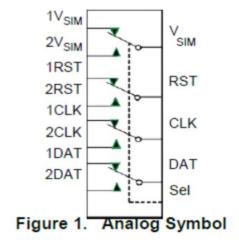


BCT4567 Low-Power, Dual SIM Card Analog Switch

GENERAL DESCRIPTION

The BCT4567 is a quad-SPDT switch with one common control inputs targeted at dual SIM card multiplexing. It is optimized for switching the WLAN-SIM data and control signals and dedicates one channel as a supply-source switch.

The switches are fully bi-directional, allowing both multiplexing and de-multiplexing operation. Break-before-make operation is guaranteed.

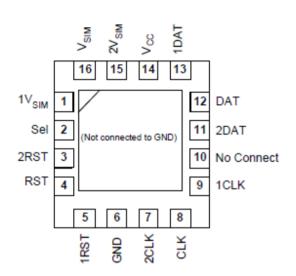

The device operates from a +1.65V to +4.5V supply and over the extended -40°C to +85°C temperature range. It is offered in 16-pin 3mm x 3mm TQFN package or 16-pin 1.8mm x 2.6mm UTQFN package.

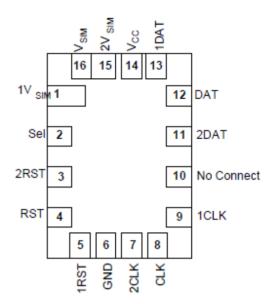
APPLICATIONS

Dual SIM Card Switch Cell Phones Pad Digital Cameras PDAs Notebook

FEATURES

- Low 0.50 Ron @VCC=2.7V
- 0.06Ω On-Resistance Flatness
- Excellent 0.05Ω On-Resistance Matching
- Wide VCC Operating Range: 1.65 V to 4.5 V
- Rail-to-Rail Signal Switching Range
- Fast Switching Speed: 20nsTYP at 3.3V
- High Off Isolation: -66dB
- Crosstalk Rejection: -86dB
- -3dB bandwidth: 100MHz
- Space-Saving, TQFN 3x3-16L or UTQFN 1.8x2.6-16L Package




ORDERING INFORMATION

Ordering Code	Package Description	Temp Range	Top Marking	QTY/Reel
BCT4567EGE-TR	TQFN3x3-16L	–40°C to +85°C	4567	3000
BCT4567EFE-TR	UTQFN1.8x2.6-16L	–40°C to +85°C	4567	3000

Pin Configurations

Pin Description

Pin	Name	Function
1	1VSIM	SIM supply output 2
2	SEL	Select input
3	2RST	RST Normally Open Terminal
4	RST	RST Common Terminal
5	1RST	RST Normally Closed Terminal
6	GND	Ground
7	2CLK	CLK Normally Open Terminal
8	CLK	CLK Common Terminal
9	1CLK	CLK Normally Closed Terminal
10	NC	Not Connect
11	2DAT	DAT Normally Open Terminal
12	DAT	DAT Common Terminal
13	1DAT	DAT Normally Closed Terminal
14	VCC	Power Supply
15	2VSIM	SIM supply output 1
16	VSIM	SIM supply input

Truth Table

SEL	SWITCH STATE		
0	1DAT = DAT, 1RST = RST, 1CLK = CLK, 1V _{SIM} = V _{SIM}		
1	2DAT = DAT, 2RST = RST, 2CLK = CLK, 2V _{SIM} = V _{SIM}		

Absolute Maximum Ratings

VCC, SEL to GND	0.3V to +6.0V
All Other Pins to GND	
Continuous Current	
Peak Current (pulsed at 1ms, 10% duty cycle)	±500mA
Continuous Power Dissipation (TA = +70°C) (15.6mW/°C above +70°C)	
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

(unless otherwise noted. Typical values are at VCC = 3.3V, TA = +25°C. (Note 2)

