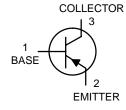
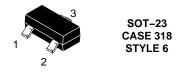
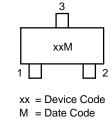
Preferred Devices

General Purpose Transistors

PNP Silicon


Features


• Pb–Free Packages are Available


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC856 BC857 BC858, BC859	V _{CEO}	-65 -45 -30	V
Collector-Base Voltage BC856 BC857 BC858, BC859	V _{CBO}	-80 -50 -30	V
Emitter-Base Voltage	V _{EBO}	-5.0	V
Collector Current – Continuous	Ι _C	-100	mAdc

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1) $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	556	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	–55 to +150	°C

1. FR-5 = 1.0 x 0.75 x 0.062 in.

2. Alumina = 0.4 x 0.3 x 0.024 in 99.5% alumina.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Мах	Unit
OFF CHARACTERISTICS						
$(I_{\rm C} = -10 \text{ mA})$ BC85	6 Series 7 Series 8, BC859 Series	V _{(BR)CEO}	-65 -45 -30	- - -	- - -	V
$(I_{C} = -10 \ \mu A, V_{EB} = 0)$ BC85	6 Series 7A, BC857B Only 8, BC859 Series	V _{(BR)CES}	-80 -50 -30	- - -	- - -	V
(I _C = -10 μA) BC85	6 Series 7 Series 8, BC859 Series	V _{(BR)CBO}	-80 -50 -30	- - -	- - -	V
$(I_{\rm E} = -1.0 \ \mu {\rm A})$ BC85	6 Series 7 Series 8, BC859 Series	V _{(BR)EBO}	-5.0 -5.0 -5.0	- - -	- - -	V
Collector Cutoff Current (V _{CB} = -30 V) (V _{CB} = -30 V, T _A = 150° C)		I _{CBO}	-		-15 -4.0	nA μA
ON CHARACTERISTICS						
$\begin{array}{ll} \mbox{DC Current Gain} & \mbox{BC856A, BC857} \\ \mbox{(I}_{C} = -10 \ \mu \mbox{A, V}_{CE} = -5.0 \ \mbox{V}) & \mbox{BC856B, BC857} \\ \mbox{BC857C, BC858} \end{array}$	B, BC858B	h _{FE}	- - -	90 150 270	_ _ _	_
(I _C = -2.0 mA, V _{CE} = -5.0 V) BC856A, BC857/ BC856B, BC857/ BC857C, BC858	B, BC858B, BC859B		125 220 420	180 290 520	250 475 800	
Collector – Emitter Saturation Voltage ($I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$) ($I_C = -100 \text{ mA}, I_B = -5.0 \text{ mA}$)		V _{CE(sat)}	-		-0.3 -0.65	V
Base – Emitter Saturation Voltage ($I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$) ($I_C = -100 \text{ mA}, I_B = -5.0 \text{ mA}$)		V _{BE(sat)}	- -	-0.7 -0.9		V
Base – Emitter On Voltage $(I_{C} = -2.0 \text{ mA}, V_{CE} = -5.0 \text{ V})$ $(I_{C} = -10 \text{ mA}, V_{CE} = -5.0 \text{ V})$		V _{BE(on)}	-0.6		-0.75 -0.82	V
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain – Bandwidth Product ($I_C = -10$ mA, $V_{CE} = -5.0$ Vdc, f = 100 MHz)		f _T	100	-	-	MHz
Output Capacitance (V _{CB} = -10 V, f = 1.0 MHz)		C _{ob}	-	-	4.5	pF
Noise Figure (I _C = -0.2 mA, V _{CE} = -5.0 Vdc, R _S = 2.0 k Ω , f = 1 BC856, BC857, F BC859 Series		NF	-		10 4.0	dB

