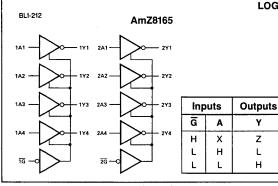
AmZ8165 • AmZ8166 **Octal Dynamic Memory Drivers with Three-State Outputs**

DISTINCTIVE CHARACTERISTICS

- Controlled rise and fall characteristics Internal resistors provide symmetrical drive to HIGH and LOW states, eliminating need for external series resistor.
- Output swings designed to drive 16K and 64K RAMs V_{OH} guaranteed at V_{CC} - 1.15V. Undershoot going LOW guaranteed at less than 0.5V.
- Large capacitive drive capability 35mA min source or sink current at 2.0V. Propagation delays specified for 50pF and 500pF loads.
- Pin-compatible with 'S240 and 'S244 Non-inverting AmZ8166 replaces 74S244: inverting AmZ8165 replaces 74S240. Faster than 'S240/244 under equivalent load.
- No-glitch outputs Outputs forced into OFF state during power up and down.

Note: Pin 1 is marked for orientation.

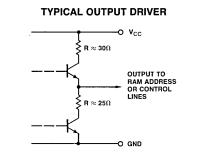


Y

z

L

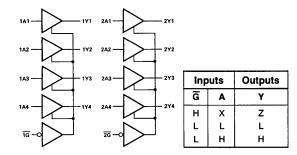
н


FUNCTIONAL DESCRIPTION

The AmZ8165 and AmZ8166 are designed and specified to drive the capacitive input characteristics of the address and control lines of MOS dynamic RAMs. The unique design of the lower output driver includes a collector resistor to control undershoot on the HIGH-to-LOW transition. The upper output driver pulls up to V_{CC} - 1.15V to be compatible with MOS memory and is designed to have a rise time symmetrical with the lower output's controlled fall time. This allows optimization of Dynamic RAM performance.

The AmZ8165 and AmZ8166 are pin-compatible with the popular 'S240 and 'S244 with identical 3-state output enable controls. The AmZ8165 has inverting drivers and the AmZ8166 has non-inverting drivers.

The inclusion of an internal resistor in the lower output driver eliminates the requirement for an external series resistor, therefore reducing package count and the board area required. The internal resistor controls the output fall and undershoot without slowing the output rise.


These devices are designed for use with the AmZ8164 Dynamic Memory Controller where large dynamic memories with highly capacitive input lines require additional buffering. Driving eight address lines or four RAS and four CAS lines with drivers on the same silicon chip also provides a significant performance advantage by minimizing skew between drivers. Each device has specified skew between drivers to improve the memory access worst case timing over the min and max tPD difference of unspecified devices.

LOGIC DIAGRAMS

BLI-213

BLI-211

AmZ8166

AmZ8165 • AmZ8166

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65 to +150°C
Temperature (Ambient) Under Bias	-55 to +125°C
Supply Voltage to Ground Potential Continuous	-0.5 to +7.0V
DC Voltage Applied to Outputs for High Output State	-0.5V to +V _{CC} max
DC Input Voltage	-0.5 to +7.0V
DC Output Current, into Outputs	30mA
DC Input Current	-30 to +5.0mA

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$V_{CC} = 5.0V \pm 10\%$	(MIN = 4.50V	MAX = 5.50V)			
	$V_{CC} = 5.0V \pm 10\%$	(MIN = 4.50V	MAX = 5.50V)			

