Standard ICs

Dual operational amplifier BA728 / BA728F / BA728N

The BA728, BA728F, and BA728N are ICs with two independently functioning operational amplifiers featuring internal phase compensation. These products offer a wide range of operating voltages, from 3 to 18V (± 1.5 to 9V) and are high-performance operational amplifiers which can be driven from a single power supply within the in-phase mode input range, including a negative power supply.

Applications

Ground sensing small-signal amplifiers Control amplifiers requiring high phase margin, such as motor drivers Amplifiers operated on low voltages Capacitive loaded amplifiers

Features

- 1) Can be driven from a single power supply.
- 2) Low power.
- 3) Pin layout is the same as that of the generalpurpose 4558 operational amplifier.
- 4) When driven from a single power supply, the power supply voltage ranges from 3 to 18V.
- 5) When driven from a dual power supply, the power

supply voltage ranges from \pm 1.5 to \pm 9V.

- 6) Output is protected against short-circuits.
- 7) Output block is operated as a class AB to minimize crossover distortion.
- 8) Low input bias current of 10nA (tvp.).
- 9) Each package contains two operational amplifiers.
- 10) Internal phase compensation provided.

Block diagram

Internal circuit configuration

Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol		Unit			
Farameter		BA728	BA728F	BA728N	Unit	
Power supply voltage	Vcc	18 (± 9)	18 (± 9)	18 (± 9)	V	
Power dissipation	Pd	800*	550*	550*	mW	
Differential input voltage	Vid	Vcc	Vcc	Vcc	V	
Common-mode input voltage	Vi	– 0.3 ~ + Vcc	– 0.3 ~ + Vcc	– 0.3 ~ + Vcc	V	
Operating temperature	Topr	– 20 ~ + 75	– 20 ~ + 75	– 20 ~ + 75	°C	
Storage temperature	Tstg	– 55 ~ + 125	– 55 ~ + 125	– 55 ~ + 125	°C	

* Refer to Pd characteristics diagram.

* The values for the BA728Fare those when it is mounted on a glass epoxy PCB (50mm × 50mm × 1.6mm).

•Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = + 6V, VEE = - 6V)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions
Input offset voltage		Vio	_	2	10	mV	
Input offset current		lio	_	1	50	nA	
Input bias current		Ів	_	10	250	nA	
High-amplitude voltage gain		Av	86	100	_	dB	$R_{L} \geqq 2k\Omega$
Common-mode input voltage		VICM	4~-6	4.5 ~ - 6	_	V	
Maximum output voltage		Vом	± 3.0	± 4.5		V	$R_{L} \geqq 2k\Omega$
Common mode rejection ratio		CMRR	70	90		dB	
Power supply voltage rejection ratio		PSRR	_	30	150	μV / V	
Slew rate		S. R.	_	0.7		V / μs	A∨ = 1, R∟ = 2kΩ
Maximum frequency		f⊤	_	0.7		MHz	
Channel separation		CS	_	120		dB	
Maximum output current	source	Isource	_	20	_	mA	$V_{IN}^{+} = 1V, V_{IN}^{-} = 0V$
	sink	Isink	_	10		mA	$V_{IN}^{-} = 1V, V_{IN}^{+} = 0V$

Measurement circuits

power supply voltage

Fig. 1 Channel separation measurement circuit

Electrical characteristic curves 1200 30 POWER DISSIPATION: Pd (mW) 000 000 000 000 000 000 000 000 BA728 QUIESCENT CURRENT: Ia (mA) INPUT BIAS CURRENT: Id (nA) 20 2 BA72 10 BA728 0 0 0 25 50 75 100 125 150 0 10 20 10 20 AMBIENT TEMPERATURE: Ta (°C) POWER SUPPLY VOLTAGE: V + (V) POWER SUPPLY VOLTAGE: V + (V) Fig.2 Power dissipation vs. ambient Fig.3 Quiescent current vs. Fig.4 Input bias current vs. temperature power supply voltage power supply voltage 160 40 120 OPEN LOOP VOLTAGE GAIN: Av (dB) OPEN LOOP VOLTAGE GAIN: Av (dB) 100 OUTPUT CURRENT: Io (mA) 30 80 120 20 60 40 10 80 20 0 0 L 0 10 20 0 20 40 60 80 20 10k 100k 1M 10M 10 100 1k POWER SUPPLY VOLTAGE: V + (V) AMBIENT TEMPERATURE: Ta (°C) FREQUENCY: f (Hz) Fig.5 Open loop voltage gain vs. Fig.6 Current control characteristics

Tig.r

•Electrical characteristic curve

Operation notes

(1)Unused circuit connections

If there are any circuits which are not being used, we recommend making connections as shown in Figure 11, with the non-inverted input pin connected to the potential within the in-phase input voltage range (VICM).

•External dimensions (Units: mm)

ROHM