Parameter	Symbol	Conditions		Min	Тур	Max	Units
POWER SUPPLY		•				l l	
Supply Voltage Range	Vcc			1.65		4.5	V
Supply Current	Icc	V _{CNTRL} = 0	or V_{CC} , $I_{OUT} = 0$			1.0	uA
ANALOG SWITCH							
Analog Signal Range	Vsw	Switch I/	O Voltage	0		VCC	V
	Ron	I _{ON} = -100 mA	VCC= 1.8V V _{SW} = 0, 1.8 V		0.8		0
On-Resistance	Non	Figure 9	VCC= 2.7V V _{SW} = 0, 2.3 V		0.5		
On Registeres	ADON	I _{ON} = -100 mA Figure 9	VCC= 1.8V V _{SW} = 0, 1.8 V		0.1		Ω
On-Resistance Match	ΔRon		VCC= 2.7V V _{SW} = 0, 2.3 V		0.05		
On-Resistance		I _{ON} = -100 mA Figure 9	VCC= 1.8V V _{SW} = 0, 1.8 V		0.12		
On-Resistance RFLA Flatness	RFLAT		VCC= 2.7V V _{SW} = 0, 2.3 V		0.06		Ω
Off-Leakage Current	loff	VCC= 4.3V, nRST, nDAT, nCLK, nVSIM = 0.3 V or 3.6 V Figure 10		-1		1	uA
On-Leakage Current	Ion	VCC= 4.3V, RST, DAT, CLK, VSIM = 0.3 V or 3.6 V		-1		1	uA
SEL DIGITAL INPUTS							
Input-Logic High	VIH	VCC=1.65V to 4.5V,		1.7			V
Input-Logic Low	VIL	VCC=1.65V to 4.5V,				0.4	V
Input Leakage Current	lin	VIN = 0 or VCC		-1		1	uA

Electrical Characteristics (continued)

(unless otherwise noted. Typical values are at VCC = 3.3V, TA = +25°C.) (2)

Parameter	Symbol	Condition	Min	Тур	Max	Units	
DYNAMIC CHARACTERISTICS							
Turn-On Time Sel to Output	Ton	RL = 50 Ω , CL = 35 Pf, VSW = 1.5 V,	T _A = +25°C		20	30	
(DAT,CLK,RST)	TON	Figure 11, Figure 12	$T_A = T_{MIN}$ to T_{MAX}			50	ns
Turn-Off Time Sel to Output	Toff	RL = 50Ω , CL = 35 pF, VSW = $1.5 V$,	T _A = +25°C		15	40	
(DAT,CLK,RST)		Figure 11, Figure 12	$T_A = T_{MIN} to$ T_{MAX}			50	ns
Break-Before-Make	tввм	$R_L = 50 \Omega, C_L = 35 pF V_{SW1} =$	T _A = +25°C	2	15		
Time (DAT,CLK,RST)	CODINI	V _{SW2} = 1.5 V Figure 15	$T_A = T_{MIN}$ to T_{MAX}	2			ns
Charge Injection	Q	$C_L = 50 \text{ pF}, R_{GEN} = 0 \Omega, V_{GEN} = 0 \text{ V}$			100		рС
On-Channel Bandwidth -3dB (DAT,CLK,RST)	BW	$R_L = 50 \Omega$, $C_L = 5 pF$ Figure 16			100		MHz
Off-Isolation (DAT,CLK,RST)	Viso	$R_L = 50 \Omega$, $f = 100KHz$ Figure 17			-66		dB
Crosstalk	Vст	$R_L = 50 \Omega$, $f = 100KHz$ Figure 18			-86		dB
RST, CLK, DAT Off Capacitance	Coff	V _{CC} = 3.3 V, Figure 19			30		pF
RST, CLK, DAT On Capacitance	Сом	V _{CC} = 3.3 V, f = 1 MHz Figure 20			100		pF

Note 2: Devices are 100% tested at TA = +25°C. Limits across the full temperature range are guaranteed by design and correlation.

Test Diagrams / Timing Diagrams

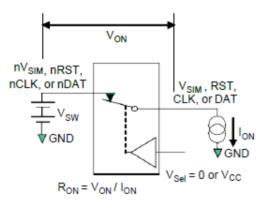


Figure 9. On Resistance

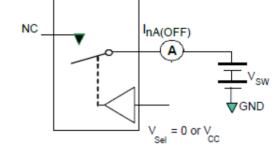
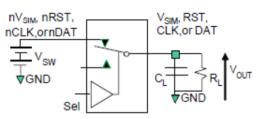



Figure 10. Off Leakage

R and C are functions of the application

environment (see tables for specific values). C includes test fixture and stray capacitance.