0----

DC CHARACTERISTICS OVER OPERATING RANGE

Parameters	Descrip	tion	V _{CC} = MIN I _{OH} = -1mA V _{IN} = V _{IH} or V _{IL} I _{OH} = -1mA		Min	Typ (Note 2)	Max	Units
v _{он}	Output High Volt	age			V _{CC} -1.15	V _{CC} -0.7V		Volts
V				I _{OL} = 1mA			0.5	14.11.
V _{OL}	Output LOW Vol	lage	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 12mA$			0.8	Volts
V _{IH}	Input HIGH Leve	1	Guaranteed input lo for all inputs	gical HIGH voltage	2.0			Volts
VIL	Input LOW Level		Guaranteed input lo for all inputs	gical LOW voltage			0.8	Volts
VI	Input Clamp Voltage		V _{CC} = MIN, I _{IN} =	-18mA			-1.2	Volts
կլ	Input LOW Current		$V_{CC} = MAX, V_{IN} = 0.4V$				-200	μA
lн	Input HIGH Curr	ent	$V_{CC} = MAX, V_{IN} = 2.7V$				20	μA
4	Input HIGH Curr	ent	$V_{CC} = MAX, V_{IN} = 7.0V$				0.1	mA
Іодн	Off-State Current		V _O = 2.7V				100	μA
IOZL	Off-State Current	t	$V_0 = 0.4V$				-200	μΑ
IOL	Output Sink Curr	ent	V _{OL} = 2.0V		35		/str	mA
юн	Output Source C	urrent	V _{OH} = 2.0V	V _{OH} = 2.0V				mA
I _{SC}	Output Short Circuit Current (Note 3)		V _{CC} = MAX		−60 (seө I _{OH})		-200	mA
	Supply Current		All Outputs HIGH	V _{CC} = MAX Outputs Open		24	50	
Icc		AmZ8165	All Outputs LOW			86	125	- mA
			All Outputs Hi-Z			86	125	
		AmZ8166	All Outputs HIGH	V _{CC} = MAX Outputs Open		53	75	
			All Outputs LOW			92	130	
			All Outputs Hi-Z			116	150	

Notes: 1. For conditions shown as MIN or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

AmZ8165 • AmZ8166

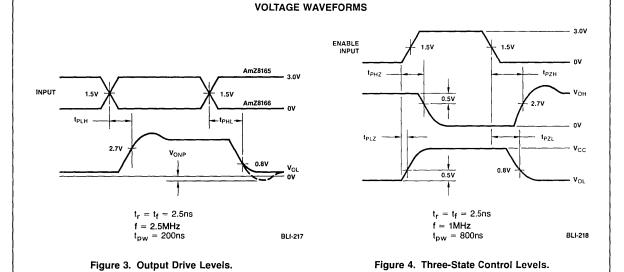
AmZ8165 • AmZ8166 SWITCHING CHARACTERISTICS

 $(T_A = +25^{\circ}C, VCC = 5.0V)$

Parameters	Description	Test Conditio	Min	Тур	Max	Units	
	_		C _L = 0pF		6	(Note 4)	
^t PLH	Propagation Delay Time from LOW-to-HIGH Output	Figure 1 Test Circuit Figure 3 Voltage Levels and Waveforms	C _L = 50pF	6	9	15	ns
			$C_L = 500 pF$	15	22	35	
	Propagation Delay Time from HIGH-to-LOW Output		C _L = 0pF		4	(Note 4)	ns
^t PHL			$C_L = 50 pF$	6	12	20	
			$C_L = 500 pF$	20	30	45	
tPLZ	Output Disable Time from	Figures 2 and 4, S = 1			13	20	
t _{PHZ}	LOW, HIGH			8	12	ns	
t _{PZL}	Output Enable Time from LOW, HIGH	Figures 2 and 4, $S = 1$		13	20	ns	
t _{PZH}		Figures 2 and 4, $S = 2$		13	20	115	
^t SKEW	Output-to-Output Skew	Figures 1 and 3, $C_L = 50$		±0.5	±3.0 (Note 5)	ns	
VONP	Output Voltage Undershoot	Figures 1 and 3, $C_L = 50$		0	-0.5	Volts	

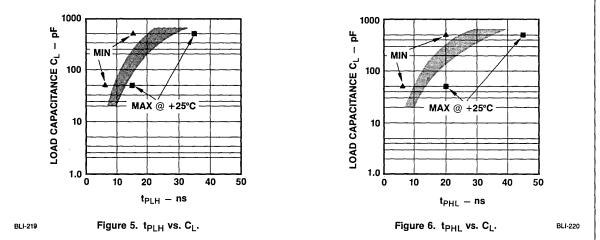

SWITCHING CHARACTERISTICS **OVER OPERATING RANGE** (Note 6)

