版次:B3

编号: AiP8P006A-AX-A008

# AiP8P006A 1K OTP ROM 的 IO 口型 8 位 微控制器

# 产品说明书

# 说明书发行履历:

| 版本 | 发行时间    | 新制/修订内容 |
|----|---------|---------|
| A1 | 2016-03 | 新制      |
| A2 | 2017-10 | 修订      |
| A3 | 2018-01 | 修订      |
| A4 | 2019-08 | 修订      |
| B1 | 2021-03 | 修订      |

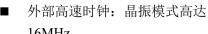
表 835-11

# 无锡中微爱芯电子有限公司

Wuxi I-CORE Electronics Co., Ltd.

## 1、概述

#### 1.1、说明


AiP8P006A是一款8位高性能精简指令集OTP-ROM单片机,具有1K OTP ROM。其高抗干 扰性能在小家电领域有广泛应用。

版次:B3

#### 1.2、特性

- 存储器
  - ROM: OTP、1K\*16位
  - RAM: 48字节
- I/O 引脚配置
  - 输入/输出口: P0,P1,P5.
  - 输入口: P1.5.
  - 可编程漏极开路端: P1.0.
  - 唤醒功能端: P0,P1电平触发
  - 内部上拉电阻: P0,P1,P5.
  - 外部中断信号沿触发: P0.0 (寄 存器PEDGE控制)
- 3级低电压检测系统(LVD)
  - 可监控系统电源(若低于设定 LVD则复位)
- 强大的指令系统
  - 单周期指令系统(1T)
  - 大部分指令仅需一个周期
  - 跳转指令JMP可在整个ROM区执
  - 子程序条用指令CALL可在整个 ROM区执行
  - 查表指令MOVC可寻址整个  $ROM \overline{X}$
- 工作电压:
  - VDD:2.4V~5.5V
- 双时钟系统:
  - 外部高速时钟: RC模式高达 10MHz

- 16MHz
- 内部高速模式: 16MHz RC (Fcpu=Fosc/4~ Fosc/16)
- 内部低速模式: RC振荡器, 16KHz(3V),32KHz(5V)
- 3个中断源:
  - 2个内部中断源: T0、TC0
  - 1个外部中断源: INT0
- 两个 8 位定时/计数器:
  - TC0: 自动装载定时器/计数器/蜂 鸣器(BUZZER)输出
  - T0: 基本定时/计数器, 具有0.5sec 实时时钟功能 (RTC)
- 内置看门狗定时器, 其时钟源由内部 低速 RC 振荡提供(16KHz@3V, 32KHz@5V)
- 工作模式:
  - 普通模式: 高、低速时钟同时工 作
  - 低速模式:只有低速时钟工作
  - 睡眠模式: 高、低速时钟都停止 工作
  - 绿色模式:有T0周期性的唤醒
- 封装形式
  - SOP18/DIP18



编号: AiP8P006A-AX-A008



版次:B3

编号: AiP8P006A-AX-A008

# 1.3、订购信息

表 835-11

管装

| 产品型号      | 订购编号        | 封装形式  | 管装数     | 盒装管    | 盒装数       | 箱装盒    | 箱装数        |
|-----------|-------------|-------|---------|--------|-----------|--------|------------|
| AiP8P006A | 4213NK.SA18 | SOP18 | 40PCS/管 | 80 管/盒 | 3200PCS/盒 | 10 盒/箱 | 32000PCS/箱 |
|           | 4213NK.DA18 | DIP18 | 20PCS/管 | 40 管/盒 | 800PCS/盒  | 10盒/箱  | 8000PCS/箱  |

注: 如实物与订购信息不一致,请以实物为准





版次:B3

编号: AiP8P006A-AX-A008

# 2、功能框图及引脚说明

表 835-11

# 2.1、AiP8P006A 功能框图

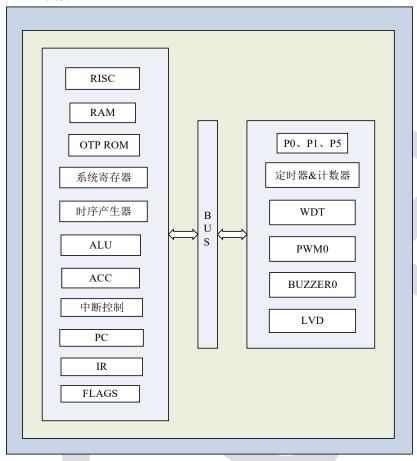



图 2-1 功能框图

版次:B3

表 835-11

编号: AiP8P006A-AX-A008

# 2.2、引脚排列图

|               |   | J  |         |         |
|---------------|---|----|---------|---------|
| P1.2          | 1 | 18 | P1.1    |         |
| P1.3          | 2 | 17 | P1.0    |         |
| P0.0/INT0     | 3 | 16 | XIN     |         |
| P1.5/RSTV/VPP | 4 | 15 | XOUT/I  | P1.4    |
| VSS           | 5 | 14 | VDD     |         |
| P5.0          | 6 | 13 | P5.7    |         |
| P5.1          | 7 | 12 | P5.6    |         |
| P5.2          | 8 | 11 | P5.5    |         |
| P5.3          | 9 | 10 | P5.4/B2 | Z0/PWM0 |
|               |   |    |         |         |

图 2-2 AiP8P006A -SOP18/DIP18 引脚排列图



版次:B3

编号: AiP8P006A-AX-A008

# 2.3、引脚说明

表 835-11

# 表 2-1 引脚说明

| 引脚 | 引脚名称        | 类型  | 说明                                |
|----|-------------|-----|-----------------------------------|
| 1  | P1.2        | I/O | 输入/输出端,作输入端使用时为施密特触发结构,内置上拉电阻     |
| 2  | P1.3        | I/O | 输入/输出端,作输入端使用时为施密特触发结构,内置上拉电阻     |
|    |             |     | 输入/输出端,作输入端使用时为施密特触发器结构           |
|    |             |     | 具有唤醒功能                            |
| 3  | P0.0/INT0   | I/O | 内置上拉电阻                            |
|    |             |     | INT0 触发端 (施密特触发结构)                |
|    |             |     | TC0 事件计数信号输入端                     |
|    |             |     | P1.5: 外部复位无效时仅可作输入口使用 (施密特触发器结构)  |
|    |             |     | P1.5 无内置上拉电阻                      |
| 4  | P1.5/RST/VP | I,P | 具有唤醒功能                            |
|    | P           | 1,1 | RST: 系统复位输入端,施密特触发器结构,低电平有效,通常保持高 |
|    |             |     | 电平                                |
|    |             |     | VPP: OTP 烧录引脚                     |
| 5  | VSS         | P   | 数字电路电源输入端                         |
| 6  | P5.0        | I/O | 输入/输出端,作输入端使用时为施密特触发结构,内置上拉电阻     |
| 7  | P5.1        | I/O | 输入/输出端,作输入端使用时为施密特触发结构,内置上拉电阻     |
| 8  | P5.2        | I/O | 输入/输出端,作输入端使用时为施密特触发结构,内置上拉电阻     |
| 9  | P5.3        | I/O | 输入/输出端,作输入端使用时为施密特触发结构,内置上拉电阻     |
| 10 | P5.4/BZ0/PW | I/O | 输入/输出端,作输入端使用时为施密特触发结构,内置上拉电阻     |
| 10 | M0          | 1/0 | 蜂鸣器及 PWM 输出端                      |
| 11 | P5.5        | I/O | 输入/输出端,作输入端使用时为施密特触发结构,内置上拉电阻     |
| 12 | P5.6        | I/O | 输入/输出端,作输入端使用时为施密特触发结构,内置上拉电阻     |
| 13 | P5.7        | I/O | 输入/输出端,作输入端使用时为施密特触发结构,内置上拉电阻     |
| 14 | VDD         | P   | 数字电路电源输入端                         |
|    |             |     | 输入/输出端,作输入端使用时为施密特触发器结构           |
| 15 | XOUT/P1.4   | I/O | 具有唤醒功能                            |
|    |             |     | XOUT: 采用外部振荡器的时晶振输出端              |
| 16 | XIN         | I/O | 外部振荡信号输入端                         |
| 17 | P1.0        | I/O | 输入/输出端,漏极开路,作输入端使用时为施密特触发结构       |
| 1, | 11.0        | 1.0 | 内置上拉电阻                            |
| 18 | P1.1        | I/O | 输入/输出端,作输入端使用时为施密特触发结构,内置上拉电阻     |



版次:B3

编号: AiP8P006A-AX-A008

# 3、电特性

# 3.1、极限参数

表 835-11

表 3-1 极限参数

| 参数名称 | 符号   | 最小      | 最大      | 单位         |
|------|------|---------|---------|------------|
| 工作电压 | VDD  | VSS-0.3 | +6.5    | V          |
| 输入电压 | VI   | VSS-0.3 | VDD+0.3 | V          |
| 输出电压 | VO   | VSS-0.3 | VDD+0.3 | V          |
| 工作温度 | TOPR | -40     | +85     | $^{\circ}$ |
| 储存温度 | TSTG | -60     | +150    | $^{\circ}$ |
| 焊接温度 | TL   | -       | +245    | $^{\circ}$ |

注:除非另有规定, T<sub>amb</sub>=25℃。

# 3.2、电气特性

# 3.2.1、直流参数

表 3-2 直流参数

| 符号     | 参数                                       |       | 测试条件                     | 最小值    | 典型值 | 最大值    | 单位    |
|--------|------------------------------------------|-------|--------------------------|--------|-----|--------|-------|
| Vdd    | 工作电压                                     | 正常模式  | 式, Vpp=Vdd, Fcpu=1MHz    | 2.2    | -   | 5.5    | V     |
| Vdr    | RAM 数据                                   |       |                          | 1.5    |     |        | V     |
| Vui    | 滞留电压                                     |       |                          | 1.3    | -   | -      | ·     |
| *Vpor  | Vdd 上升率                                  | Vdd _ | 上升率确保内部接通复位              | 0.05   | -   | -      | V/ms  |
| ViL1   | 输入低电压                                    |       | 所有输入端口                   | Vss    | -   | 0.3Vdd | V     |
| ViL2   |                                          |       | 复位端口                     | Vss    | -   | 0.3Vdd | V     |
| ViH1   | 输入高电压                                    |       | 所有输入端口                   | 0.7Vdd | -   | Vdd    | V     |
| ViH2   |                                          |       | 复位端口                     | 0.9Vdd | -   | Vdd    | V     |
| Llekg  | 复位端口漏                                    |       | Vin=Vdd                  |        |     | 2      | uA    |
| Lickg  | 电流                                       |       | v III— v dd              | -      | -   | 2      | uA    |
| Llekg  | I/O 端口输                                  | L.    | 拉电阻禁用,Vin=Vdd            | _      | _   | 2      | uA    |
| Lickg  | 入漏电流                                     | 1.    | 业中国录用, VIII—Vdd          | _      | _   | 2      | uA    |
| Rup    | I/O 端口上                                  |       | Vin=Vss, Vdd=3V          | 100    | 200 | 300    | ΚΩ    |
| Kup    | 拉电阻                                      |       | Vin=Vss, Vdd=5V          | 50     | 100 | 150    | 1832  |
| LoH    | I\O 端口灌                                  |       | Vop=Vdd-0.5V             | 8      | 15  | -      |       |
| LoL1   | 拉电流                                      |       | Vop=Vss+0.5V             | 8      | 15  | -      | mA    |
| LoL2   | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | Vop=V | ss+0.5V, P5.0~P5.3, P5.5 | 20     | 40  | -      |       |
| Tint0  | INTn 触发                                  | IN    | Tn 中断请求脉冲宽度              | 2/fcpu |     |        | cycle |
| Tillto | 脉冲宽度                                     | IIN   | 111 年期 相水原作见及            | 2/1cpu | -   | -      | Cycle |
|        |                                          |       | Vdd=3V, Fcpu=16MHz       | -      | 2.8 | -      | mA    |
|        |                                          | 运行模   | Vdd=5V, Fcpu=16MHz       | -      | 5.8 | -      | mA    |
| Idd1   | 电源电流                                     | 式(低功  | Vdd=3V, Fcpu=4MHz        | -      | 1.5 | -      | mA    |
|        |                                          | 率禁用)  | Vdd=5V, Fcpu=4MHz        | -      | 3   | -      | mA    |
|        |                                          |       | Vdd=3V, Fcpu=1MHz        | -      | 1.1 | -      | mA    |
| T.     | 1                                        |       |                          |        | L   | l      |       |