BC857/BC858/BC859

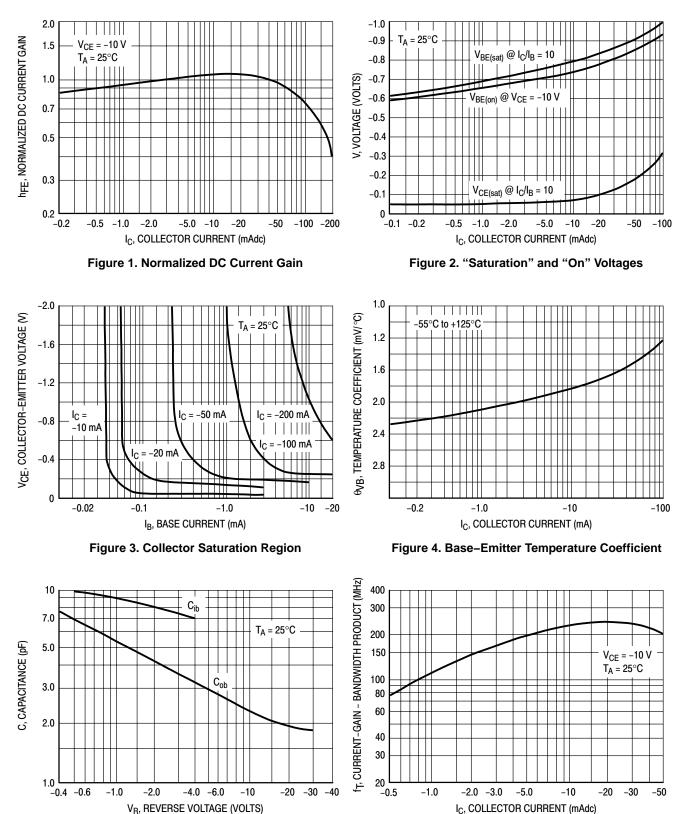
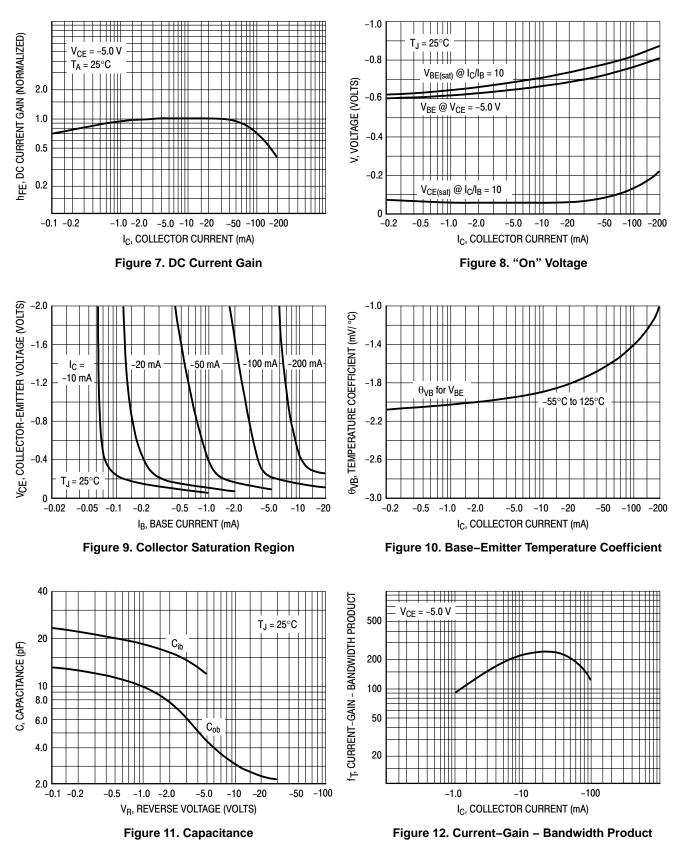