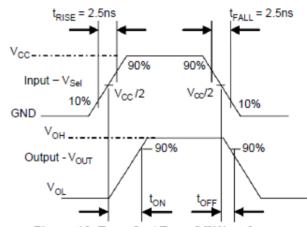


Figure 12. Turn-On / Turn-Off Waveforms

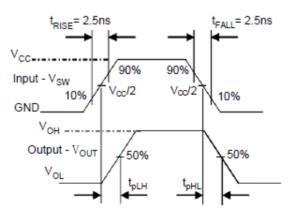


Figure 13. Propagation Delay

Test Diagrams / Timing Diagrams

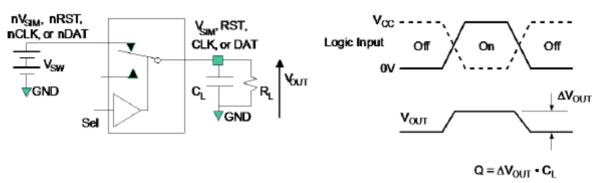
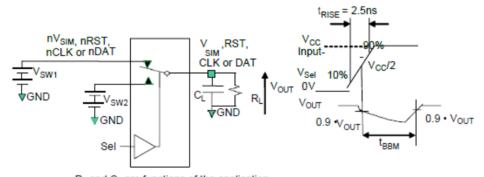



Figure 14. Charge Injection

 R_L and C_L are functions of the application environment (see tables for specific values). C_L includes test fixture and stray capacitance.

Figure 15. Break-Before-Make Interval Timing

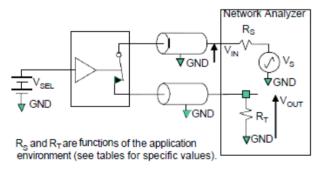


Figure 16. Bandwidth

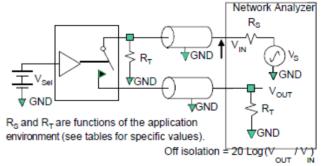


Figure 17. Channel Off Isolation

Test Diagrams / Timing Diagrams

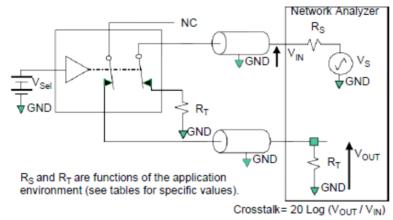


Figure 18. Non-Adjacent Channel-to-Channel Crosstalk

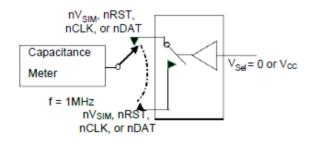


Figure 19. Channel Off Capacitance

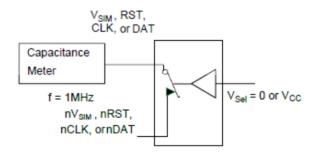
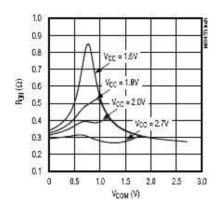
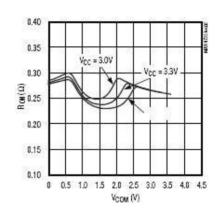
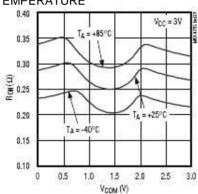
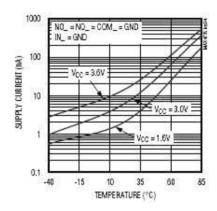



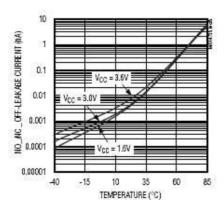
Figure 20. Channel On Capacitance

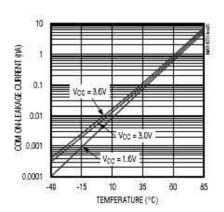

Typical Operating Characteristics

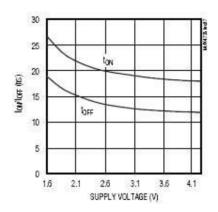
(VCC = 3V, TA = +25°C, unless otherwise noted.)

