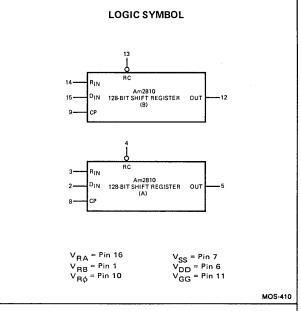
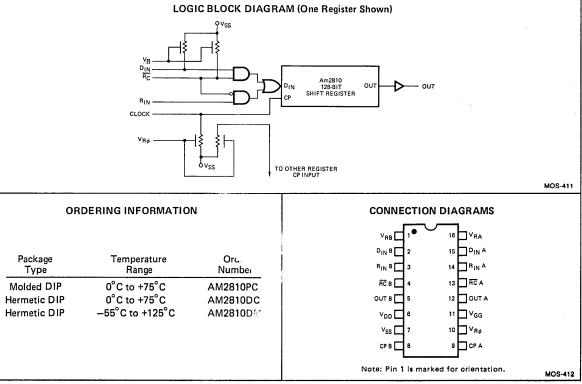
Am2810

Dual 128-Bit Static Shift Register

Distinctive Characteristics


- 2 nd Source to Mostek 1002P
- Built-in pull-up resistors


FUNCTIONAL DESCRIPTION

The Am2810 is a dual 128-bit static shift register built using P-channel silicon gate MOS technology. The two registers each have a two-input multiplexer on their inputs, so that input data may be selected from one of two sources. Each register has a separate clock input, and operates with a low-voltage TTL clock signal. The registers shift on the LOW-to-HIGH edge of the clock signal. Data at the inputs must be steady for a set-up time before and a hold time after this clock transition. Since data storage is static, the clock may be halted indefinitely in the HIGH state. The outputs of each register can drive one TTL loads.

The two-input multiplexer on the input of each register is controlled by the RC (recirculate control) input. When RC is LOW, data is accepted on the R_{in} input; when RC is HIGH, data is accepted on the D_{in} input. The inputs to the registers have built-in pull-up resistors to provide total TTL compatibility. The V_{RA} pin controls the pull-up resistors for register A D_{in} and RC inputs. The V_{RA} pin controls the pull-up resistors for the register B D_{in} and RC inputs. The V_{RA} pin controls the register A D_{in} and RC inputs. The V_{RA} pin controls the resistor on the clock input to both registers. When the resistor control pins are tied to V_{GG} (-12V), the resistors are enabled and pull the inputs they affect up to V_{SS}. When the resistor control pins are tied to V_{SS} the resistors are all very high impedance and the inputs they affect all exhibit normal MOS characteristics. The R_{in} inputs are intended to be the "recirculate inputs from an MOS output and these inputs do not have pull-up resistors associated with them.

- 100% reliability assurance testing in compliance with MIL-STD-883
- Operation guaranteed from DC to 2MHz

Am2810

MAXIMUM RATING (Above which the useful life may be impaired)

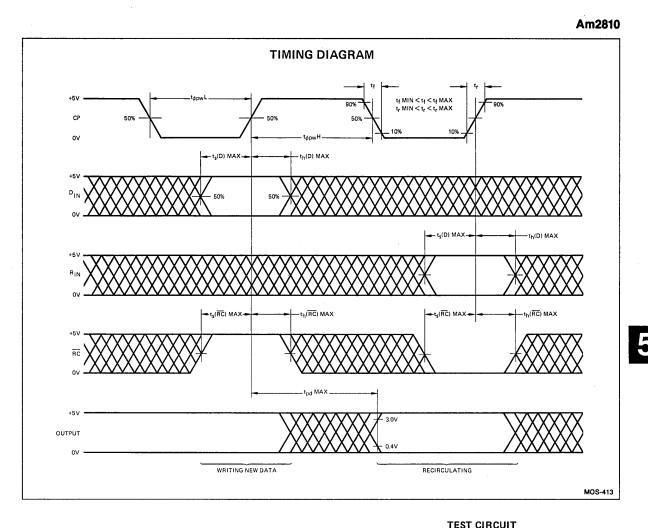
Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	55°C to +125°C
V _{DD} Supply Voltage	V _{SS} –10V to V _{SS} +0.3V
V _{GG} Supply Voltage	V _{SS} -20V to V _{SS} +0.3V
DC Input Voltage	V _{SS} –10V to V _{SS} +0.3V

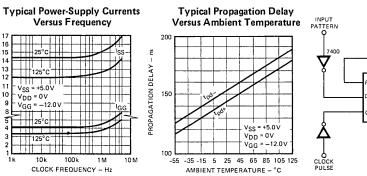
OPERATING RANGE

Part Number	Part Number T _A		VDD	V _{GG}		
Am2810XC Am1002P Am1002L	0°C to +75°C	5.0V ±5%	٥v	-12.0V ±5%		
Am2810XM	-55°C to +125°C	5.0V ±5%	οv	-12.0V ±5%		

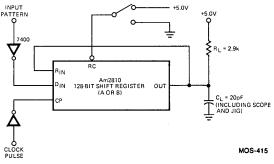
ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless otherwise noted)

				Тур.			
Parameters	Description Test Conditions			Min.	(Note 1)	Max.	Units
v _{он}	Output HIGH Voltage	I _{OH} = -100μA		V _{SS} 1			Volts
VOL	Output LOW Voltage	IOL = 1.6mA	<u> </u>		0.2	0.4	Volts
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		V _{SS} -1			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				V _{SS} -4	Volts
I _{IL} (Note 2)	Resistors Disabled Input LOW Current	V _{SS} = MAX., V _{IN} = 0V V _{RA} = V _{RB} = V _{Rφ} = V _{SS}			-40	μA	
I _{IL} (Ω) (Note 2)	Resistors Enabled Input LOW Current	V_{SS} = MAX., V_{IN} = 0.4V, Am2810/Am1002P only VRA = VRB = VR ϕ = VGG		-0.3		2.0	mA
Ι ΙΓ(¢)	Input LOW Current Clock Input	1002L only		0.6		-4.0	mA
цн	Input HIGH Current	$V_{RA} = V_{RB} = V_{R\phi} = V_{IN} = V_{SS}$				40	μA
ISS	V _{SS} Power Supply Current		0° C to +75° C		14	25	
		f = 1MHz	-55° C to +125° C			35	mA
100		Inputs and Outputs Open	0° C to +75° C		-4	-10	
IGG	VGG Power Supply Current	55°C to +12				15	

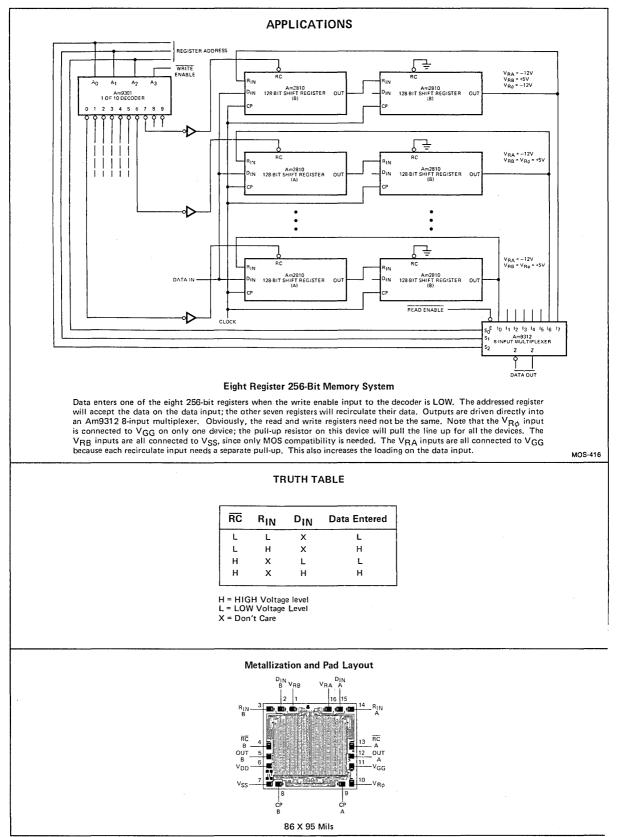

-


 Notes: 1. Typical Limits are at V_{SS} = 5.0V, V_{GG} = -12V, 25°C ambient and maximum loading.
2. On chip pull-up resistors are provided for the clock and data inputs; they are enabled when the appropriate V_R input is at -12V. When the V_f inputs are at V_{SS}, the resistors are disabled and the inputs exhibit normal MOS characteristics (I₁₁ and I_{1H}), the recirculate data inputs have normal MOS characteristics. pull-up resistors and always exhibit MOS characteristics. All pull-up resistors are disabled on the Am1002L except the one on the clock.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)


Parameters	Description	Test Conditions	Am2810			Am1002P/ Am1002L			
			Min.	Тур.	Max.	Min.	Тур.	Max.	Units
f _{max}	Maximum Clock Frequency		2.0			1.0			MHz
t _{¢pw} H	Clock HIGH Time	1	0.2		00	0.4		00	μs
t _{opw} L	Clock LOW Time		0.2		100	0.3		10	μs
t _r , t _f	Clock Rise and Fall Times		10		200	10		200	ns
t _s (D)	Set-up Time, D or R Inputs (see definitions)	t _r = t _f = 50ns, V _R = -12V	100			50			ns
t _h (D)	Hold Time, D or R Inputs (see definitions)	$t_r = t_f = 50 \text{ ns}, V_R = -12 \text{ V}$	100			200			ns
t _s (RC)	Set-up Time, RC Input (see definitions)		100			100			ns
t _h (RC)	Hold Time, RC Input (see definitions)		200			300			ns
t _{pd}	Delay, Clock to Output LOW or HIGH	RL = 2.9kΩ, CL = 20pF	(Note 4)		250	(Note 4)		450	ns
t _{pr} , t _{pf}	Output Rise and Fall Times	10% to 90%			100		• • • • •	150	ns
Cin	Capacitance, Any Input (Note 3)	f = 1MHz, V _{IN} = V _{SS}		3	7		3	10	pF

Notes: 3. This parameter is periodically sampled but not 100% tested. It is guaranteed by design. 4. At any temperature, t_{pd} min. is always much greater than $t_h(D)$ max.


٩

CURRENT

STATIC SHIFT REGISTER A shift register that is capable of maintaining stored data without being continuously clocked. Nost static, shift registers are constructed with dynamic master ind static slave flip-flops. The data is stored dynamically while he clock is LOW and is transferred to the static slaves while the slock is HIGH. The clock may be stopped indefinitely in the HIGH state, but there are limitations on the time it may reside n the LOW state.

MOS-414

SET-UP and HOLD TIMES The shift register will accept the data that is present on its input around the time the clock goes from LOW-to-HIGH. Because of variations in individual devices, there is some uncertainty as to exactly when, relative to this clock transition, the data will be stored. The set-up and hold times define the limits on this uncertainty. To guarantee storing the correct data, the data inputs should not be changed between the maximum set-up time before the clock transition and the maximum hold time after the clock transition. Data changes within this interval may or may not be detected.