Figure 5. Capacitances

Figure 6. Current-Gain – Bandwidth Product

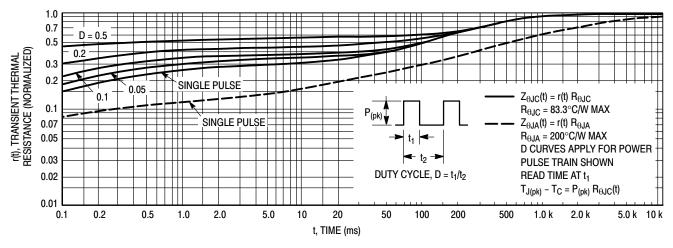


Figure 13. Thermal Response

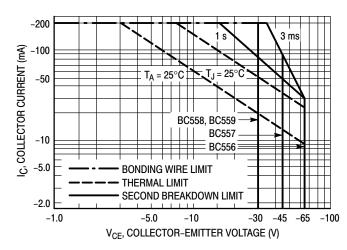
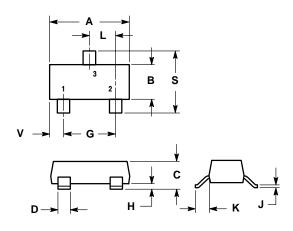


Figure 14. Active Region Safe Operating Area

The safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 14 is based upon $T_{J(pk)} = 150^{\circ}C$; T_C or T_A is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.


ORDERING INFORMATION

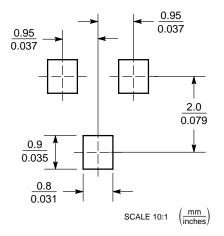
Device	Marking	Package	Shipping [†]
BC856ALT1	3A	SOT-23	3,000 / Tape & Reel
BC856ALT3	3A	SOT-23	10,000 / Tape & Reel
BC856BLT1	3B	SOT-23	
BC856BLT1G	3В	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC856BLT3	3B	SOT-23	10,000 / Tape & Reel
BC857ALT1	3E	SOT-23	3,000 / Tape & Reel
BC857BLT1	3F	SOT-23	3,000 / Tape & Reel
BC857BLT3	3F	SOT-23	
BC857BLT3G	3F	SOT-23 (Pb-Free)	10,000 / Tape & Reel
BC857CLT1	3G	SOT-23	3,000 / Tape & Reel
BC857CLT1G	3G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC858ALT1	3J	SOT-23	
BC858ALT1G	3J	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC858BLT1	ЗК	SOT-23	
BC858BLT1G	ЗК	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC858BLT3	3L	SOT-23	10,000 / Tape & Reel
BC858CLT1	3L	SOT-23	
BC858CLT1G	3L	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC858CLT3	3L	SOT-23	
BC858CLT3G	3L	SOT-23 (Pb-Free)	10,000 / Tape & Reel
BC859BLT1	4B	SOT-23	3,000 / Tape & Reel
BC859BLT3	4B	SOT-23	10,000 / Tape & Reel
BC859CLT1	4C	SOT-23	3,000 / Tape & Reel
BC859CLT3	4C	SOT-23	10,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-09 **ISSUE AI**

NOTES:


- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 MAXIUMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 318-01, -02, AND -06 OBSOLETE, NEW STANDARD 318-09.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.1102	0.1197	2.80	3.04
в	0.0472	0.0551	1.20	1.40
С	0.0385	0.0498	0.99	1.26
D	0.0140	0.0200	0.36	0.50
G	0.0670	0.0826	1.70	2.10
н	0.0040	0.0098	0.10	0.25
J	0.0034	0.0070	0.085	0.177
к	0.0180	0.0236	0.45	0.60
L	0.0350	0.0401	0.89	1.02
S	0.0830	0.0984	2.10	2.50
v	0.0177	0.0236	0.45	0.60

STYLE 6: PIN 1.

1. BASE 2. EMITTER 3. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters witch with seven the validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in the He SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use pays and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons and reasonable attorney fees arising out of the resin all claims, costs, damages, and expenses, and reas

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.