表 835-11

# 无锡中微爱芯电子有限公司 Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

|       |              |                       | Vdd=5V, Fcpu=1MHz                       | -     | 2.3 | -     | mA   |
|-------|--------------|-----------------------|-----------------------------------------|-------|-----|-------|------|
|       |              |                       | Vdd=3V, Fcpu=32MHz                      | -     | 20  | -     | uA   |
|       |              |                       | Vdd=5V, Fcpu=32MHz                      | -     | 45  | -     | uA   |
|       |              | )二,47.4世              | Vdd=3V, Fcpu=4MHz                       | -     | 1.3 | -     | mA   |
| Idd2  |              | 运行模 式 (低功             | Vdd=5V, Fcpu=4MHz                       | -     | 2.2 | -     | mA   |
| Iddz  | 12           | 率使用) 缓慢模              | Vdd=5V, Fcpu=1MHz                       | -     | 0.7 | -     | mA   |
|       |              |                       | Vdd=3V, Fcpu=16MHz                      | -     | 1   | -     | mA   |
|       |              |                       | Vdd=3V, Fcpu=16MHz                      | -     | 2.5 | -     | uA   |
|       |              | 式(内部                  |                                         |       |     |       |      |
| Idd3  |              | 低抗                    |                                         |       |     |       |      |
| idus  |              | RC,停                  | Vdd=5V, Fcpu=32MHz                      | -     | 7.8 | -     | uA   |
|       |              | 止高时                   |                                         |       |     |       |      |
|       |              | 钟)                    |                                         |       |     |       |      |
| Idd4  |              | 睡眠模                   | Vdd=5V/3V                               | -     | 1   | 2     | uA   |
| Tuu i |              | 式                     | V dd 3 773 Y                            |       | •   |       | uz i |
|       |              |                       | Vdd=3V, IHRC=16MHz                      | -     | -   | -     | -    |
|       |              | 绿色模                   | Vdd=5V, IHRC =16MHz                     | -     | -   |       | -    |
| Idd5  |              | 式(下                   | Vdd=3V, Ext.32KHzX'tal                  | -     | -   | -     | -    |
| idus  |              | 载,看门                  | Vdd=5V, Ext.32KHzX'tal                  | -     | -   | -     | -    |
|       |              | 狗禁用)                  | Vdd=3V, ILRC=16MHz                      | -     | -   | -     | -    |
|       |              |                       | Vdd=3V, ILRC=16MHz                      | -     | -   | -     | -    |
| Fihre | 内部高振荡<br>器频率 | 内部高<br>频 RC<br>(IHRC) | Vdd=2.2V~5.5V<br>Fcpu=Fhosc/1~Fhosc/128 | 15.68 | 16  | 16.32 | MHz  |

注: 除非另有规定,T<sub>amb</sub>=25℃,Vdd=5.0V,Fcpu=1MHz,Fosc=4MHz。



器

# 无锡中微爱芯电子有限公司

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

## 4、CPU 特性

表 835-11

#### 4.1、程序存储

 0000H
 复位向量

 0001H
 通用区

 0007H
 中断向量

 0009H
 通用区

 03FCH
 3FDH

 03FEH
 系统保留

 03FFH

用户复位向量跳 转至用户程序

用户中断向量

用户程序

用户程序结束

图 4-11 word ROM

# 4.1.1、复位向量(0000H)

一个字长的系统复位向量。

- 上电复位(NT0=1, NPD=0);
- 看门狗复位(NT0=0, NPD=0);
- 外部复位(NT0=1, NPD=1)。

系统执行完上电复位、外部复位或看门狗定时器溢出复位后,程序将从0000H处开始重新执行,系统寄存器也都将重置为默认值。根据PFLAG寄存器中的NT0和NPD标志位的内容可以判断系统复位状况。下面一段程序演示了如何定义ROM中的复位向量。

例: 定义复位向量。

ORG 0 ; 0000H JMP START ; 跳至用户程序 ... ORG 10

START: ; 0010H, 用户程序首地址

; 用户程序

•••

ENDP ;程序结束

## 4.1.2、中断向量(00008H)

长度为1-word,用于执行中断请求。当系统响应某个中断请求时,程序计数器(PC)的当前值存入堆栈缓冲器后转至中断向量0008H。用户可以自己定义中断向量,下面的程序说明了如何在程序中定义中断向量。

注: "PUSH", "POP" 指令用于存储和恢复ACC/PFLAG, NT0、NTD 不受影响。PUSH/POP 缓存器是唯一的,且仅有一层。



Wuxi I-CORE Electronics Co., Ltd.

表 835-11 版次:B3 编号: AiP8P006A-AX-A008

例:定义中断向量,中断服务程序就在ORG 8 之后。

.CODE

ORG 0;0000H

JMP START ; 跳至用户程序

•••

ORG 8 ;中断向量

PUSH ;保存 ACC 和PFLAG

•••

POP ; 恢复 ACC 和 PFLAG

RETI ; 中断结束

•••

START: ; 用户程序开始

···;

JMP START ; 用户程序结束

•••

ENDP ;程序结束

例: 定义中断向量,中断程序位于用户程序之后。

.CODE

ORG 0 ; 0000H

JMP START ; 跳至用户程序

• • •

ORG 8 ; 中断向量

JMP MY IRQ ; 0008H,跳至中断程序

ORG 10H

START: ; 0010H, 用户程序开始

•••

JMP START ;用户程序结束.

...

MY\_IRQ: ; 中断程序开始

PUSH ; 保存ACC 和PFLAG

•••

POP ; 恢复ACC 和PFLAG

RETI ; 中断程序结束

•••

ENDP ;程序结束

注:从上面的程序中容易得出AiP的编程规则,有以下几点:

1.地址0000H的"JMP"指令使程序从头开始执行;

2.地址0008H 是中断向量;

3.用户的程序应该是一个循环。

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

# 4.1.3、查表

表 835-11

对ROM数据进行查找,寄存器Y 指向查找数据地址的高字节(bit8~bit15),寄存器Z 指向 地址的低字节(bit0~bit7)。执行完MOVC指令后,数据低字节内容被存入ACC中,而数 据高字节内容被存入R寄存器。

例: 查找ROM 地址为"TABLE1"的值。

;设置TABLE1 地址高字节 **B0MOV** Y, #TABLE1\$M

;设置TABLE1 地址低字节 **B0MOV** Z, #TABLE1\$L

**MOVC** ; 查表, R = 00H, ACC = 35H

; 查找下一地址

Z **INCMS** 

JMP @F ; Z 没有溢出

**INCMS** Y ; Z 溢出(FFH � 00), � Y=Y+1

NOP

**MOVC** ; 查表, R = 51H, ACC = 05H. (a)(a):

; 定义数据表 (16 bits) 数据 TABLE1:DW 0035H

> DW 5105H DW 2012H

...

注: 当寄存器Z溢出(从0xFF变为0x00)时,寄存器Y并不会自动加1。因此, Z溢出时,Y必须由 程序加1,下面的宏指令INC\_YZ能够对Y和Z寄存器自动处理。

例: 宏INC YZ

INC YZ **MACRO** 

> **INCMS** Z

**JMP** @F ;没有溢出

Y **INCMS** 

NOP ;没有溢出

(a)(a):

**ENDM** 

例:通过"INC YZ"对上例进行优化。

**B0MOV** Y, #TABLE1\$M ;设置TABLE1 地址中间字节 **B0MOV** Z, #TABLE1\$L ;设置TABLE1 地址低字节 MOVC ; 查表, R = 00H, ACC = 35H

INC YZ ; 查找下一地址数据

; 查表, R = 51H, ACC = 05H. (a)(a): **MOVC** 

•••;

; 定义数据表 (16 bits) 数据 TABLE1: DW 0035H

> DW 5105H

Wuxi I-CORE Electronics Co., Ltd.

表 835-11 版次:B3

编号: AiP8P006A-AX-A008

DW 2012H

下面的程序通过累加器对Y,Z 寄存器进行处理来实现查表功能,但需要特别注意进位时的处理。

例:由指令B0ADD/ADD 对Y 和Z寄存器加1。

B0MOV Y, #TABLE1\$M ; 设置TABLE1 地址中间字节 B0MOV Z, #TABLE1\$L ; 设置TABLE1 地址低字节

B0MOV A, BUF ; Z = Z + BUF.

B0ADD Z, A

B0BTS1 FC ;检查进位标志

JMP GETDATA ; FC = 0INCMS Y ; FC = 1

NOP

GETDATA: ;

MOVC ; 存储数据, 如果BUF = 0, 数据为0x0035

;如果BUF=1,数据=0x5105 ;如果BUF=2,数据=0x2012

•••

TABLE1:DW 0035H ; 定义数据表 (16 bits) 数据

DW 5105H DW 2012H

•••

#### 4.1.4、跳转表

跳转表能够实现多地址跳转功能。PCL 和ACC 的值相加即可得到新的PCL。如果PCL +ACC 后发生溢出,PCH 则自动加1。由此得到的新的PC 值指向一系列跳至指令列表。如此可通过修改ACC 的值轻松实现多地址的跳转。

注: PCH 只支持PC 增量运算,而不支持PC 减量运算。当PCL+ACC 后如有进位,PCH 的值会自动加 1。PCL-ACC 后若有借位,PCH 的值将保持不变,用户在设计应用时要加以注意。

例: 跳转表

ORG 0X0100 ; 跳转表从ROM 前端开始

B0ADD PCL, A ; PCL = PCL + ACC, PCL 溢出时PCH 加1

JMPA0POINT; ACC = 0,跳至A0POINTJMPA1POINT; ACC = 1,跳至A1POINTJMPA2POINT; ACC = 2,跳至A2POINTJMPA3POINT; ACC = 3,跳至A3POINT

iCore提供一个宏程序以保证可靠执行跳转表功能,它将检测ROM 边界并自动将跳转表移至适当的位置。但采用该宏程序会占用部分ROM空间。

例:如果跳转表在ROM中跨段,则程序可能出错。



Wuxi I-CORE Electronics Co., Ltd.

表 835-11 版次:B3 编号: AiP8P006A-AX-A008

@JMP\_A MACRO VAL IF ((\$+1)!& 0XFF00)!!=((\$+(VAL))!& 0XFF00)

JMP (\$ | 0XFF)

(\$ | 0XFF)

ORG ENDIF

ADD PCL,A

**ENDM** 

注: "VAL"为跳转表列表中列表个数。

例: 宏 "MACRO3.H"中, "@JMP A"的应用。

B0MOV A, BUF0 ; "BUF0" 从0至 4.

@JMP A 5 ; 列表个数为5

JMPA0POINT; ACC = 0, 跳至A0POINTJMPA1POINT; ACC = 1, 跳至A1POINTJMPA2POINT; ACC = 2, 跳至A2POINTJMPA3POINT; ACC = 3, 跳至A3POINT

JMP A4POINT ; ACC = 4,跳至A4POINT

如果跳转表恰好位于ROM BANK 边界处( $0x00FF\sim0x0100$ ),宏"@JMP\_A"将调整跳转表到适当的位置(0x0100)。

例: "@JMP A" 运用举例

;编译前

ROM地址

B0MOV A, BUF0 ; "BUF0"从0到4. @JMP A 5 ;列表个数为5

0X00FD **JMP** A0POINT ; ACC = 0, 跳至A0POINT 0X00FE **JMP A1POINT** ; ACC = 1, 跳至A1POINT 0X00FF **JMP** A2POINT ; ACC = 2, 跳至A2POINT ; ACC = 3, 跳至A3POINT 0X0100 JMP A3POINT 0X0101 JMP A4POINT ; ACC = 4, 跳至A4POINT

;编译后

ROM地址

B0MOV A, BUF0 ; "BUF0"从0到4.

@JMP\_A 5; 列表个数为5

0X0100 **JMP** A0POINT ; ACC = 0, 跳至A0POINT 0X0101 **JMP** A1POINT ; ACC = 1, 跳至A1POINT 0X0102 JMP A2POINT ; ACC = 2, 跳至A2POINT ; ACC = 3, 跳至A3POINT 0X0103 JMP A3POINT 0X0104 JMP A4POINT ; ACC = 4, 跳至A4POINT



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

#### 4.1.5、CHECKSUM 计算

表 835-11

ROM末端位置的几个word限制使用,进行Checksum计算时,用户应避免对该单元的访 问。

例:示例程序演示了如何对00H到用户程序结束进行Checksum计算。

MOV A,#END\_USER\_CODE\$L

B0MOV ; low end address 地址存入end addr1 END ADDR1, A

A,#END USER CODE\$M MOV

B0MOV END ADDR2, A; middle end address 存入 end addr2

; Y 清零 CLR Y CLR Z ; Z 清零

*@*@:

MOVC

**B0BCLR** FC ;标志位C 清零

ADD DATA1, A

MOV A, R

ADC DATA2, A;

JMP END CHECK ; 检验YZ 地址 = 代码结束地址?

