

STRUCTURE SILICON MONOLITHIC INTEGRATED CIRCUIT

FUNCTION GROUND SENSE DUAL OPERATIONAL AMPLIFIERS

PRODUCT SERIES BA2902HFV-C

FEATURES • Wide operating temperature range (-40∼+125[°C])

• Operable with a single power supply. $(3[V] \sim 32[V])$

OABSOLUTE MAXIMUM RATINGS(Ta=25[°C])

Parameter	Symbol Rating		Unit
Supply Voltage	VCC-VEE	+36	٧
Power dissipation	Pd	870 (*1) (*2)	mW
Differential Input Voltage (*3)	Vid	36	٧
Input Common-mode Voltage Range	Vicm	(VEE−0. 3) ~VEE+36	٧
Operating Temperature	Topr	-40∼+125	°C
Storage Temperature Range	Tstg	-55 ~ +150	°C
Maximum junction Temperature	Tjmax	150	°C

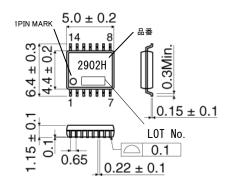
[•] This IC is not designed for protection against radioactive rays.

- (*1) To use at temperature above $Ta=25[^{\circ}C]$ reduce $7[mW]/[^{\circ}C]$.
- (*2) Mounted on a glass epoxy PCB ($70[mm] \times 70[mm] \times 1.6[mm]$).
- (*3) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE.

OOPERATING CONDITION (Ta=-40[$^{\circ}$ C] \sim +125[$^{\circ}$ C])

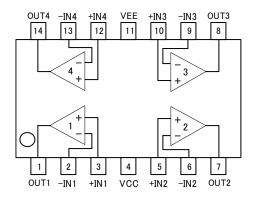
Parameter	Symbol	Rating	Unit
Supply Voltage	V00	+3.0~+32.0 (Single Supply)	V
	VCC		٧

OELECTRICAL CHARACTERISTICS (unless otherwise specified VCC=+5[V], VEE=0[V], full range: $-40[^{\circ}C]$ to +125[$^{\circ}C$])


	Symbol	Temperature Guaranteed Limit						
Parameter		Range	Min.	Тур.	Max.	Unit	Condition	
Input Offset Voltage (*4)	W:	25°C	-	2	7	mV	VOUT=1. 4[V]	
	Vio	full range	-	-	7		VCC=5~30[V], VOUT=1.4[V]	
Input Offset Current (*4)	lio	25°C	-	2	50	nA	VOUT=1. 4[V]	
		full range	-	-	100			
Input Bias Current (*4)	Ib	25°C	-	20	60	nA	VOUT=1. 4[V]	
		full range	-	-	100			
Supply Current	ICC	25°C	-	0.7	2		DI All On Amma	
	100	full range	-	-	3	mA	RL=∞ All Op-Amps	
High Level Output Voltage	VOH	25°C	3.5	-	-	V	DI ASI O I	
		full range	3. 2	-	-		RL=2[kΩ]	
		full range	27	28	-		VCC=30[V], RL=10[kΩ]	
Low Level Output Voltage	VOL	full range	-	5	20	mV	RL=∞ All Op-Amps	
arge Signal Voltage Gain	41/	25°C	25	100	-	V/mV	RL $\ge 2[k\Omega]$, VCC=15[V] VOUT=1.4~11.4[V]	
	AV	full range	25	-	-			
Input Common-mode		25°C	0	-	VCC-1. 5	.,	(VOO VEE) EEVE VOUT VEE 4 4EVE	
Voltage Range	Vicm	full range	0	-	VCC-2. 0	٧	(VCC-VEE) =5 [V], VOUT=VEE+1. 4 [V]	
Common-mode Rejection Ratio	CMRR	25°C	65	80	-	dB	VOUT=1. 4[V]	
Power Supply Rejection Ratio	PSRR	25°C	65	100	-	dB	VCC=5~30[V]	
Output Source Current (*5)	IOH	25°C	20	30	-	mA	VIN+=1[V], VIN-=0[V], VOUT=0[V], only 1CH output short	
		full range	10	-	-			
Output Sink Current (*5)	IOL	25°C	10	20	-	mA	VIN+=0[V], VIN-=1[V], VOUT=5[V],	
		full range	2. 0	-	-		only 1CH output short	
	Isink	25°C	12	40	-	μA	VIN+=0[V], VIN-=1[V], VOUT=200[mV]	

^(*4) Absolute value.

