


# GENERAL PURPOSE TRANSISTOR

#### **DESCRIPTION**

The BC141-16 is a silicon Planar Epitaxial NPN transistor in Jedec TO-39 metal case. It is particularly designed for audio amplifiers and switching application up to 1A.

The complementary PNP type is the BC161-16.





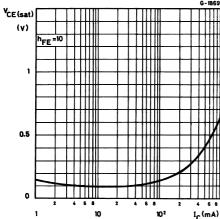
#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Parameter                                      | Value      | Unit |  |
|------------------|------------------------------------------------|------------|------|--|
| V <sub>CBO</sub> | Collector-Base Voltage (I <sub>E</sub> = 0)    | 100        | V    |  |
| V <sub>CEO</sub> | Collector-Emitter Voltage (I <sub>B</sub> = 0) | 60         | V    |  |
| V <sub>EBO</sub> | Emitter-Base Voltage (I <sub>C</sub> = 0)      | 7          | V    |  |
| Ic               | Collector Current                              | 1          | А    |  |
| lΒ               | Base Current                                   | 0.1        | А    |  |
| P <sub>tot</sub> | Total Dissipation at T <sub>amb</sub> ≤ 25 °C  | 0.65       | W    |  |
|                  | at T <sub>C</sub> ≤ 25 °C                      | 3.7        | W    |  |
| T <sub>stg</sub> | Storage Temperature                            | -55 to 175 | °C   |  |
| Tj               | Max. Operating Junction Temperature            | 175        | °C   |  |

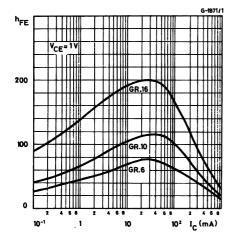
January 2003 1/5

#### THERMAL DATA

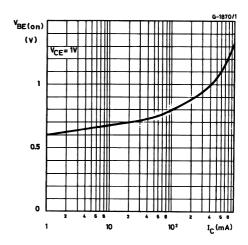
| R <sub>thj-case</sub> | Thermal Resistance Junction-Case    |     | 35  | °C/W |
|-----------------------|-------------------------------------|-----|-----|------|
| R <sub>thj-amb</sub>  | Max                                 |     | 200 | °C/W |
|                       | Thermal Resistance Junction-Ambient | Max |     |      |


## **ELECTRICAL CHARACTERISTICS** ( $T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

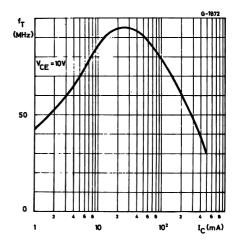
| Symbol Parameter       |                                                                | Test Conditions                                                                                                                                        | Min. | Тур.               | Max.       | Unit        |
|------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|------------|-------------|
| I <sub>CES</sub>       | Collector Cut-off<br>Current (V <sub>BE</sub> = 0)             | V <sub>CE</sub> = 60 V<br>V <sub>CE</sub> = 60 V T <sub>C</sub> = 150 °C                                                                               |      |                    | 100<br>100 | nΑ<br>μΑ    |
| $V_{(BR)CBO}^*$        | Collector-Base<br>Breakdown Voltage<br>(I <sub>E</sub> = 0)    | I <sub>C</sub> = 100 μA                                                                                                                                | 100  |                    |            | V           |
| $V_{(BR)CEO^*}$        | Collector-Emitter<br>Breakdown Voltage<br>(I <sub>B</sub> = 0) | I <sub>C</sub> = 30 mA                                                                                                                                 | 60   |                    |            | V           |
| $V_{(BR)EBO}^*$        | Emitter-Base<br>Breakdown Voltage<br>(I <sub>C</sub> = 0)      | I <sub>E</sub> = 100 μA                                                                                                                                | 7    |                    |            | V           |
| V <sub>CE(sat)</sub> * | Collector-Emitter<br>Saturation Voltage                        | $I_{C} = 100 \text{ mA}$ $I_{B} = 10 \text{ mA}$<br>$I_{C} = 500 \text{ mA}$ $I_{B} = 50 \text{ mA}$<br>$I_{C} = 1 \text{ A}$ $I_{B} = 100 \text{ mA}$ |      | 0.1<br>0.35<br>0.6 | 1          | V<br>V<br>V |
| V <sub>BE(on)</sub> *  | Base-Emitter On<br>Voltage                                     | I <sub>C</sub> = 1 A V <sub>CE</sub> = 1 V                                                                                                             |      | 1.25               | 1.8        | V           |
| h <sub>FE</sub> *      | DC Current Gain                                                | I <sub>C</sub> = 100 μA                                                                                                                                | 100  | 90<br>160<br>30    | 250        |             |
| $f_{T}$                | Transition Frequency                                           | $I_C = 50 \text{ mA}$ $V_{CE} = 10 \text{ V}$                                                                                                          | 50   |                    |            | MHz         |
| Ссво                   | Collector-Base<br>Capacitance                                  | $I_E = 0$ $V_{CB} = 5 V$ $f = 1MHz$                                                                                                                    |      | 12                 | 25         | pF          |
| $t_{on}$               | Turn-on Time                                                   | $I_{C} = 100 \text{ mA}$ $I_{B1} = 5 \text{ mA}$                                                                                                       |      |                    | 250        | ns          |
| t <sub>off</sub>       | Turn-off Time                                                  | $I_C = 100 \text{ mA}$ $I_{B1} = I_{B2} = 5 \text{ mA}$                                                                                                |      |                    | 850        | ns          |


<sup>\*</sup> Pulsed: Pulse duration = 300 μs, duty cycle ≤ 1 %

2/5

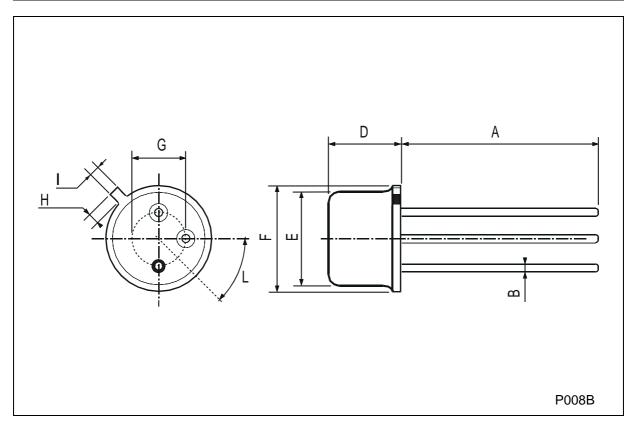

#### Collector-emitter Saturation Voltage.




DC Curent Gain.



#### Base-emitter Voltage.




### Transiition Frequency.



## **TO-39 MECHANICAL DATA**

| DIM. | mm         |      | inch |       |      |       |
|------|------------|------|------|-------|------|-------|
|      | MIN.       | TYP. | MAX. | MIN.  | TYP. | MAX.  |
| А    | 12.7       |      |      | 0.500 |      |       |
| В    |            |      | 0.49 |       |      | 0.019 |
| D    |            |      | 6.6  |       |      | 0.260 |
| Е    |            |      | 8.5  |       |      | 0.334 |
| F    |            |      | 9.4  |       |      | 0.370 |
| G    | 5.08       |      |      | 0.200 |      |       |
| Н    |            |      | 1.2  |       |      | 0.047 |
| ı    |            |      | 0.9  |       |      | 0.035 |
| L    | 45° (typ.) |      |      |       |      |       |



4/5

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