AAA:

Z ; Z=Z+1**INCMS** 

;如果Z!=00H,进行下一个计算 (a)B**JMP** 

Y ADD 1 ;如果Z=00H,Y加1 **JMP** 

END CHECK:

A, END ADDR1 MOV

; 检验Z 地址 = 代码结束地址? **CMPRS** A, Z

AAA ;否,则进行checksum 计算 JMP

A, END\_ADDR2 MOV

; 是,则检测是否Y = middle end address **CMPRS** A, Y

AAA ;不等则跳至checksum 计算 **JMP** 

CHECKSUM END ;相等,则 checksum 计算已结束 **JMP** 

Y ADD 1:

**INCMS** Y

NOP

;转至checksum 计算 **JMP** @B

CHECKSUM END:

...

END USER CODE:



表 835-11

# 无锡中微爱芯电子有限公司 Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

# 表 4-1 编译选项说明

| 编译选项         | 内容        | 功能说明                                 |  |  |  |  |  |  |
|--------------|-----------|--------------------------------------|--|--|--|--|--|--|
| Noise_Filter | Enable    | 开启杂讯滤波功能,Fcpu = Fosc/4~Fosc/8。       |  |  |  |  |  |  |
| Noise_Pitter | Disable   | 关闭杂讯滤波功能,Fcpu = Fosc/1~Fosc/8。       |  |  |  |  |  |  |
|              | Fhosc/1   | 指令周期 = 时钟周期;                         |  |  |  |  |  |  |
|              | 1 11036/1 | 注: 若选择 Fosc/1,则必须关闭杂讯滤波功能。           |  |  |  |  |  |  |
| Fepu         | Fhose/2   | 指令周期 = 2 个时钟周期;                      |  |  |  |  |  |  |
| Тери         | 1 11056/2 | 注: 若选择 Fosc/2, 则必须关闭杂讯滤波功能。          |  |  |  |  |  |  |
|              | Fhosc/4   | 指令周期 = 4 个时钟周期                       |  |  |  |  |  |  |
|              | Fhosc/8   | 指令周期 = 8 个时钟周期                       |  |  |  |  |  |  |
|              | RC        | 廉价RC 振荡电路提供内部高速时钟, XOUT 为P1.4 输入/输出引 |  |  |  |  |  |  |
|              |           | 脚                                    |  |  |  |  |  |  |
| High_Clk     | 32K X'tal | 低频,省电石英振荡器(如32.768KHz)作为外部高速时钟源。     |  |  |  |  |  |  |
|              | 12M X'tal | 高速石英/陶瓷振荡器(如12MHz)作为外部高速时钟源。         |  |  |  |  |  |  |
|              | 4M X'tal  | 标准石英/陶瓷振荡器(如4M)作为外部高速时钟源。            |  |  |  |  |  |  |
|              | Always_On | 看门狗定时器始终处于有效状态,即使在睡眠模式和绿色模式下。        |  |  |  |  |  |  |
| Watch_Dog    | Enable    | 开启看门狗定时器,在睡眠模式和绿色模式下关闭。              |  |  |  |  |  |  |
|              | Disable   | 关闭看门狗。                               |  |  |  |  |  |  |
| Reset Pin    | Reset     | 外部复位引脚有效。                            |  |  |  |  |  |  |
| reset_1 in   | P15       | 作为P1.5 输入引脚,无上拉电阻。                   |  |  |  |  |  |  |
| Low Power    | Enable    | 开启省电功能以减小工作电流。                       |  |  |  |  |  |  |
| Eow Tower    | Disable   | 一般情况。                                |  |  |  |  |  |  |
|              | LVD_L     | VDD 低于2.0V 时,LVD 复位系统。               |  |  |  |  |  |  |
|              | LVD M     | VDD 低于2.0V 时,LVD 复位系统;               |  |  |  |  |  |  |
| LVD          | E ( B_I(I | LVD的24-bit PFLAG 寄存器作为2.4V低电压监测器。    |  |  |  |  |  |  |
|              | LVD H     | VDD 低于2.4V 时,LVD 复位系统;               |  |  |  |  |  |  |
|              | 2.2_11    | LVD 的36-bit PFLAG 寄存器作为3.6V 低电压监测器。  |  |  |  |  |  |  |
| Security     | Enable    | 允许ROM 代码加密。                          |  |  |  |  |  |  |
| Security     | Disable   | 禁止ROM 代码加密。                          |  |  |  |  |  |  |

注:1.在干扰严重的情况下,建议开启杂讯滤波功能,此时Fcpu = Fosc/4~Fosc/8,并将Watch\_Dog设置为 "Always\_On";

- 2.如果用户定义watchdog 为"Always\_On",编译器将自动开启看门狗定时器;
- 3.编译选项Fcpu 仅针对外部振荡信号,在进入内部低速模式时,Fcpu = FILRC/4。



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

#### 4.2、数据存储

表 835-11

器 Address RAM H000 通用存储区 ... 02FH BANK0 H080 系统寄存器 ... Bank0结束 0FFH

Bank0 80h~FFh, 存放系统寄存器(128 bytes)

图 4-2 48 x 8-bit RAM

#### 4.3、系统寄存器

## 4.3.1、系统寄存器列

表

#### 表 4-2 系统寄存器列表

|   | _    | _    |   | _ |   | _    |       |     |       | _     |       | _     |       | _     | _     |       |
|---|------|------|---|---|---|------|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
|   | 0    | 1    | 2 | 3 | 4 | 5    | 6     | 7   | 8     | 9     | A     | В     | C     | D     | E     | F     |
| 8 | -    | -    | R | Z | Y | -    | PFLAG | -   | -     | -     | -     | -     | -     | -     | -     | -     |
| 9 | -    | -    | - | - | - | -    | -     |     | -     | -     | -     | -     | -     | -     | -     | -     |
| A | -    | -    | - | - | - | -    | -     | -   | -     | -     | -     | -     | -     | -     | -     | -     |
| В | -    | -    | - | - | - | -    | -     | -   | P0M   | -     | -     | -     | -     | -     | -     | PEDGE |
| С | P1W  | P1M  | - | - | - | P5M  | -     | -   | INTRQ | INTEN | OSCM  | -     | WDTR  | TC0R  | PCL   | PCH   |
| D | P0   | P1   | - | 1 | - | P5   | -     | -   | T0M   | T0C   | TC0M  | TC0C  | BZM   | -     | -     | STKP  |
| Е | P0UR | P1UR | - | 1 | - | P5UR | P5DR  | @YZ | -     | P1OC  | -     | -     | -     | -     | -     | -     |
| F | -    | -    | - | - | - | -    | -     | -   | STK3L | STK3H | STK2L | STK2H | STK1L | STK1H | STK0L | STK0H |

# 寄存器说明:

PFLAG = ROM 页及特殊寄存器

P1W=P1 唤醒功能寄存器

PEDGE = P0.0 触发方向寄存器

PnM = Pn 输入/输出模式寄存器

P1OC=P1 漏极开路控制寄存器

INTRQ = 中断请求寄存器

OSCM = 振荡器模式寄存器

T0M = T0 模式寄存器

TC0M = TC0 模式寄存器

TC0R = TC0 自动加载数据缓存器

STKP = 堆栈指针缓存器

R=工作寄存器和ROM查表数据缓存器

Y,Z=工作寄存器,@YZ 和ROM 寻址寄存器

@YZ=RAM YZ 间接寻址指针

Pn=Pn 数据缓存器

PnUR = Pn 上拉电阻控制寄存器

INTEN = 中断使能寄存器

PCH,PCL=程序计数器

T0C=T0计数寄存器

TC0C=TC0计数寄存器

WDTR=看门狗定时器清零寄存器

STK0~STK3=堆栈缓存器



版次:B3

编号: AiP8P006A-AX-A008

# 4.3.2 、寄存器的位定

表 835-11

义

# 表 4-3 寄存器的位定义

| 地址       | Bit7        | Bit6        | Bit5       | Bit4    | Bit3       | Bit2       | Bit1       | Bit0         | R/W   | 备注    |
|----------|-------------|-------------|------------|---------|------------|------------|------------|--------------|-------|-------|
| 082H     | RBIT7       | RBIT6       | RBIT5      | RBIT4   | RBIT3      | RBIT2      | RBIT1      | RBIT0        | R/W   | R     |
| 083H     | ZBIT7       | ZBIT6       | ZBIT5      | ZBIT4   | ZBIT3      | ZBIT2      | ZBIT1      | ZBIT0        | R/W   | Z     |
| 084H     | YBIT7       | YBIT6       | YBIT5      | YBIT4   | YBIT3      | YBIT2      | YBIT1      | YBIT0        | R/W   | Y     |
| 086H     | NT0         | NPD         | LVD3       | LVD24   | С          | DC         | Z          | R/W          | PFL   |       |
| 000      | DOON 4      | D /337      | 6<br>DOM   |         |            |            |            | _            | AG    |       |
| 0B8<br>H | P00M        | R/W         | P0M        |         |            |            |            |              |       |       |
| 0BF      | P00G1       | P00G0       | R/W        | PEDGE   |            |            |            |              |       |       |
| Н        |             |             |            |         |            |            |            |              |       |       |
| 0C0      | P16W        | P15W        | P14W       | P13W    | P12W       | P11W       | P10W       | W            | P1W   |       |
| Н        |             |             |            |         |            |            |            |              |       |       |
| 0C1      | P16M        | P14M        | P13M       | P12M    | P11M       | P10M       | R/W        | P1M          |       |       |
| Н        | D.5.53.5    | D50-        | D553 -     | D5.00.5 | D533.5     | Desire     | P543.5     | D503         | D "** | D53.5 |
| 0C5      | P57M        | P56M        | P55M       | P54M    | P53M       | P52M       | P51M       | P50M         | R/W   | P5M   |
| H<br>0C8 | TC0IR       | T0IRQ       | P00IR      | R/W     | INTRQ      |            |            |              |       |       |
| H        | Q           | TOIKQ       | Q          | IV W    | INTRO      |            |            |              |       |       |
| 0C9      | TC0IE       | T0IEN       | POOIE      | R/W     | INTEN      |            |            |              |       |       |
| Н        | N           |             | N          |         |            |            |            |              |       |       |
| 0CA      | CPUM        | CPUM        | CLKM       | STPHX   | R/W        | OSCM       |            |              |       |       |
| Н        | 1           | 0           | D          |         |            |            |            |              |       |       |
| 0CC      | WDTR        | WDTR        | WDT        | WDTR4   | WDTR3      | WDTR2      | WDTR1      | WDTR         | W     | WDTR  |
| H        | 7<br>TCOP 7 | 6<br>TCOR6  | R5         | TCOD 4  | TC0D2      | TCOD2      | TCOD 1     | 0<br>TC0R0   | W     | TCOD  |
| 0CD<br>H | TC0R7       | TC0R6       | TC0R<br>5  | TC0R4   | TC0R3      | TC0R2      | TC0R1      | TCUKU        | , vv  | TC0R  |
| 0CE      | PC7         | PC6         | PC5        | PC4     | PC3        | PC2        | PC1        | PC0          | R/W   | PCL   |
| Н        |             |             |            |         |            |            |            |              |       |       |
| 0CF      | PC9         | PC8         | R/W        | PCH     |            |            |            |              |       |       |
| Н        |             |             |            |         |            |            |            |              |       |       |
| 0D0      | P00         | R/W         | P0         |         |            |            |            |              |       |       |
| H        | D16         | D15         | D14        | D12     | D12        | D11        | D10        | D/W          | D1    |       |
| 0D1<br>H | P16         | P15         | P14        | P13     | P12        | P11        | P10        | R/W          | P1    |       |
| 0D5      | P57         | P56         | P55        | P54     | P53        | P52        | P51        | P50          | R/W   | P5    |
| H        |             |             |            |         |            | 132        | ***        |              |       |       |
| 0D8      | T0ENB       | T0rate2     | T0rate     | T0rate0 | T0TB       | R/W        | T0M        |              |       |       |
| Н        |             |             | 1          |         |            |            |            |              |       |       |
| 0D9      | T0C7        | T0C6        | T0C5       | T0C4    | T0C3       | T0C2       | T0C1       | T0C0         | R/W   | T0C   |
| Н        |             |             |            |         |            |            |            |              |       |       |
| 0DA      | TC0EN       | TC0rat      | TC0rat     | TC0rate | TC0CK      | ALOAD      | TC0OU      | PWM0         | R/W   | TC0M  |
| H<br>0DB | B<br>TC0C7  | e2<br>TC0C6 | e1<br>TC0C | TC0C4   | S<br>TC0C3 | 0<br>TC0C2 | T<br>TC0C1 | OUT<br>TC0C0 | R/W   | TC0C  |
| H        | 1000/       | 1000        | 5          | 10004   | 10003      | 10002      | 10001      | 1000         | IV W  | 1000  |
| 0DC      | BZEN        | BZrate      | BZrate     | R/W     | BZM        |            |            |              |       |       |
| Н        |             | 1           | 0          |         |            |            |            |              |       |       |
| 0DF      | GIE         | STKPB       | STKP       | R/W     | STKP       |            |            |              |       |       |



Wuxi I-CORE Electronics Co., Ltd.