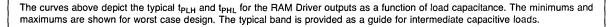
				$\frac{\text{COM'L}}{\text{T}_{\text{A}} = 0 \text{ to } 70^{\circ}\text{C}}$ $\text{V}_{\text{CC}} = 5.0\text{V} \pm 10\%$		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		
Parameters	Description	Test Cond	litions	Min	Max	Min	Max	Units
Propagation Delay Time LOW-to-HIGH Output	Propagation Delay Time	Figures 1 and 3	$C_L = 50pF$	4	20	4	20	ns
	LOW-to-HIGH Output		$C_L = 500 pF$	13	40	13	40	
tPropagation Delay Time HIGH-to-LOW Output	Figures 1 and 0	C _L = 50pF	4	24	4	- 24		
	HIGH-to-LOW Output	Figures 1 and 3	$C_L = 500 pF$	17	50	17	50	ns
t _{PLZ}	Output Disable Time from	Figures 2 and 4	S = 1		24		24	
t _{PHZ}	Low, High	Figures 2 and 4	S = 2		16		16	ns
^t PZL	Output Enable Time from	Output Enable Time from Figures 2 and 4	S = 1		28		28	ns
t _{PZH}	Low, High	Figures 2 and 4 $S = 2$			· 28		28	115
VONP	Output Voltage Undershoot	Figures 1 and 3,	$C_L = 50 pF$		-0.5		-0.5	Volts

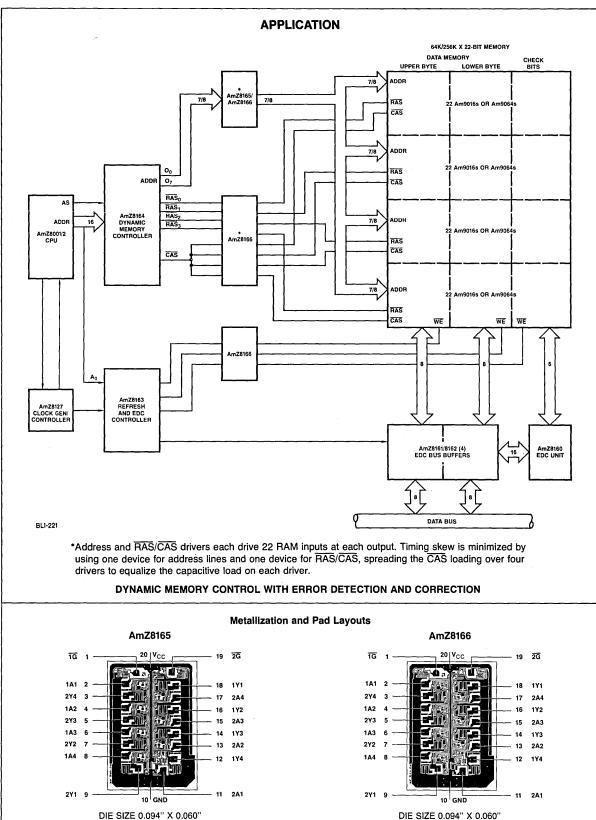

Notes: 4. Typical time shown for reference only - not tested.

5. Time Skew specification is guaranteed by design but not tested.

6. AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.


TYPICAL SWITCHING CHARACTERISTICS




The RAM Driver symmetrical output design offers significant improvement over a standard Schottky output by providing a balanced drive output impedance ($\approx 33\Omega$ both HIGH and LOW), and by pulling up to MOS V_{OH} levels (V_{CC} - 1.15V). External resistors, not required with the RAM Driver, protect standard Schottky drivers from error causing undershoot but also slow the output rise by adding to the internal R.

The RAM Driver is optimized to drive LOW at maximum speed based on safe undershoot control and to drive HIGH with a symmetrical speed characteristic. This is an optimum approach because the dominant RAM loading characteristic is input capacitance.

The curves shown below provide performance characteristics typical of both the inverting (AmZ8165) and non-inverting (AmZ8166) RAM Drivers.

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

AmZ8165 Order Number	AmZ8166 Order Number	Package Type	Temperature Range	Screening Level
AMZ8165PC	AMZ8166PC	P-20	С	C-1
AMZ8165DC	AmZ8166DC	D-20	С	C-1
AMZ8165DM	AMZ8166DM	D-20	М	C-3
AMZ8165XC AMZ8165XM	AMZ8166XC AMZ8166XM	Dice Dice	C M	Visual Inspection to MIL-STD-883 Method 2010B.

Notes: 1. P = Molded DIP, D = Hermetic DIP. Number following letter is number of leads.

2. C = 0 to 70°C, V_{CC} = 4.50 to 5.50V, M = -55 to +125°C, V_{CC} = 4.50 to 5.50V. 3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.