms). After switch is fully on, current is supplied through switch channel and the voltage drop from OUT to IN is minimum.

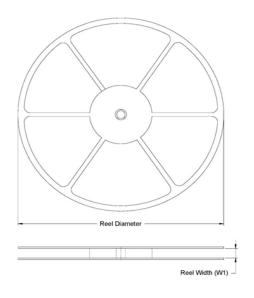
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vin	Input DC voltage	3		28	V
Cin	Input capacitance		0.1		μF
Соит	Output load capacitance		1		μF

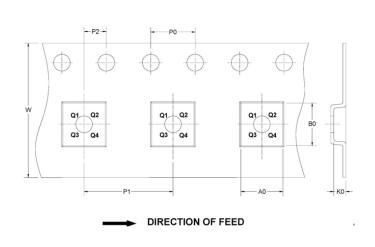
PCB LAYOUT CONSIDERATION

To make fully use of the performance of BCT7915H, the guidelines below should be followed.

- 1. All the peripherals should be placed as close to the device as possible. Place the input capacitor C_{IN} on the top layer (same layer as the BCT7915H) and close to IN pin, and place the output capacitor C_{OUT} on the top layer (same layer as the BCT7915H) and close to OUT pin.
- 2. If external TVS is used, IN pin routing passes through the external TVS firstly, and then connect BCT7915H.
- 3. Red bold paths on figure 4 and 5 are power lines that will flow large current, please route them on PCB as straight, wide and short as possible.
- 4. If R1 and R2 are used, route OVLO line on PCB as short as possible to reduce parasitic capacitance.
- 5. The power trace from USB connector to BCT7915H may suffer from ESD event, keep other traces away from it to minimize possible EMI and ESD coupling.
- 6. Use rounded corners on the power trace from USB connector to BCT7915H to decrease EMI coupling.



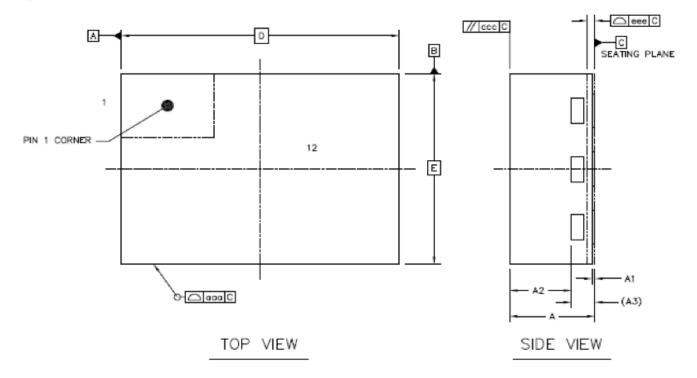
BCT7915H Over-Voltage Protection Load Switch

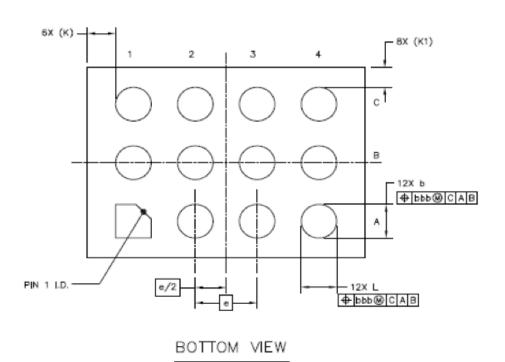

With Surge Protection

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS


Reel			Unit: m	m					Pin 1	
Diameter	Reel Width W1	A0	В0	K0	P0	P1	P2	w	Quadrant	Reel Q'ty
7"	9.5	1.63	2.03	0.83	4	4	2	8	Q2	3000



Over-Voltage Protection Load Switch With Surge Protection

PACKAGE OUTLINE DIMENSIONS

QFNFC1.8X1.3-12L

BCT7915H Over-Voltage Protection Load Switch With Surge Protection

O. mak al	Dimensions In Millimeters							
Symbol	Min	Nom	Max					
А	0.5	0.55	0.6					
A1	0	0.02	0.05					
A2		0.4						
A3		0.152REF						
b	0.18 0.23 0.28							
D	1.8(BSC)							
E	1.3(BSC)							
е	0.4(BSC)							
L	0.18 0.23 0.28							
K	0.185REF							
K1	0.135REF							
aaa	0.1							
ccc	0.1							
eee	0.05							
bbb	0.07							

QFNFC1.8X1.3-12L Surface Mount Package