表 835-11

版次:B3

编号: AiP8P006A-AX-A008

| Н   |       | 1     | В0     |       |       |       |       |       |     |       |
|-----|-------|-------|--------|-------|-------|-------|-------|-------|-----|-------|
| 0E0 | P00R  | W     | P0UR   |       |       |       |       |       |     |       |
| Н   |       |       |        |       |       |       |       |       |     |       |
| 0E1 | P16R  | P14R  | P13R   | P12R  | P11R  | P10R  | W     | P1UR  |     |       |
| Н   |       |       |        |       |       |       |       |       |     |       |
| 0E5 | P57R  | P56R  | P55R   | P54R  | P53R  | P52R  | P51R  | P50R  | W   | P5UR  |
| Н   |       |       |        |       |       |       |       |       |     |       |
| 0E6 | P53DR | P52DR | P51D   | P50DR | W     | P5DR  |       |       |     |       |
| Н   |       |       | R      |       |       |       |       |       |     |       |
| 0E7 | @YZ7  | @YZ6  | @YZ5   | @YZ4  | @YZ3  | @YZ2  | @YZ1  | @YZ0  | R/W | @YZ   |
| Н   |       |       |        |       |       |       |       |       |     |       |
| 0E9 | P10OC | W     | P1OC   |       |       |       |       |       |     |       |
| Н   |       |       |        |       |       |       |       |       |     |       |
| 0F8 | S3PC7 | S3PC6 | S3PC5  | S3PC4 | S3PC3 | S3PC2 | S3PC1 | S3PC0 | R/W | STK3L |
| Н   |       |       |        |       |       |       |       |       |     |       |
| 0F9 | S3PC9 | S3PC8 | R/W    | STK3H |       |       |       |       |     |       |
| Н   |       |       |        |       |       |       |       |       |     |       |
| 0FA | S2PC7 | S2PC6 | S2PC5  | S2PC4 | S2PC3 | S2PC2 | S2PC1 | S2PC0 | R/W | STK2L |
| Н   |       |       |        |       |       |       |       |       |     |       |
| 0FB | S2PC9 | S2PC8 | R/W    | STK2H |       |       |       |       |     |       |
| Н   |       |       |        |       |       |       |       |       |     |       |
| 0FC | S1PC7 | S1PC6 | S1PC5  | S1PC4 | S1PC3 | S1PC2 | S1PC1 | S1PC0 | R/W | STK1L |
| Н   |       |       |        |       |       |       |       |       |     |       |
| 0FD | S1PC9 | S1PC8 | R/W    | STK1H |       |       |       |       |     |       |
| Н   |       |       | 407.71 |       |       |       |       |       |     |       |
| 0FE | S0PC7 | S0PC6 | S0PC5  | S0PC4 | S0PC3 | S0PC2 | S0PC1 | S0PC0 | R/W | STK0L |
| Н   |       |       |        |       |       |       |       |       |     |       |
| 0FF | S0PC9 | S0PC8 | R/W    | STK0H |       |       |       |       |     |       |
| Н   |       |       |        |       |       |       |       |       |     |       |

- 注: 1.为了避免系统出错,请确认系统寄存器各位的值应与上表所示一致;
  - 2.所有系统寄存器的名称都已经在SN8ASM编译器中宣告过;
  - 3.寄存器各位的名称都已经以"F"为前缀在SN8ASM宣告过;
  - 4.指令"b0bset", "b0bclr", "bset", "bclr"仅对"R/W"寄存器有效;
  - 5.详细信息请参考"系统寄存器快速参考表"。

# 4.3.3、累加器

8-bit数据寄存器ACC在ALU和数据存储器之间进行数据的传送和操作。如果操作结果为零(Z)或有进位产生(C或DC),标志寄存器PFLAG中相应位会发生变化。

ACC并不在RAM中,因此在立即寻址模式中不能用"B0MOV"指令对其进行读写。

例:读/写ACC

; 读取ACC 中的数据并存入BUF

MOV BUF, A

;数据写入ACC

MOV A, #0FH

; BUF 中的数据写入ACC

MOV A, BUF



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

表 835-11

B0MOV A, BUF

系统执行中断操作时, ACC 和PFLAG 中的数据不会自动存储, 必须将中断入口处的 ACC 和PFLAG 中的数据送入存储器进行保存。由程序通过"PUSH"和"POP"指令,对 系统寄存器进行存储及恢复。

例: ACC 和工作寄存器中断保护操作。

INT SERVICE:

; PFLAG 和ACC 数据送入缓冲器. **PUSH** 

••• .

POP ;恢复ACC 和PFLAG

**RETI** ;退出中断

# 4.3.4 、程序状态寄存器 PFLAG

寄存器PFLAG 中包含ALU运算状态信息、系统复位状态信息和LVD检测信息,其中, 位NTO和NPD显示系统复位状态信息,包括上电复位、LVD复位、外部复位和看门狗复位; 位C、DC和Z显示ALU的运算信息。位LVD24和LVD36显示了芯片供电电源状况。

表 4-4 程序状态寄存器 PFLAG(86H)

| Bit  | 7   | 6   | 5     | 4     | 3 | 2   | 1   | 0   |
|------|-----|-----|-------|-------|---|-----|-----|-----|
| Name | NT0 | NPD | LVD36 | LVD24 | - | С   | DC  | Z   |
| R/W  | R/W | R/W | R/W   | R/W   | - | R/W | R/W | R/W |
| POR  | -   | -   | 0     | 0     | - | 0   | 0   | 0   |

| 位   | 字段       | 描述                                      |
|-----|----------|-----------------------------------------|
| 7-6 | NTO, NPD | 复位状态标志                                  |
|     |          | NTO NPD 复位状态                            |
|     |          | 0 看门狗复位                                 |
| ,   |          | 0 1 保留                                  |
|     |          | 1 0 LVD复位                               |
|     |          | 1 1 外部复位                                |
| 5   | LVD36    | LVD 3.6V工作标志,LVD编译选项为LVD_H时有效。          |
|     |          | 0 无效(VDD > 3.6V);                       |
|     |          | 1 有效(VDD≤3.6V)。                         |
| 4   | LVD24    | LVD24: LVD 2.4V 工作标志,仅支持LVD 编译选项为LVD_M。 |
|     |          | 0 无效(VDD > 2.4V);                       |
|     |          | 1 有效(VDD≤2.4V)。                         |
| 3   | -        | -                                       |
| 2   | С        | C: 进位标志。                                |
|     |          | 1 加法运算后有进位、减法运算没有借位发生或移位后移出逻辑"1"或比较运算   |
|     |          | 的结果≥0;                                  |
|     |          | 0 加法运算后没有进位、减法运算有借位发生或移位后移出逻辑"0"或比较运    |
|     |          | 算的结果<0。                                 |
| 1   | DC       | DC: 辅助进位标志。                             |



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

|   |   | 1  | 加法运算时低四位有进位,或减法运算后没有向高四位借位; |
|---|---|----|-----------------------------|
|   |   | 0  | 加法运算时低四位没有进位,或减法运算后有向高四位借位。 |
| 0 | Z | Z: | 零标志。                        |
|   |   | 1  | 算术/逻辑/分支运算的结果为零;            |
|   |   | 0  | 算术/逻辑/分支运算的结果非零。            |

## 4.3.5 、程序计数器

表 835-11

10-bit 程序计数器PC 分为2-bit 高字节和8-bit 低字节,用于定位程序执行的指令。程序 运行过程中,每执行一条指令,程序计数器PC将自动加1。

但是,如果程序执行CALL 或JMP 指令时,PC则指向特定地址。

表 4-5 PC 程序计数器

|   | Bit1 | Bit1 | Bit1 | Bit1 | Bit1 | Bit1 | Bit |
|---|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|   | 5    | 4    | 3    | 2    | 1    | 0    | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| P |      |      |      |      |      |      | PC  |
| C | -    | -    | -    | -    | -    | -    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 复 | 更    |      |      |      |      |      |     |     |     |     |     |     |     |     |     |     |
| 位 |      |      |      |      |      |      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |     |     |
| 后 |      |      |      |      |      |      |     |     |     |     |     |     |     |     |     |     |
|   | РСН  |      |      |      |      |      |     |     |     |     |     | PC  | CL  |     |     |     |

## (1) 单地址跳转

共有9条单地址跳转指令: CMPRS, INCS, INCMS, DECS, DECMS, BTS0, BTS1, B0BTS0, B0BTS1,如果这些指令执行的结果为真,PC值加2跳过待执行的下一条指令。

B0BTS1

FC

**COSTEP** 

;如果Carry flag = 1 则跳过下一条指令

**JMP** 

•••

COSTEP: NOP

**B0MOV** 

A, BUF0

; BUF0 的值送入ACC.

; 否则跳至COSTEP.

B0BTS0

FZ

;如果Zero flag = 0,跳过下一条指令

**JMP** 

C1STEP

; 否则转至 C1STEP.

...

C1STEP: NOP

如果ACC的值与立即数或存储器的值相等,则PC值将加2以跳过下一条指令。

**CMPRS** 

A, #12H

;如果ACC=12H,跳过下一条指令

**JMP** 

**COSTEP** 

; 否则转至COSTEP.

...

**COSTEP: NOP** 

如果PC值加1时从0xFF溢出到0x00,则PC值将加2以跳过下一条指令。

INCS指令:

**INCS** 

BUF0

**JMP** 

COSTEP;



Wuxi I-CORE Electronics Co., Ltd.

版次:B3 编号: AiP8P006A-AX-A008

COSTEP: NOP

INCMS指令:

INCMS BUF0 JMP C0STEP

• • •

表 835-11

**COSTEP: NOP** 

如果PC值减1时从0x00溢出到0xFF则PC值将加2以跳过下一条指令。

DECS指令:

DECS BUF0 JMP C0STEP

...

COSTEP: NOP DECMS指令:

DECMS BUF0 JMP COSTEP

...

COSTEP: NOP

(2) 多地址跳转

执行JMP 或ADD M,A(M=PCL)指令可实现多地址跳转。PCL 溢出并向PCH 产生进位时,可采用指令"ADDM,A","ADC M,A"和 "B0ADD M,A"。对于跳转表及其它应用,可采用以上三条指令计算PC 值而不需要担心PCL 溢出的问题。

注: PCH 仅支持PC 的递增运算而不支持递减运算。当PCL+ACC 执行完后有进位时,PCH 会自动加1。若 PCL-ACC 执行完后有借位发生,此时PCH 的值保持不变。

例: 如果 PC = 0323H (PCH = 03H, PCL = 23H)。

: PC = 0323H

MOV A, #28H

B0MOV PCL, A ; 跳转至0328H

•••

; PC = 0328H

MOV A, #00H

BOMOV PCL, A ;转至0300H

...

例: 如果PC=0323H (PCH = 03H, PCL = 23H)。

PC = 0323H

B0ADD PCL, A ; PCL = PCL + ACC, PCH 不变 JMP A0POINT ; ACC = 0,跳转至A0POINT JMP A1POINT ; ACC = 1,跳转至A1POINT JMP A2POINT ; ACC = 2,跳转至A2POINT JMP A3POINT ; ACC = 3,跳转至A3POINT



Wuxi I-CORE Electronics Co., Ltd.

