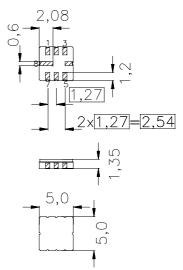


SAW Components

Data Sheet B4935


SAW Components	B4935	
Low Loss Filter for Mo	bile Communication	220,38 MHz
Data Sheet	SMD	

Features

- IF filter for mobile telephone
- Channel selection in CDMA systems, Korean PCS
- Low insertion attenuation
- Extremely high rejection
- Single-ended/single-ended, balanced/single-ended and balanced/balanced operation possible
- Optimized for single-ended/balanced operation
- Very small size
- Package for Surface Mounted Technology (SMT)

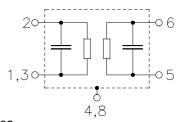
Terminals

Ni, gold plated

Dimensions in mm, approx. weight 0,07 g

Pin configuration

- 2 Input
- 1+3 Input ground or balanced input
- 6 Output
- 5 Output ground or balanced output
- 7 to be grounded
- 4, 8 Case ground


Device is reciprocal, i.e. inputs can be used as outputs and vice versa

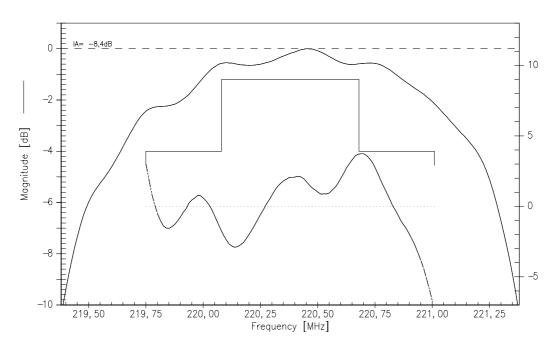
Туре	Ordering code	Marking and Package according to	Packing according to
B4935	B39221-B4935-U310	C61157-A7-A53	F61074-V8070-Z000

Electrostatic Sensitive Device (ESD)

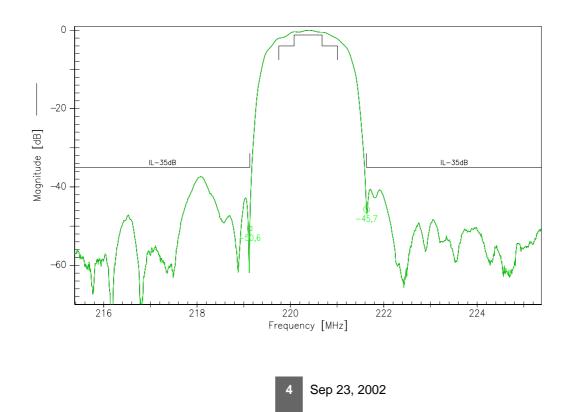
Maximum ratings

Operable temperature range	Т	- 30/+ 85	°C
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C
DC voltage	V _{DC}	13	V
Source power	Ps	10	dBm

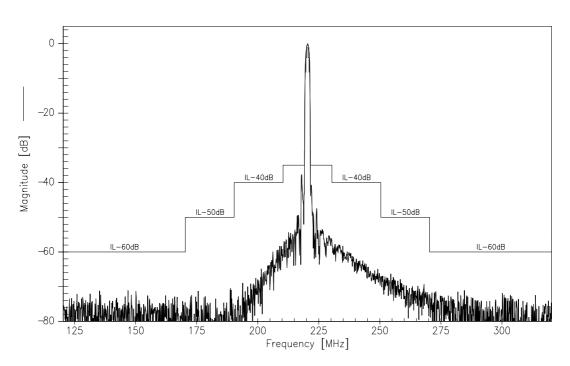
Ceramic package QCC8C


SAW Components							B4935
Low Loss Filter for Mobile Communication					220,38 MHz		
Data Sheet		SN					
Characteristics single-ende	ed/balanced						
Operating temperature:				°C to +80	-		
Terminating source impedar Terminating load impedance				50 Ω 63 nH) Ω 60 nH	4		
	5.	ΖL	= 010				
				min.	typ.	max.	
Nominal frequency			f _N		220,38	—	MHz
Insertion attenuation at f_N (including loss in matching r in baluns)	network without	t loss	$lpha_{fN}$	_	8,2	9,5	dB
Amplitude ripple (p-p)			Δα				
• •• •• •• •• •• •• •• •• •• •• •• •• •	$f_{\rm N} + 0,30$	MHz			05	1,2	dB
Phase linearity			$\Delta \phi$				
(rms deviation)	<i>f</i> _N +0,63	MHz			2,3	3,2	•
/ _N 0,00	/ _N + 0,00	101112			2,0	0,2	
Relative attenuation (relati			α_{rel}				
<i>f</i> _N – 0,63	$f_{\sf N}$ + 0,63	MHz			2,2	4,0	dB
<i>f</i> _N – 100,0	f _N – 50,0	MHz		60,0	73,0	_	dB
$f_{\rm N} - 50,0$	$f_{\rm N} - 30,0$	MHz		50,0	70,0	_	dB
<i>f</i> _N – 30,0	<i>f</i> _N – 10,0	MHz		40,0	62,0		dB
<i>f</i> _N – 10,0	<i>f</i> _N – 1,25	MHz		35,0	39,0		dB
	f _N – 1,25	MHz			45,0	—	dB
	<i>f</i> _N + 1,25	MHz			45,0		dB
	$f_{\rm N} + 10,0$	MHz		35,0	41,0		dB
	$f_{\rm N} + 30,0$	MHz		40,0	62,0		dB
	$f_{\rm N} + 50,0$	MHz		50,0	70,0	—	dB
$f_{\rm N} + 50,0$	<i>f</i> _N +100,0	MHz		60,0	73,0	—	dB
Temperature coefficient o	f frequency ¹⁾		TC _f		-0,036		ppm/K
Frequency inversion point			-				
	•		T_0	_	30		°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$


3

Transfer function (passband, single-ended/balanced):


Transfer function (narrowband, single-ended/balanced):

SAW Components		B4935
Low Loss Filter for Me	obile Communication	220,38 MHz
Data Sheet	SMD	

Transfer function (wideband, single-ended/balanced):

SAW Components	B4935		
Low Loss Filter for Mo	220,38 MHz		
Data Sheet	SMD		

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC WT P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2002. All Rights Reserved. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

The information contained in this brochure describes the type of component and shall not be considered as guaranteed characteristics. Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