^(*5) Under the high temperature environment, consider the power dissipation of IC when select the output current. When output terminal short circuits continuously, the output current reduce to climb junction temperature.



OPhysical Dimensions

BA2902HFV-C(SSOP-B14)(単位:[mm])

OBlock Diagram

FV:SSOP-B14

OPin No. • Pin Name

PIN NO.	PIN NAME
1	OUT1
2	- I N1
3	+ I N1
4	VCC
5	+1N2
6	-IN2
7	OUT2
8	OUT3
9	-IN3
10	+1N3
11	VEE
12	+1N4
13	-IN4
14	OUT4

OAPPLICATION EXAMPLE

(1) Absolute maximum ratings

Absolute maximum ratings are the values which indicate the limits, within which the given voltage range can be safely charged to the terminal. However, it does not guarantee the circuit operation.

(2) The example of disabled circuit application

When there is a circuit not in use, it is recommended to make the non-inverting input terminal be the potential in the common-mode input voltage range like in Fig. 1.

Circuit operation is guaranteed within "Operating Conditions".

(3) Applied voltage to the input terminal

For normal circuit operation, please input voltage for its input terminal within input common mode voltage].

Then, regardless of power supply voltage, VEE+36[V] can be applied to input terminals without deterioration or destruction of its characteristics.

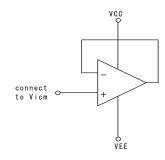


Fig. 1 The example of disabled circuit

(4) Operating power supply (split power supply/single power supply)

The OP-Amp operates if a given level of voltage is applied between VCC and VEE. Therefore, the OP-Amp can be operated under single power supply or split power supply.

(5) Power dissipation (Pd)

If the IC is used under excessive power dissipation. An increase in the chip temperature will cause deterioration of the radical characteristics of IC.

For example, reduction of current capability. Take consideration of the effective power dissipation and thermal design with a sufficient margin. Pd is reference to the provided power dissipation curve.

(6) Short circuits between pins and incorrect mounting

Short circuits between pins and incorrect mounting when mounting the IC on a printed circuits board, take notice of the direction and positioning of the IC.

If IC is mounted erroneously, It may be damaged. Also, when a foreign object is inserted between output, between output and VCC terminal or VEE terminal which causes short circuit, the IC may be damaged.

(7) Using under strong electromagnetic field

Be careful when using the IC under strong electromagnetic field because it may malfunction.

(8) Usage of IC

When stress is applied to the IC through warp of the printed circuit board, The characteristics may fluctuate due to the piezo effect.

Be careful of the warp of the printed circuit board.

(9) Output operation

This IC is configured with a push-pull circuit and Class C output stage. Therefore, when load resistance is connected to the middle point potential of VCC and VEE, this configuration generates crossover distortion when switching between source and sink current.

To suppress crossover distortion, connect a resistor between the output terminal and VEE then increase the bias current to enable Class A operation.

(10) Testing IC on the set board

When testing IC on the set board, in cases where the capacitor is connected to the low impedance, make sure to discharge per fabrication because there is a possibility that IC may be damaged by stress. When removing IC from the set board, it is essential to cut supply voltage.

As a countermeasure against the static electricity, observe proper grounding during fabrication process and take due care when carrying and storage it.

(11) The IC destruction caused by capacitive load

The transistors in circuits may be damaged when VCC terminal and VEE terminal is shorted with the charged output terminal capacitor.

When IC is used as a comparator or as application circuits no constructed negative feed back, where oscillation is not activated by an output capacitor, the output capacitor must be kept below $0.1[\mu F]$ in order to prevent the damage mentioned above.

(12) The oscillation caused by capacitive load

Designed negative feedback circuit using this IC, verify output oscillation caused by capacitive load.

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/