版次:B3 编号: AiP8P006A-AX-A008

# 4.3.6 、Y,Z 寄存器

寄存器Y 和Z 都是8位缓存器,主要用途如下:

● 普通工作寄存器;

表 835-11

- RAM 数据寻址指针@YZ;
- 配合指令MOVC 对ROM 数据进行查表。

表 4-6 Y 寄存器(84H)

| Bit  | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| Name | YBIT7 | YBIT6 | YBIT5 | YBIT4 | YBIT3 | YBIT2 | YBIT1 | YBIT0 |
| R/W  | R/W   | R/W   | R/W   | R/W   | -     | R/W   | R/W   | R/W   |
| POR  | -     | -     | -     | -     | -     | -     | -     |       |

#### 表 4-7 Z 寄存器(83H)

| Bit  | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| Name | ZBIT7 | ZBIT6 | ZBIT5 | ZBIT4 | ZBIT3 | ZBIT2 | ZBIT1 | ZBIT0 |
| R/W  | R/W   | R/W   | R/W   | R/W   | -     | R/W   | R/W   | R/W   |
| POR  | -     | -     | -     | -     | -     | -     | -     | -     |

例:用 Y,Z 作为数据指针寻址RAM 中bank0 的025H。

B0MOV Y, #00H ; Y 指向RAM bank 0

B0MOV Z, #25H ; Z 指向 25H B0MOV A, @YZ ; 数据送入ACC

例:利用数据指针@YZ对RAM数据清零。

B0MOV Y, #0 ; Y = 0, bank 0

B0MOV Z, #07FH ; Z = 7FH, RAM 区的最后单元;

CLR YZ BUF:

CLR @YZ ;@YZ 清零

DECMS Z ;

JMP CLR\_YZ\_BUF ; 不为零

CLR @YZ

END\_CLR:;

...

# 4.3.7 、R 寄存器

8位缓冲器R 主要有以下两个功能:

- 作为工作寄存器使用;
- 存储查表函数的高字节数据。

注:执行MOVC指令,指定ROM单元的高字节数据会被存入R寄存器而低字节数据则存入ACC。



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

表 4-8 R 寄存器(82H)

| Bit  | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| Name | RBIT7 | RBIT6 | RBIT5 | RBIT4 | RBIT3 | RBIT2 | RBIT1 | RBIT0 |
| R/W  | R/W   | R/W   | R/W   | R/W   | -     | R/W   | R/W   | R/W   |
| POR  | -     | -     | -     | -     | -     | -     | -     | -     |

## 4.4、寻址模式

# 4.4.1 、立即寻址

立即寻址就是把一个立即数送入ACC 或指定的RAM 单元。

例:立即数12H 送入ACC。

表 835-11

MOV A, #12H

例: 立即数12H 送入寄存器R。

B0MOV R, #12H

注: 立即数寻址范围必须介于RAM的0x80~0x87单元。

## 4.4.2 、直接寻址

直接寻址即是实现RAM 单元与ACC 之间的数据传输。

例: RAM 0x12 中数据送入ACC。

B0MOV A,12H

例:将ACC中数据送入RAM的0x12单元。

B0MOV 12H,A

## 4.4.3、间接寻址

间接寻址即是通过指针寄存器(Y/Z)访问RAM数据。

例:用@YZ 实现间接寻址。

B0MOV Y, #0 ; Y清零以寻址RAM bank0.

B0MOV Z, #12H ; 立即数12H 送入Z

B0MOV A, @YZ



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

#### 4.5、堆栈

#### 4.5.1、特性

表 835-11

堆栈缓存器共4层,当程序进入中断或执行CALL指令时,用于存放PC 值。寄存器STKP指向堆栈的当前层,STKnH和STKnL 具体存放PC值。

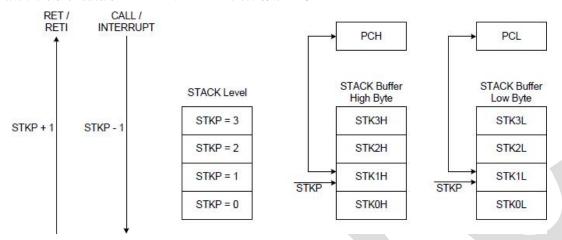



图4-3 堆栈说明

## 4.5.2 、堆栈寄存器

2-bit堆栈指针STKP用于存放当前访问的堆栈缓存器的地址,9-bit数据存储器STKnH和STKnL用于临时存放堆栈操作地址。

入栈操作时STKP的值减1,相反,执行出栈操作时,STKP的值则加1。因此,STKP总是指向堆栈最项层的缓存器。程序进入中断或执行CALL指令之前,程序计数器PC的值被存入堆栈缓存器中。堆栈操作遵循LIFO(后进先出)的规则,堆栈指针STKP和堆栈缓存器(STKnH和STKnL)位于系统寄存器的Bank0。

| Bit  | 7   | 6 | 5 | 4 | 3 | 2 | 1      | 0      |
|------|-----|---|---|---|---|---|--------|--------|
| Name | GIE | _ |   | - | - | - | STKPB1 | STKPB0 |
| R/W  | R/W | - | - | - | - | - | R/W    | R/W    |
| POR  | 0   | - | - |   | - | - | 1      | 1      |

表 4-9 堆栈指针 STKP 寄存器(0DFH)

| 7       GIE       全局中断控制位。         0       禁止         1       允许(详见中断章节)。         6-2       - | 位  | Ī. | 字段         | 描述            |
|-----------------------------------------------------------------------------------------------|----|----|------------|---------------|
| 1 允许(详见中断章节)。                                                                                 | 7  | '  | GIE        | 全局中断控制位。      |
|                                                                                               |    |    |            | 0 禁止          |
| 6-2                                                                                           |    |    |            | 1 允许(详见中断章节)。 |
|                                                                                               | 6- | 2  | -          | -             |
| 1-0 STKPB[1:0] 堆栈指针                                                                           | 1- | 0  | STKPB[1:0] | 堆栈指针          |

例:系统复位时,堆栈指针寄存器内容为默认值,但强烈建议在程序初始部分另行程序设定,如下面所示:

MOV A, #00000011B B0MOV STKP, A



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

表 4-10 STKnH 寄存器(0F0H~0F8H)

| Bit  | 7 | 6 | 5 | 4 | 3 | 2 | 1     | 0     |
|------|---|---|---|---|---|---|-------|-------|
| Name | - | - | - | - | - | - | SnPC9 | SnPC8 |
| R/W  | - | - | - | - | - | - | R/W   | R/W   |
| POR  | - | - | - | - | - | - | 0     | 0     |

表 4-11 STKnL 寄存器(0F0H~0F8H)

| Bit  | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| Name | SnPC7 | SnPC6 | SnPC5 | SnPC4 | SnPC3 | SnPC2 | SnPC1 | SnPC0 |
| R/W  | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| POR  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

注: STKn=STKnH,STKnL(n=3~0)

表 835-11

## 4.5.3、堆栈操作举例

执行程序调用指令CALL和响应中断复位时,堆栈指针STKP的值减1,指针指向下一个堆栈缓存器。同时,对程序计数器PC的内容进行入栈保存。

表 4-12 入栈操作

| 堆栈层数        | STKP   |        | 堆栈缓存器 |       | 备注   |
|-------------|--------|--------|-------|-------|------|
| 7E 12/12 XX | STKPB1 | STKPB0 | 高字节   | 低字节   | 田江   |
| 0           | 1      | 1      | Free  | Free  | -    |
| 1           | 1      | 0      | STK0H | STK0L | -    |
| 2           | 0      | 1      | STK1H | STK1L | -    |
| 3           | 0      | 0      | STK2H | STK2L | -    |
| 4           | 1      | 1      | STK3H | STK3L | -    |
| > 4         | 1      | 0      | -     | -     | 溢出出错 |

对应每个入栈操作,都有一个出栈操作来恢复程序计数器PC 的值。RETI 指令用于中断服务程序中,RET用于子程序调用。出栈时,STKP 加1 并指向下一个空闲堆栈缓冲器。堆栈恢复操作如下表所示:

表 4-13 出栈操作

| 堆栈层数 | STKP   |        | 堆栈缓存器 | 备注    |      |
|------|--------|--------|-------|-------|------|
|      | STKPB1 | STKPB0 | 高字节   | 低字节   | H /T |
| 4    | 1      | 1      | STK3H | STK3L | -    |
| 3    | 0      | 0      | STK2H | STK2L | -    |
| 2    | 0      | 1      | STK1H | STK1L | -    |
| 1    | 1      | 0      | STK0H | STK0L | -    |
| 0    | 1      | 1      | -     | -     | -    |



Wuxi I-CORE Electronics Co., Ltd.

wuxi i-core Electronics co. 版次:B3

编号: AiP8P006A-AX-A008

# 5、通用功能

# 5.1、复位

# 5.1.1、特性

在如下4种情况下系统会复位:

- 上电复位
- 看门狗复位

表 835-11

- 掉电复位
- 外部复位(仅在外部复位引脚处于使能状态)

当上述任何一种复位发生时,所有的系统寄存器被初始化,程序停止运行同时计数器PC 清零。复位结束后,系统重启,程序从ORG 0 处开始执行。标志位NT0 和NPD 用于指示系统的复位状态,可对这两个寄存器编程控制系统复位方式。

表 5-1 PFLAG 寄存器(086H)

| Bit  | 7   | 6   | 5 | 4 | 3 | 2   | 1   | 0   |
|------|-----|-----|---|---|---|-----|-----|-----|
| Name | NT0 | NPD | - | - | - | С   | DC  | Z   |
| R/W  | R/W | R/W | - | • | - | R/W | R/W | R/W |
| POR  | -   | -   | - | • | - | 0   | 0   | 0   |

| 位   | 字段       | 描述        |       |                |
|-----|----------|-----------|-------|----------------|
| 7-6 | NTO, NPD | 复位状态标志    |       |                |
|     |          | NTO NPD § | 夏位状态  | 说明             |
|     |          | 0 0 7     | 看门狗复位 | 看门狗溢出          |
|     |          | 0 1 1     | 保留    | -              |
|     |          | 1 0 I     | LVD复位 | 电源电压低于 LVD 检测值 |
|     |          | 1 1 3     | 外部复位  | 外部复位引脚检测到低电平   |

任何一种复位情况都需要一定的响应时间,系统提供完善的复位流程以保证复位动作的顺利进行。对于不同类型的振荡器,复位完成所需要的时间也不同。因此,VDD的上升速度和不同晶振的起振时间都不固定。RC振荡器的起振时间最短,晶体振荡器的起振时间则较长。在用户终端使用的过程中,应注意考虑主机对上电复位时间的要求。



表 835-11

# 无锡中微爱芯电子有限公司

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

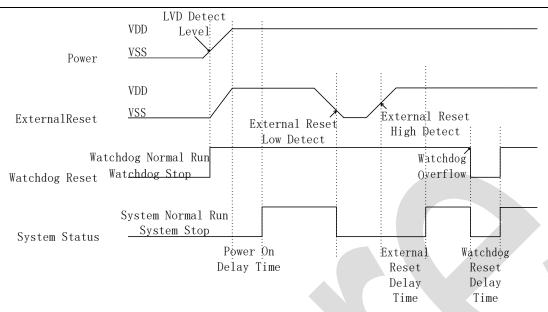



图 5-1 复位时序图

## 5.1.2 、上电复位

上电复位与LVD 操作密切相关。系统上电的过程呈逐渐上升的曲线形式,需要一定时间才能达到正常电平值。下面给出上电复位的正常时序:

- 上电:系统检测电压值,等待其稳定;
- 外部复位(仅限于外部复位引脚使能状态):系统检测外部复位引脚状态。如果不 为高电平,系统保持复位状态直到外部复位引脚释放。
- 系统初始化: 所有的系统寄存器被置为初始值;
- 振荡器开始工作:振荡器开始提供系统时钟;
- 执行程序:上电结束,程序开始运行。

## 5.1.3 、看门狗复位

看门狗复位是系统的一种保护设置。在正常状态下,由程序将看门狗定时器清零。若出错, 系统处于未知状态,看门狗定时器溢出,此时系统复位。看门狗复位后,系统重启进入正常状态。看门狗复位的时序如下:

- 看门狗定时器状态:系统检测看门狗定时器是否溢出,若溢出,则系统复位;
- 系统初始化:初始化所有的系统寄存器;
- 振荡器开始工作:振荡器开始提供系统时钟;
- 执行程序:上电结束,程序开始运行。

看门狗定时器应用注意事项:

- 看门狗定时器清零之前,请检查I/O端口状态及RAM数据;
- 不能在中断向量和中断程序中将看门狗定时器清零,否则无法起到侦测程序跑飞的目的:
- 程序中应该只在主程序中有一个清看门狗的动作,这种架构能够最大限度的发挥看门 狗的保护功能。



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

#### 5.1.4、掉电复位

表 835-11

#### 5.1.4.1、特性

掉电复位针对外部因素引起的系统电压跌落情形(例如,干扰或外部负载的变化),掉 电复位可能会引起系统工作状态不正常或程序执行错误。

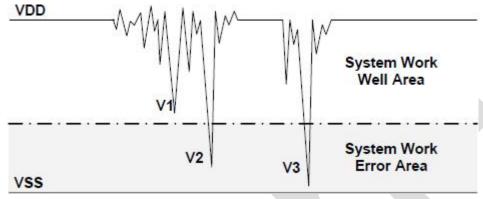



图 5-2 掉电复位示意图

电压跌落可能会进入系统死区。系统死区意味着电源不能满足系统的最小工作电压要求。上图是一个典型的掉电复位示意图。图中,VDD受到严重的干扰,电压值降的非常低。虚线以上区域系统正常工作,在虚线以下的区域内,系统进入未知的工作状态,这个区域称作死区。当VDD跌至V1时,系统仍处于正常状态;当VDD跌至V2和V3时,系统进入死区,则容易导致出错。以下情况系统可能进入死区:

#### DC应用中:

DC应用中一般都采用电池供电,当电池电压过低或MCU 驱动负载时,系统电压可能 跌落并进入死区。这时,电源不会进一步下降到系统复位电压,因此系统维持在死区。

#### AC应用中:

系统采用AC供电时,DC电压值受AC电源中的噪声影响。当外部负载过高,如驱动马达时,负载动作产生的干扰也影响到DC电源。VDD若由于受到干扰而跌落至最低工作电压以下时,则系统工作电压会失去稳定状态。

在AC应用中,系统上、下电时间都较长。其中,上电时序保护使得系统正常上电,但下电过程却和DC应用中情形类似,AC电源关断后,VDD电压在缓慢下降的过程中易进入死区。

#### 5.1.4.2 、系统工作电压

为了改善系统掉电复位的性能,首先必须明确系统具有的最低工作电压值。系统最低工作 电压与系统执行速度有关,不同的执行速度下最低工作电压值亦不同。电气特性一章给出了系 统工作电压与执行速度之间的关系。



表 835-11

# 无锡中微爱芯电子有限公司

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

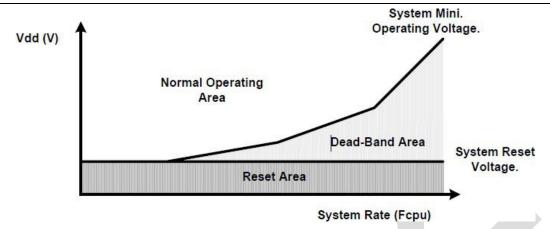



图 5-3 系统工作电压与执行速度关系图

如上图所示,系统正常工作电压区域一般略高于系统复位电压,同时复位电压由LVD 检测电平决定。当系统执行速度高于复位电压时,系统最低工作电压值将会升高。复位电压与最低工作电压之间的区域即是系统工作的死区。

#### 5.1.4.3 、掉电复位性能改进

如何改善系统掉电复位性能,有以下几点建议:

- LVD 复位;
- 看门狗复位;
- 降低系统工作速度;
- 采用外部复位电路 (齐纳二极管复位电路,电压偏移复位电路,外部IC 复位)。

注: 1. "齐纳二极管复位电路"、"电压偏移复位电路"和"外部IC复位"能够完全避免掉电复位出错;

2.对于AC供电的系统,可提高EFT性能,系统时钟采用4MHz和外部复位(齐钠二极管复位电路,电压偏移复位电路,外部IC复位)。电路结构的优化可降低噪声的影响并获得更好的EFT特性。



图 5-4 LVD 复位

LVD(低电压检测)是AiP 8-bit MCU 的内置掉电复位保护装置,当VDD 跌落并低于 LVD 检测电压值时,LVD被触发,系统复位。不同的MCU 有不同的LVD 检测电平,LVD检测电平值仅为一个点电压,并不能覆盖所有死区范围。因此采用LVD依赖于系统要求和环境状况。电源变化较大时,LVD能够起到保护作用,如果电源变化触发LVD却使得系统工

表 835-11

# 无锡中微爱芯电子有限公司

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

作出错,那么LVD 就不能起到保护作用,就需要采用其它复位方法。电气特性一章中给出了更多关于LVD 的详细内容。

LVD设计为三层结构(2.0V/2.4V/3.6V),由LVD编译选项控制决定。对于上电复位和掉电复位,2.0V LVD始终处于使能状态;2.4V LVD具有LVD复位功能,并能显示VDD状态;3.6V LVD具有标记功能,可显示VDD的工作状态。LVD标志功能只是一个低电压检测装置,标志位LVD24和LVD36给出VDD的电压情况。对于低电压检测应用,只需查看LVD24和LVD36的状态即可检测电池状况。

|      |     |     | P = 1 | 3 0 4 2 3 13 1 | .,(* | )   |     |     |
|------|-----|-----|-------|----------------|------|-----|-----|-----|
| Bit  | 7   | 6   | 5     | 4              | 3    | 2   | 1   | 0   |
| Name | NT0 | NPD | LVD36 | LVD24          | -    | С   | DC  | Z   |
| R/W  | R/W | R/W | R/W   | R/W            | -    | R/W | R/W | R/W |
| POR  | -   | -   | 0     | 0              | -    | 0   | 0   | 0   |

表 5-2 程序状态寄存器 PFLAG(086H)

| 位 | 字段    | 描述                               |
|---|-------|----------------------------------|
| 5 | LVD36 | LVD 3.6V工作标志,LVD编译选项为LVD_H时有效。   |
|   |       | 0 LVD 3.6V标志位无效(VDD > 3.6V);     |
|   |       | 1 LVD 3.6V标志位有效(VDD≤3.6V)。       |
| 4 | LVD24 | LVD 2.4V 工作标志,仅支持LVD 编译选项为LVD_M。 |
|   |       | 0 LVD 2.4V标志位无效(VDD > 2.4V);     |
|   |       | 1 LVD 2.4V标志位有效(VDD≤2.4V)。       |

表 5-3 LVD 编译选项

|   | LVD     | LVD编译选项 |  |  |       |  |       |  |
|---|---------|---------|--|--|-------|--|-------|--|
|   | LVD     | LVD_L   |  |  | LVD_M |  | LVD_H |  |
|   | 2.0V 复位 | 有效      |  |  | 有效    |  | 有效    |  |
|   | 2.4V 标志 | -       |  |  | 有效    |  | -     |  |
|   | 2.4V 复位 | -       |  |  | -     |  | 有效    |  |
| 7 | 3.6V 标志 |         |  |  | -     |  | 有效    |  |

## LVD\_L

如果VDD < 2.0V, 系统复位;

LVD24 和LVD36 标志位无意义。

#### LVD M

如果VDD < 2.0V, 系统复位;

LVD24,如果VDD > 2.4V,LVD24 = "0";如果VDD <= 2.4V,LVD24 = "1" LVD36 标志位无意义。

#### LVD2 H

如果VDD < 2.4V, 系统复位;

LVD24,如果VDD>2.4V,LVD24="0";如果VDD<=2.4V,LVD24="1"

LVD36,如果VDD > 3.6V,LVD36="0";如果VDD <= 3.6V,LVD36="1"

注: 1.LVD 复位结束后, LVD24 和LVD36 都将被清零;

2.LVD 2.4V 和LVD3.6V 检测电平值仅作为设计参考,不能用作芯片工作电压值的精确检测。

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

# 看门狗复位:

表 835-11

看门狗定时器用于保证系统正常工作。通常,会在主程序中将看门狗定时器清零,但不要在多个分支程序中清看门狗。若程序正常运行,看门狗不会复位。当系统进入死区或程序运行出错的时候,看门狗定时器继续计数直至溢出,系统复位并回到正常模式。如果看门狗复位后电源仍处于死区,则系统复位失败,一直处于复位状态直到电源回到正常水平。

如果看门狗复位后电源仍处于死区,则系统复位失败,保持复位状态,直到电源恢复到正常信。

# 降低系统工作速度:

如果系统工作速度过快容易导致芯片最低工作电压值增高,从而加大工作死区的范围,那么降低系统工作速度不失为降低系统进入死区几率的有效措施。因为系统工作速度较低则最小工作电压值相应较低。所以,调节电源电压选择恰当的电压值,在该电压下不会带来死区问题,从而找到合适的系统工作速度。这个方法需要调整整个程序使其满足系统要求。

#### 附加外部复位电路:

外部复位发也能够完全改善掉电复位性能。共有三种外部复位方式:齐纳二极管复位电路,电压偏移复位电路和外部IC复位。它们都采用外部复位信号控制MCU可靠复位。

#### 5.1.5 、外部复位

外部复位功能由 "Reset\_Pin"编译选项控制。将该编译选项置为 "Reset",从而使能外部复位功能。外部复位引脚为施密特触发器结构,低电平有效。复位引脚处于高电平时,系统正常运行。当复位引脚输入低电平信号时,系统复位。外部复位操作在上电和正常工作模式时有效。需要注意的是,在系统上电的过程中,外部复位引脚必须输入高电平,否则系统将一直保持在复位状态。外部复位的时序如下:

- 外部复位(当且仅当外部复位引脚为使能状态):系统检测外部复位引脚的状态,如果外部复位引脚不为高电平,则系统保持在复位状态直到外部复位引脚被释放;
- 系统初始化:初始化所有的系统寄存器;
- 振荡器开始工作:振荡器开始提供系统时钟;
- 执行程序:上电结束,程序开始运行。

外部复位可以在上电过程中使系统复位。良好的外部复位电路可以保护系统以免进入未知的工作状态,如AC应用中的掉电复位等。



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

5.1.6、外部复位电路

表 835-11

#### 5.1.6.1 、RC 复位电路

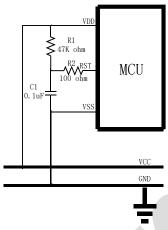



图5-5 RC复位电路

上图为一个由电阻R1 和电容C1 组成的基本RC 复位电路,它在系统上电的过程中能够为复位引脚提供一个缓慢上升的复位信号。这个复位信号的上升速度低于VDD 的上电速度,为系统提供合理的复位时间,当复位引脚达到高电平时,系统复位结束,进入正常工作状态。注: RC 复位电路不能解决非正常上电和掉电复位问题。

## 5.1.6.2 、二极管&RC 复位电路

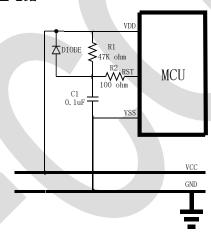



图5-6二极管&RC复位电路

上图中,R1和C1同样是为复位引脚提供输入信号。对于电源异常情况,二极管正向导通使C1 快速放电并与VDD保持一致,避免复位引脚持续高电平、系统无法正常复位。注:"基本RC 复位电路"和"二极管&RC 复位电路"中的电阻R2 都是必不可少的限流电阻,以避免复位引脚ESD (Electrostatic Discharge)或EOS (Electrical Over-stress))击穿。



Wuxi I-CORE Electronics Co., Ltd.

wuxi i-CORE Electronics Co., 版次:B3

编号: AiP8P006A-AX-A008

# 

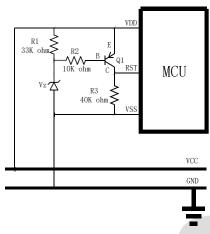



图5-7 齐纳二极管复位电路

齐纳二极管复位电路是一种简单的LVD 电路,基本上可以完全解决掉电 复位问题。如上图电路中,利用齐纳管的击穿电压作为电路复位检测值,当VDD 高于"Vz+0.7V"时, 三极管集电极输出高电平,MCU 正常工作; 当VDD 低于"Vz+0.7V"时,三极管集电极输出低电平,MCU 复位。齐纳管规格不同则电路复位检测值不同,根据电路的要求选择合适的二极管。

#### 5.1.6.4 、电压偏置复位电路

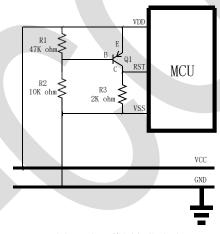



图5-8 电压偏置复位电路

电压偏置复位电路是一种简单的LVD 电路,基本上可以完全解决掉电复位问题。与齐纳二极管复位电路相比,这种复位电路的检测电压值的精确度有所降低。电路中,R1 和R2 构成分压电路,当VDD 高于和等于分压值 "0.7V x (R1 + R2)/R1"时,三极管集电极C 输出高电平,MCU 正常工作; VDD低于 "0.7V x (R1 + R2)/R1"时,集电极C 输出低电平,MCU复位。

