General Purpose Transistors

NPN Silicon

These transistors are designed for general purpose amplifier applications. They are housed in the SC-75/SOT-416 package which is designed for low power surface mount applications.

Features

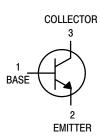
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- Pb-Free Packages are Available

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Max	Unit
Collector–Emitter Voltage	V _{CEO}	45	V
Collector-Base Voltage	V _{CBO}	50	V
Emitter-Base Voltage	V _{EBO}	6.0	V
Collector Current – Continuous	Ic	100	mAdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation, FR-4 Board (Note 1) T _A = 25°C	P _D	200	mW
Derated above 25°C		1.6	mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{ heta JA}$	600	°C/W
Total Device Dissipation, FR-4 Board (Note 2) T _A = 25°C Derated above 25°C	P _D	300	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	400	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

- 1. FR-4 @ min pad.
- 2. FR-4 @ 1.0 × 1.0 in pad.

ON Semiconductor®

http://onsemi.com

CASE 463 SC-75/SOT-416 STYLE 1

MARKING DIAGRAM

XX = Device Code M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	<u>'</u>		•	•	•
Collector – Emitter Breakdown Voltage (I _C = 10 mA) BC847 Series	V _{(BR)CEO}	45	-	_	V
Collector – Emitter Breakdown Voltage ($I_C = 10 \mu A, V_{EB} = 0$) BC847 Series	V _{(BR)CES}	50	-	-	V
Collector – Base Breakdown Voltage ($I_C = 10 \mu A$) BC847 Series	V _{(BR)CBO}	50	-	-	V
Emitter – Base Breakdown Voltage (I _E = 1.0 μA) BC847 Series	V _{(BR)EBO}	6.0	-	-	V
Collector Cutoff Current ($V_{CB} = 30 \text{ V}$) ($V_{CB} = 30 \text{ V}$, $T_A = 150^{\circ}\text{C}$)	I _{CBO}	- -	- -	15 5.0	nA μA
ON CHARACTERISTICS					
DC Current Gain $ (I_C = 10 \ \mu\text{A}, \ V_{CE} = 5.0 \ V) \\ BC847A \\ BC847B \\ BC847C $	h _{FE}	- - -	90 150 270	- - -	_
$(I_{C} = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$ BC847A BC847B BC847C		110 200 420	180 290 520	220 450 800	
Collector – Emitter Saturation Voltage ($I_C = 10$ mA, $I_B = 0.5$ mA) ($I_C = 100$ mA, $I_B = 5.0$ mA)	V _{CE(sat)}	-	_ _	0.25 0.6	V
Base – Emitter Saturation Voltage ($I_C = 10$ mA, $I_B = 0.5$ mA) ($I_C = 100$ mA, $I_B = 5.0$ mA)	V _{BE(sat)}	-	0.7 0.9	- -	V
Base – Emitter Voltage (I_C = 2.0 mA, V_{CE} = 5.0 V) (I_C = 10 mA, V_{CE} = 5.0 V)	V _{BE(on)}	580 -	660 -	700 770	mV
SMALL-SIGNAL CHARACTERISTICS			•	•	
Current – Gain – Bandwidth Product (I _C = 10 mA, V _{CE} = 5.0 Vdc, f = 100 MHz)	f _T	100	_	_	MHz
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	C _{obo}	_	_	4.5	pF
Noise Figure (I _C = 0.2 mA, V_{CE} = 5.0 Vdc, R_S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	_	_	10	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

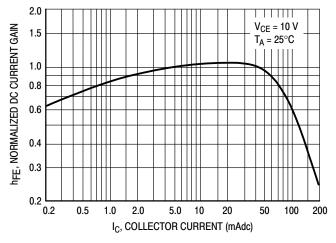


Figure 1. Normalized DC Current Gain

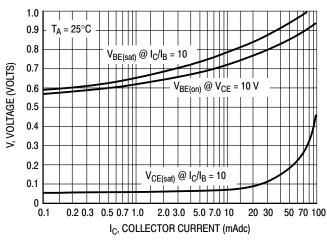


Figure 2. "Saturation" and "On" Voltages

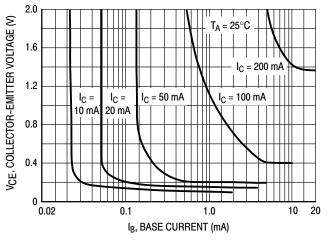


Figure 3. Collector Saturation Region

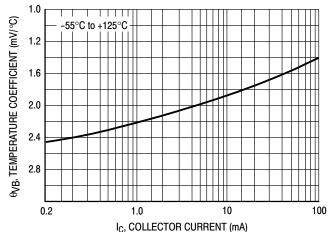


Figure 4. Base-Emitter Temperature Coefficient

BC847

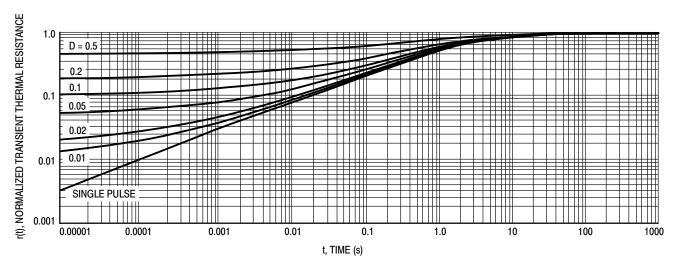


Figure 5. Normalized Thermal Response

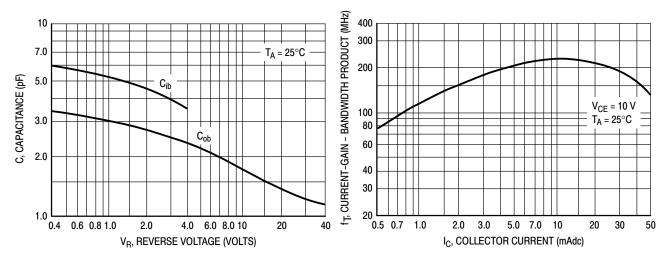
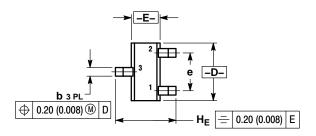
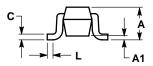


Figure 6. Capacitances

Figure 7. Current-Gain - Bandwidth Product

ORDERING INFORMATION


Device	Marking	Package	Shipping [†]
BC847ATT1	1E	SC-75/SOT-416	3,000 / Tape & Reel
BC847BTT1	1F	SC-75/SOT-416	
BC847BTT1G	1F	SC-75/SOT-416 (Pb-Free)	3,000 / Tape & Reel
NSVBC847BTT1G*	1F	SC-75/SOT-416 (Pb-Free)	3,000 / Tape & Reel
BC847CTT1G	1G	SC-75/SOT-416 (Pb-Free)	3,000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP

Capable.

PACKAGE DIMENSIONS

SC-75/SOT-416 CASE 463 ISSUE F

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.

	NALL	LIBACTO	DC.	INCLIES		
	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.15	0.20	0.30	0.006	0.008	0.012
С	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.059	0.063	0.067
E	0.70	0.80	0.90	0.027	0.031	0.035
е	1.00 BSC			C	.04 BSC	
L	0.10	0.15	0.20	0.004	0.006	0.008
HE	1.50	1.60	1.70	0.061	0.063	0.065

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical expents. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative