BCT4224

USB2.0 High-Speed 4:1 Mux/DeMux Switch

GENERAL DESCRIPTION

The BCT4224 is a high bandwidth, fast dual 4-Channels (DP4T) Analog Mux/DeMux Switch. Wide bandwidth and low bit-to-bit skew allow it to pass high-speed differential signals with good signal integrity. Each switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Industry-leading advantages include a propagation delay, resulting from its low channel resistance and low I/O capacitance. Its high channel-to-channel crosstalk rejection results in minimal noise interference.

The BCT4224 is available in QFN2.6x1.8-16L package.

FEATURES

VCC Operating Range: 2.3V ~ 5.5V

Analog Signal Range: 0V ~ 3.6V

Differential -3dB Bandwidth: 1.6GHz Typical

Off Isolation: -44dB@240MHz-28dB@800MHz

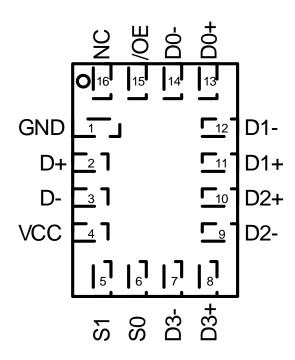
• R_{ON}: 3.0Ω Typical

• ESD Tolerance 4kV HBM on all pins

QFN16L 2.6x1.8mm Package

APPLICATIONS

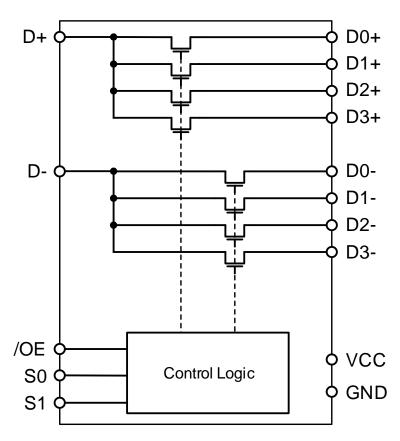
- Smart Phones
- Laptops
- USB 2.0 High Speed Data Switching


ORDERING INFORMATION

Order Number	Package Type	Temperature Range	Marking	QTY/Reel
BCT4224EFE-TR	QFN2.6x1.8-16L	-40°C to +85°C	KPPK XXXXX	3000

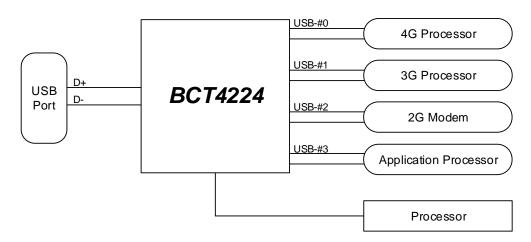
Note:

1."XXXXX" in Marking will be appeared as the batch code.


PIN CONFIGURATION (Top View)

PIN DESCRIPTION

Pin Number	Symbol	Description
1	GND	Ground
2	D+	D+ Common Port (HS or FS USB)
3	D-	D- Common Port (HS or FS USB)
4	VCC	Power Supply
5	S1	Path Selection Control Input
6	S0	Path Selection Control Input
7	D3-	D- From Fourth Source Path (HS or FS USB)
8	D3+	D+ From Fourth Source Path (HS or FS USB)
9	D2-	D- From Third Source Path (HS or FS USB)
10	D2+	D+ From Third Source Path (HS or FS USB)
11	D1+	D+ From Second Source Path (HS or FS USB)
12	D1-	D- From Second Source Path (HS or FS USB)
13	D0+	D+ From First Source Path (HS or FS USB)
14	D0-	D- From First Source Path (HS or FS USB)
15	/OE	Enable Control Input
16	NC	Not Connect


BLOCK DIAGRAM

TRUTH TABLE

Enable	Enable Select		- Function	
/OE	S1	S0	Function	
Н	X	X	D+, D- Switch Paths Open	
L	L	L	D+=D0+, D-=D0-	
L	L	Н	D+=D1+, D-=D1-	
L	Н	L	D+=D2+, D-=D2-	
L	Н	Н	D+=D3+, D-=D3-	

TYPICAL APPLICATIONS

ABSOLUTE MAXIMUM RATINGS

VCC to GND	-0.5V to +6.0V
All Other Pins to GND	0.5V to (VCC + 0.3V)
Continuous Current (D+/-, Dn+/-)	±120mA
Continuous Power Dissipation	0.4W
Operating Temperature Range	
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+260°C

ESD Protection

Human Body Model	All Pins	+ 1 L \ /
Human Body Wodel	All Pins	. + 4KV

Note:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. Broadchip recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Broadchip reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact Broadchip sales office to get the latest datasheet.