对于不同应用需求,选择适当的分压电阻。MCU 复位引脚上电压的变化与VDD 电压变化之间的差值为0.7V。如果VDD 跌落并低于复位引脚复位检测值,那么系统将被复位。如果希望提升电路复位电平,可将分压电阻设置为R2>R1,并选择VDD 与集电极之间的结电压高于0.7V。分压电阻R1 和R2 的电流稳定,在功耗电路如直流电源系统中,此处的功



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

表 835-11 耗必须计入整个系统的功耗中。

注:在电源不稳定或掉电复位的情况下,"齐纳二极管复位电路"和"偏压复位电路"能够保护电路在电压跌落时避免系统出错。当电压跌落至低于复位检测值时,系统将被复位。从而保证系统正常工作。

#### 5.1.6.5 、外部 IC 复位电路

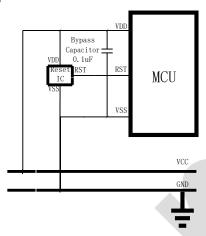



图5-9 外部复位电路

外部复位也可以选用IC 进行外部复位,但是这样一来系统成本将会增加。针对不用的应用要求选择适当的复位IC,如上图所示外部IC 复位电路,能够有效的降低电源变化对系统的影响。

也可以选用IC 进行外部复位,但是这样一来系统成本将会增加。针对不用的应用要求选择适当的复位IC,如上图所示外部IC 复位电路,能够有效的降低电源变化对系统的影响。

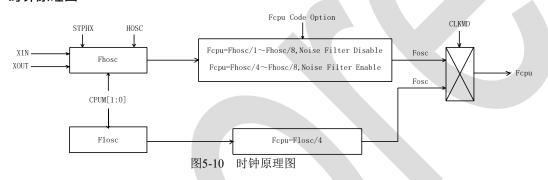
Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

#### 5.2、系统时钟

表 835-11


#### 5.2.1、特性

双时钟系统包括高速时钟和低速时钟,高速时钟由外部振荡电路提供。低速时钟由内置的低速RC振荡电路(ILRC16KHZ@3V, 32KHz @5V)产生。两种时钟都可作为系统时钟源Fosc,系统工作在低速模式时,Fosc 4分频后作为一个指令周期。

普通模式(高速时钟): Fcpu = Fhosc / N, N =  $1 \sim 8$ , 由Fcpu 编译选项控制; 低速模式(低速时钟): Fcpu = Flosc/4。

在干扰较严重的运用条件下,SONiX 提供的杂讯滤波器能够对外部干扰进行隔离以保护系统的正常工作。但在杂讯滤波器有效时,高速时钟的Fcpu 被限制为Fcpu=Fhosc/4。

## 5.2.2 、时钟原理图



● HOSC: High Clk 编译选项

● Fhosc: 外部高速时钟频率

● Flosc: 内部低速RC时钟频率(16KHz@3V, 32KHz@5V).

Fosc: 系统时钟频率Fcpu: 指令执行频率

## 5.2.3 、寄存器 OSCM

寄存器OSCM控制振荡器的状态和系统的工作模式。

表 5-4 OSCM 寄存器(0CAH)

| Bit  | 7 | 6 | 5 | 4     | 3     | 2     | 1     | 0 |
|------|---|---|---|-------|-------|-------|-------|---|
| Name | 0 | 0 | 0 | CPUM1 | CPUM0 | CLKMD | STPHX | - |
| R/W  | - | - | - | R/W   | R/W   | R/W   | R/W   | - |
| POR  | - | - | - | 0     | 0     | 0     | 0     | - |

| 位   | 字段        | 描述    |       |      |
|-----|-----------|-------|-------|------|
| 7-5 | -         | -     |       |      |
| 4-3 | CPUM[1:0] | CPU工作 | 模式控制位 |      |
|     |           | CPUM1 | CPUM0 | 工作模式 |
|     |           | 0     | 0     | 普通模式 |
|     |           | 0     | 1     | 睡眠模式 |
|     |           | 1     | 0     | 绿色模式 |
|     |           | 1     | 1     | 系统保留 |



表 835-11

版次:B3

编号: AiP8P006A-AX-A008

| 2 | CLKMD | 外部高速振荡器控制位                |  |  |  |
|---|-------|---------------------------|--|--|--|
|   |       | 0 外部高速时钟正常运行;             |  |  |  |
|   |       | 1 外部高速振荡器停止,内部低速RC 振荡器运行。 |  |  |  |
| 1 | STPHX | 系统高/低速时钟模式控制位             |  |  |  |
|   |       | 0 普通模式,系统采用高速时钟;          |  |  |  |
|   |       | 1 低速模式,系统采用内部低速时钟。        |  |  |  |
| 0 | -     | -                         |  |  |  |

例:停止高速振荡器。

**B0BSET FSTPHX** 

例: 进入睡眠模式时, 停止高速及低速振荡器。

**B0BSET** FCPUM0

## 5.2.4 、系统高速时钟

系统高速时钟源来自外部高速振荡器,由编译选项"High Clk"控制。

表 5-5 系统高速时钟源

| High_Clk | 注释                                |
|----------|-----------------------------------|
| RC       | 高速时钟为外部RC 振荡器,引脚XOUT 作为通用 I/O 端口。 |
| 32K      | 高速时钟为外部32768Hz 低速振荡器。             |
| 12M      | 高速时钟为外部高速振荡器,一般为10MHz~16MHz。      |
| 4M       | 高速时钟为外部振荡器,输出频率2MHz~10MHz。        |

外部高速时钟共三种模式:石英/陶瓷振荡器,RC及外部时钟源,由编译选项High Clk 控制具体模式的选择。石英/陶瓷振荡器和RC 振荡器的上升时间各不相同。RC 振荡器的上升 时间相对较短。振荡器上升时间与复位时间的长短密切相关。

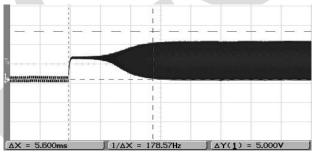
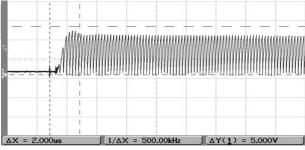
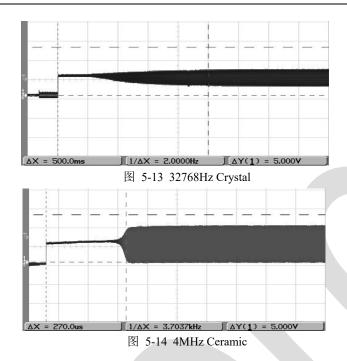



图 5-11 4MHz Crystal





图 5-12 RC



# 无锡中微爱芯电子有限公司 Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008



#### 5.2.4.1 、石英/陶瓷振荡器

石英/陶瓷振荡器由XIN、XOUT 口驱动,对于高速、普通和低速三种不同工作模式, 振荡器的驱动电流也不同。编译选项"High Clk"亦支持不同的频率条件:高速模式下的 12MHz 工作频率、普通模式的4MHz 工作频率以及低速模式下32KHz 工作频率。

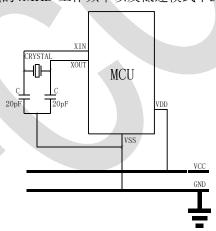



图5-15 石英/陶瓷振荡器

注:上图中,XIN/XOUT/VSS 引脚与石英/陶瓷振荡器以及电容C之间的线路越短越好。

## 5.2.4.2 、RC 振荡器

通过编译选项High Clk 的设置可控制RC 振荡器的选择,RC 振荡器输出频率最高可达 10MHZ。改变R可改变输出频率的大小,电容C的最佳容量为50P~100P,引脚XOUT为通 用I/O口,如下图所示:



# 无锡中微爱芯电子有限公司 Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

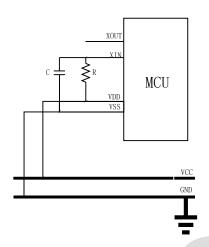



图5-16 RC振荡器

注:电容C和电阻R应尽可能的接近芯片的VDD。

## 5.2.4.3 、外部时钟源

芯片可选择片外时钟信号作为系统时钟,由编译选项High Clk 控制,从XIN 脚送入。 XOUT 为普通的I/O 引脚。

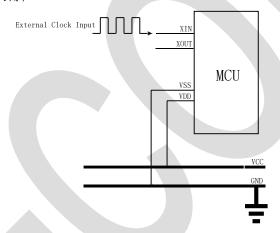



图5-17 外部时钟源

注:外部振荡电路中的GND 必须尽可能的接近芯片的VSS 端口。

## 5.2.5、系统低速时钟

系统低速时钟源即内置的低速振荡器,采用RC振荡电路。低速时钟的输出频率受系统 电压和环境温度的影响,通常为5V时输出32KHZ,3V时输出16KHZ。输出频率与工作电 压之间的关系如下图所示。



## 无锡中微爱芯电子有限公司

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

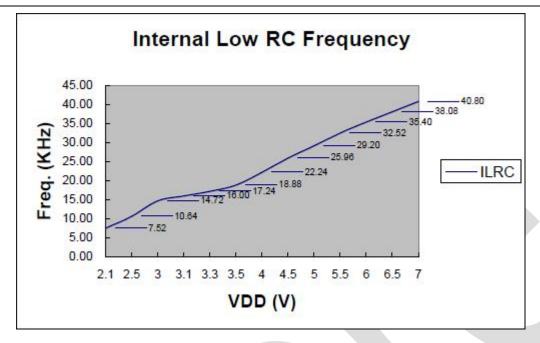



图5-18 输出频率与工作电压之间的关系

低速时钟可作为看门狗定时器的时钟源。由CLKMD 控制系统低速工作模式

- Flosc = 内部低速RC 振荡器 (16KHz @3V, 32KHz @5V).
- 低速模式Fcpu = Flosc / 4

系统工作在睡眠模式和绿色模式下看门狗处于无效时,可以停止低速RC 振荡器。如果系统工作频率为32K 且看门狗无效,那么这种情况下只有32K 振荡器处于工作状态,系统功耗相应较低。

例: 在睡眠模式下, 停止内部低速振荡器。

B0BSET FCPUM0

注:不可以单独停止内部低速时钟;由寄存器OSCM的位CPUM0和CPUM1(32K,禁止看门狗)的设置决定内部低速时钟的状态。

#### 5.2.5.1、系统时钟测试

在设计过程中,用户可通过软件指令周期对系统时钟速度进行测试。

例:外部振荡器的Fcpu 指令周期测试。

B0BSET P0M.0

; P0.0 置为输出模式以输出Fcpu 的触发信号

@@:

B0BSET P0.0 B0BCLR P0.0 JMP @B

注:不能直接从XIN 引脚测试RC 振荡频率,因为探针的连接会影响测试的准确性。



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

#### 5.3、系统工作模式

#### 5.3.1、特性

芯片可在如下四种工作模式之间进行切换:

● 普通模式(高速模式)

表 835-11

- 低速模式
- 睡眠模式
- 绿色模式

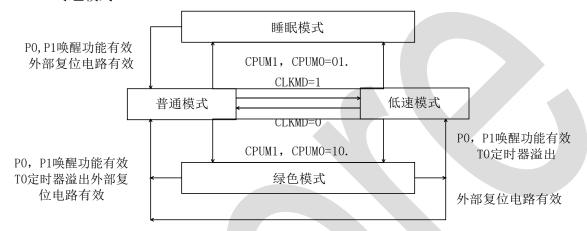



图5-19 系统模式切换原理图

表5-6系统模式列表

|           | 普通模式       | 低速模式       | 睡眠模式        | 绿色模式        | 注释           |
|-----------|------------|------------|-------------|-------------|--------------|
| EHOSC     | 运行         | STPHX控制    | STPHX控制     | 停止          |              |
| ILRC      | 运行         | 运行         | 运行          | 停止          |              |
| CPU指令     | 执行         | 执行         | 停止          | 停止          |              |
| T0        | *有效        | *有效        | *有效         | 无效          | *T0ENB=1时有效  |
| TC0       | *有效        | *有效        | *有效         | 无效          | *TC0ENB=1时有效 |
| 看门狗       | 由Watch_Dog | 曲Watch_Dog | 曲Watch_Dog  | 由Watch_Dog编 |              |
| 月 1 1 2 5 | 编译选项控制     | 编译选项控制     | 编译选项控制      | 译选项控制       |              |
| 内部中断      | 都有效        | 都有效        | T0, TC0     | 都无效         |              |
| 外部中断      | 都有效        | 都有效        | 都有效         | 都无效         |              |
| 唤醒功能      | -          | -          | P0,P1,T0,复位 | P0,P1,复位    |              |

EHOSC:外部高速时钟 ILRC:

内部低速时钟(3V时16K RC振荡器; 5V时32K)

#### 5.3.2、系统模式转换举例

例:系统由普通/低速模式转换到睡眠模式。

B0BSET FCPUM0

注: 系统进入睡眠模式后, 只有具有唤醒功能的引脚和复位信号能够将系统唤醒并回到普通模式中。

例:系统由普通模式转换到低速模式。



Wuxi I-CORE Electronics Co., Ltd.