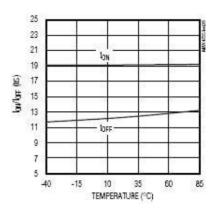

ON-RESISTANCE vs. COM_ VOLTAGE

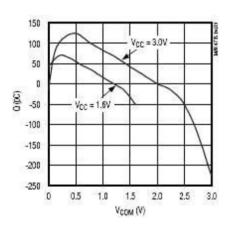

ON-RESISTANCE vs. COM_ VOLTAGE

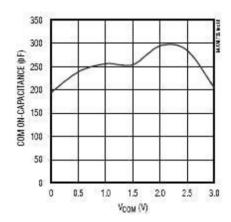

ON-RESISTANCE vs. COM_ VOLTAGE AND TEMPERATURE

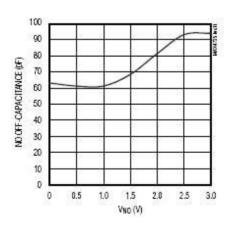

SUPPLY CURRENT vs. TEMPERATURE

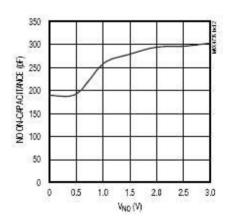

NO /NC OFF-LEAKAGE CURRENT vs. TEMPERATURE


COM ON-LEAKAGE CURRENT vs. TEMPERATURE


TURN-ON/OFF TIME vs. SUPPLY VOLTAGE

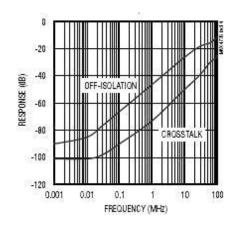

TURN-ON/OFF TIME vs. TEMPERATURE


CHARGE INJECTION vs. COM_ VOLTAGE

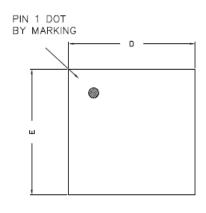

COM_ ON-CAPACITANCE vs. COM_ VOLTAGE

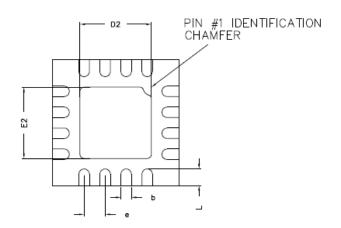
NO_ OFF-CAPACITANCE vs. NO_ VOLTAGE

NO_ ON-CAPACITANCE vs. NO_ VOLTAGE



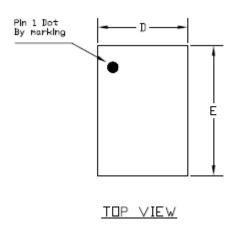
ON-RESPONSE vs. FREQUENCY

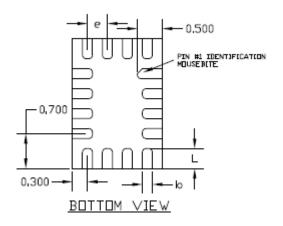

2 0 0 -2 35 -4 -8 -10 -10 -12 0.001 0.01 0.1 1 10 100 FREQUENCY (MHz)

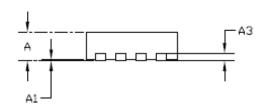

OFF-ISOLATION AND CROSSTALK vs. FREQUENCY

PACKAGE OUTLINE DIMENSIONS: TQFN 3x3 -16L

TOP VIEW


BOTTOM VIEW


SIDE VIEW


COMMON DIMENSIONS(MM)						
PKG.	W: VERY VERY THIN					
REF.	MIN.	NOM.	MAX			
Α	0.70	0.75	0.80			
A1	0.00	_	0.05			
А3	0.2 REF.					
D	2.95	3.00	3.05			
E	2.95	3.00	3.05			
Ь	0.18	0.25	0.30			
L	0.30	0.40	0.50			
D2	1.55	1.70	1.80			
E2	1.55	1.70	1.80			
е	0.5 BSC					

PACKAGE OUTLINE DIMENSIONS: UTQFN 1.8x2.6 -16L

SIDE VIEW

COMMON DIMENSIONS(MM)							
PKG.	UT	UT:ULTRA THIN					
REF.	MIN.	N□M.	MAX				
Α	>0,50	0.55	0.60				
A1	0.00	_	0.05				
A3	0.15 RFF.						
D	1,75	1.80	1,85				
E	2,55	2.60	2,65				
L	0,30	0.40	0.50				
ь	0.15	0.20	0,25				
6	0.40 BSC						