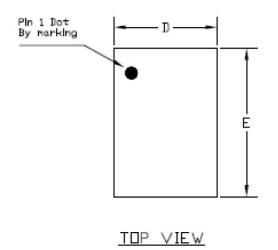
ELECTRICAL CHARACTERISTICS

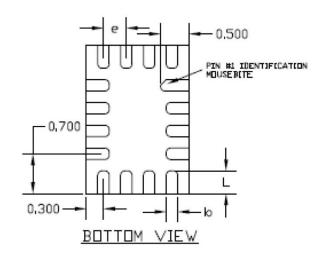
(VCC = 2.3V to 5.5V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 3.6V, TA = +25°C.) $^{(2)}$

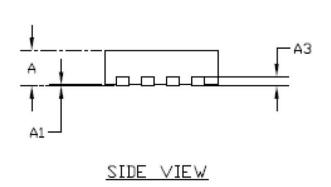
PARAMETER	SYM	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Supply Voltage Range	VCC		2.3		5.5	V
Supply Current	Icc	VCC=3.6V, S =0 or VCC, D+/-, Dn+/- = floating		37		uA
Analog Signal Range			0		3.6	V
On Registeres (3)	Ron	$I_{SW} = 30 \text{mA}, V_{D+}, V_{D-} = 0 \text{V}$		3.0	4.5	Ω
On-Resistance (3)		$I_{SW} = 30 \text{mA}, V_{D+}, V_{D-} = 2.4 \text{V}$		4.0	6.0	
On Besistanes Match (3.4)	△R _{ON}	$I_{SW} = 30 \text{mA}, V_{D+}, V_{D-} = 0 \text{V}$		0.2		
On-Resistance Match ^(3,4)		$I_{SW} = 30 \text{mA}, V_{D+}, V_{D-} = 2.4 \text{V}$		0.2		Ω
On-Resistance Flatness ⁽⁵⁾	R _{FLAT}	$I_{SW} = 30 \text{mA}, V_{D+}, V_{D-} = 0 \text{ to } 2.4 \text{V}$		1.0		Ω
D+, D-, Dn+, Dn- Power off Leakage Current	I _{OFF}	$VCC=0V$, $V_{SW}=0$ to 3.6V			1	uA
D+, D-, Dn+, Dn- Off Leakage Current	l _{OZ}	Switch off, V _{SW} = 0 to 3.6V			1	uA
Input-Logic High	V _{IH}	VCC =2.3V to 5.5V	1.5			V
Input-Logic Low	V _{IL}	VCC =2.3V to 5.5V			0.4	V
Input Leakage Current	I _{IN}	$V_{IN} = 0$ to 5.5V, Vin=S or OE	-1		1	uA

ELECTRICAL CHARACTERISTICS

(VCC = 2.3V to 5.5V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 3.6V, TA = +25°C.) $^{(2)}$


PARAMETER	SYM	CONDITIONS	MIN	TYP	MAX	UNITS	
DYNAMIC CHARACTERISTICS							
Turn-On Time	Ton	V_{Dn+} or $V_{Dn-} = 1.5V$, RL = 50Ω , CL = $35pF$		0.4	0.8	uS	
Turn-Off Time	T _{OFF}	V_{Dn+} or $V_{Dn-} = 1.5V$, RL = 50Ω , CL = $35pF$		0.4	0.8	uS	
Break-Before-Make Time	T_BBM	V_{Dn+} and V_{Dn-} = 1.5V, RL = 50 Ω , CL = 35pF	5	30		nS	
On-Channel Bandwidth -3dB	BW	RL = 50Ω		1.6		GHz	
Differential Incert Lead	DIL	RL = 50Ω, f = 240MHz		-0.5		- dB	
Differential Insert Loss		RL = 50Ω, f = 800MHz		-1.2		uБ	
Off looks to	0	RL = 50Ω, f = 240MHz		-44		10	
Off-Isolation	O _{IRR}	RL = 50Ω , f = 800 MHz -28		- dB			
Crosstalk ⁽⁶⁾	~	RL = 50Ω, f = 240MHz		-43		40	
	X _{TALK}	RL = 50Ω, f = 800MHz		-32		dB	
D+,D- Off-Capacitance	C _{OFF}	f = 1MHz		2.6		pF	
D+,D- On-Capacitance	C _{ON}	f = 1MHz		3.7		pF	


NOTES:


- 2: Devices are 100% tested at TA = +25°C. Limits across the full temperature range are guaranteed by design and correlation.
- 3: RON and RON matching specifications are guaranteed by design,
- 4: $\triangle RON = RON(MAX) RON(MIN)$.
- 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over the specified analog signal ranges.
- 6: Between any two switches.

PACKAGE OUTLINE DIMENSIONS

COMMON DIMENSIONS(mm)						
PKG.	TU	:ULTRA T	HIN			
REF.	MIN.	NOM.	MAX.			
Α	>0.50	0.55	0.60			
A1	0.00	-	0.05			
А3	0.15 REF.					
D	1.75	0.18	1.85			
E	2.55	2.60	2.65			
L	0.30	0.40	0.50			
b	0.15	0.20	0.25			
е	0.40 BSC					