表 835-11 版次:B3 编号: AiP8P006A-AX-A008

B0BSET FCLKMD ; 置CLKMD=1

BOBSET FSTPHX ;外部高速振荡器停振

例:低速模式转换到普通模式(外部高速振荡器始终处于工作状态)。

B0BCLR FCLKMD

例: 系统由低速模式转换到普通模式(外部高速振荡器停止工作)。

在外部高速时钟停振的情况下,系统回到普通模式时至少需要延迟 20ms以稳定振荡器

BOBCLR FSTPHX ; 启动外部振荡器

B0MOV Z, #54 ; 若 VDD = 5V、内部 RC=32KHz, 系统延迟

 $0.125 \text{ms} \times 162 = 20.25 \text{ms}$ 

@@: DECMS Z

JMP @B

B0BCLK FCLKMD;系统回到普通模式

例:系统由普通模式/低速模式进入绿色模式。

B0BSET FCPUM1

注:绿色模式下如果禁止T0的唤醒功能,则只有具有唤醒功能的引脚和复位引脚可以将系统唤醒返回到上一个工作模式。

例:系统由普通/低速模式进入绿色模式,并开启T0唤醒功能。

: 设置T0定时器的唤醒功能

BOBCLR FTOIEN ; 禁止 TO 中断

B0BCLR FT0ENB ; 关闭 T0 定时器

MOV A,#20H ;

B0MOV T0M,A ; T0 时钟= Fcpu / 64

MOV A,#74H

B0MOV T0C,A ; T0C 初始值= 74H (T0 中断间隔= 10 ms)

BOBCLR FTOIEN ; 禁止 TO 中断

B0BCLR FT0IRQ ; T0中断请求寄存器清零

BOBSET FTOENB ; 开启TO

: 进入绿色模式

B0BCLR FCPUM0 B0BSET FCPUM1

注:绿色模式下如果允许T0的唤醒功能,则具有唤醒功能的引脚、复位引脚和T0都能够将系统唤醒回到上一工作模式。T0的唤醒周期可编程控制,请注意对T0ENB的设置。

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

#### 5.3.3、唤醒时间

表 835-11

#### 5.3.3.1 、特性

在绿色模式和睡眠模式下,系统并不执行程序指令,唤醒触发信号能够将处于睡眠状态的系统唤醒到普通模式或低速模式。这里的唤醒触发信号包括外部触发信号(P0、P1引脚的电平变化)和内部触发信号(T0溢出信号),具体为:

- 由睡眠模式唤醒到普通模式只能是外部触发;
- 由绿色模式唤醒回到系统前一工作模式(普通模式或低速模式)可以用外部触发或 者内部触发。

## 5.3.3.2 、唤醒时间

系统进入睡眠模式后,高速时钟停止运行。把系统从睡眠模式下唤醒时,MCU需要等待2048个外部高速振荡器时钟周期以使振荡电路进入稳定工作状态,等待的这一段时间就称为唤醒时间。唤醒时间结束后,系统才进入到普通模式。

注:将系统从绿色模式中唤醒是不需要唤醒时间的,因为在绿色模式下高速时钟仍然正常工作。 唤醒时间的计算如下:

唤醒时间=1/Fosc\*2048(sec)+高速时钟启动时间

注: 高速时钟的启动时间与 VDD和振荡器类型有关。

例:将系统从睡眠模式中唤醒,并设置系统进入普通模式。唤醒时间计算如下:

唤醒时间=1/Fosc\*2048=0.512ms (Fosc=4MHz)

总的唤醒时间=0.512ms+振荡器启动时间

## 5.3.3.3 、PWM 唤醒控制寄存器

系统处于睡眠模式或绿色模式时,具有唤醒功能的 I/O端口能够将系统唤醒并进入到普通模式。P0和P1都具有上述唤醒功能,其中 P0的唤醒功能始终有效,而 P1则由寄存器 P1W 控制。

表 5-7 P1W 寄存器(0C0H)

| Bit  | 7   | 6 | 5    | 4    | 3    | 2    | 1    | 0    |
|------|-----|---|------|------|------|------|------|------|
| Name | - ( | - | P15W | P14W | P13W | P12W | P11W | P10W |
| R/W  | -   | - | W    | W    | W    | W    | W    | W    |
| POR  | -   | - | 0    | 0    | 0    | 0    | 0    | -    |

| 位   | 字段        | 描述           |  |  |  |
|-----|-----------|--------------|--|--|--|
| 7-6 | -         | -            |  |  |  |
| 5-0 | P15W:P10W | 1唤醒功能控制位     |  |  |  |
|     |           | 0 Pln 唤醒功能无效 |  |  |  |
|     |           | 1 Pln 唤醒功能有效 |  |  |  |



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

#### 5.4、中断

#### 5.4.1、特性

表 835-11

芯片提供三种中断源:两个内部中断(T0/TC0)和一个外部中断(INT0)。系统从睡眠模式进入高速普通模式时,外部中断能够将芯片唤醒。一旦程序进入中断,寄存器 STKP的位GIE将被清零以避免再次响应其它中断。系统退出中断后,GIE置"1",以响应下一个中断。中断请求存放在寄存器INTRQ中。

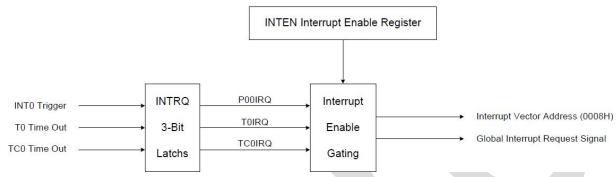



图5-20 中断使能寄存器

注:程序响应中断时,位GIE必须处于有效状态。

#### 5.4.2 、中断请求使能寄存器 INTEN

中断请求控制寄存器 INTEN包括2个内部中断和1个外部中断,当有效位被置为1后,系统进入该中断服务程序,程序计数器入栈,程序转至ORG 8即中断程序。程序运行到指令RETI时,中断结束,系统退出中断服务。

Bit 7 6 5 4 3 2 1 TC0IEN T0IEN P00IEN Name -R/W R/W R/W R/W POR 0 0 0

表 5-8 INTEN 寄存器(0C9H)

|     | . ) . 129 | THE P.             |
|-----|-----------|--------------------|
| 位   | 字段        | 描述                 |
| 7-6 | -         | -                  |
| 5   | TC0IEN    | TC0中断控制位           |
|     |           | 0 禁止               |
|     |           | 1 允许               |
| 4   | T0IEN     | T0中断控制位            |
|     |           | 0 禁止               |
|     |           | 1 允许               |
| 3-1 | -         | -                  |
| 0   | P00IEN    | P0.0外部中断(INT0) 控制位 |
|     |           | 0 禁止               |
|     |           | 1 允许               |



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

## 表 835-11 5.4.3 、中断请求寄存器 INTRQ

中断请求寄存器INTRQ中存放各中断请求标志。一旦有中断请求发生,则 INTRQ中对 应位将被置"1",该请求被响应后,程序应将该标志位清零。根据INTRQ的状态,程序判 断是否有中断发生,并执行相应的中断服务。

表 5-9 INTRQ 寄存器(0C8H)

| Bit  | 7 | 6 | 5      | 4     | 3 | 2 | 1 | 0      |
|------|---|---|--------|-------|---|---|---|--------|
| Name | - | - | TC0IRQ | T0IRQ | - | - | - | P00IRQ |
| R/W  | - | - | R/W    | R/W   | - | - | - | R/W    |
| POR  | - | - | 0      | 0     | - | - | - | 0      |

| 位   | 字段     | 描述                  |
|-----|--------|---------------------|
| 7-6 | -      |                     |
| 5   | TC0IRQ | TC0 中断请求标志          |
|     |        | 0 TC0 无中断请求         |
|     |        | 1 TC0 有中断请求         |
| 4   | T0IRQ  | T0 中断请求标志           |
|     |        | 0 T0 无中断请求          |
|     |        | 1 TO 有中断请求          |
| 3-1 | -      | -                   |
| 0   | P00IRQ | P0.0 中断 (INT0) 请求标志 |
|     |        | 0 INTO 无中断请求        |
|     |        | 1 INTO 有中断请求        |

## 5.4.4 、GIE 全局中断

只有当全局中断控制寄存器 GIE置1的时候程序才能响应中断请求。

表 5-10 GIE 寄存器(0CFH)

| Bit  | 7   | 6 | 5 | 4 | 3 | 2 | 1      | 0      |
|------|-----|---|---|---|---|---|--------|--------|
| Name | GIE | - | - | - | - | - | STKPB1 | STKPB0 |
| R/W  | R/W | _ | , | - | - | - | R/W    | R/W    |
| POR  | 0   | - | • | - | - | - | 0      | 0      |

| 位 | 字段  | 描述       |
|---|-----|----------|
| 7 | GIE | 全局中断控制位  |
|   |     | 0 全局中断无效 |
|   |     | 1 使能全局中断 |

例:设置全局中断控制位 (GIE)。B0BSET

FGIE ; 使能 GIE

注:在所有中断中,GIE都必须处于使能状态。

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

## 5.4.5 、PUSH · POP 处理

表 835-11

有中断请求发生并被响应后,程序转至ORG 8执行中断子程序。响应中断之前,必须保存ACC、PFLAG的内容。芯片提供 PUSH和POP指令进行入栈保存和出栈恢复,从而避免中断结束后可能的程序运行错误。

注: "PUSH", "POP"指令仅对ACC和PFLAG作中断保护,而不包括NT0和NPD。PUSH/POP缓存器是唯一的且仅有一层。

例:对 ACC和PAFLG进行入栈保护。

ORG 0

JMP START

ORG 8

JMP INT SERVICE

ORG 10H

START:

...

INT SERVICE:

PUSH ;保存ACC和PFLAG

•••

•••

POP ;恢复ACC和PFLAG

RETI ;退出中断

•••

**ENDP** 

## 5.4.6 · INT0(P0.0)中断

INTO被触发,则无论P00IEN处于何种状态,P00IRQ都会被置"1"。如果P00IRQ=1 且P00IEN=1 ,系统响应该中断;如果P00IRQ=1而P00IEN=0,系统并不会执行中断服务。 在处理多中断时尤其需要注意。

注: P0.0的中断触发方式由PEDGE控制。

表 5-11 PEDGE 寄存器(0CFH)

| Bit  | 7 | 6 | 5 | 4     | 3     | 2 | 1 | 0 |
|------|---|---|---|-------|-------|---|---|---|
| Name | - | - | - | P00G1 | P00G0 | - | - | - |
| R/W  | - | - | - | R/W   | R/W   | - | - | - |
| POR  | - | - | - | 0     | 0     | - | - | - |

| 位   | 字段        | 描述  | 述    |                |
|-----|-----------|-----|------|----------------|
| 7-5 | -         | -   |      |                |
| 4-3 | P00G[1:0] | P0. | 图中0. | 所触发控制位         |
|     |           | 0   | 0    | 保留             |
|     |           | 0   | 1    | 上升沿触发          |
|     |           | 1   | 0    | 下降沿触发          |
|     |           | 1   | 1    | 上升/下降沿触发(电平触发) |
| 2-0 | -         | -   |      |                |

Wuxi I-CORE Electronics Co., Ltd.

表 835-11 版次:B3 编号: AiP8P006A-AX-A008

例: INT0中断请求设置, 电平触发。

MOV A, #18H

B0MOV PEDGE, A ; INT0置为电平触发

BOBSET FP00IEN ; INT0中断开放

B0BCLR FP00IRQ ; INT0中断请求标志清零

BOBSET FGIE ;允许GIE

例: INT0中断服务程序。

ORG 8:

JMP INT SERVICE

INT SERVICE:

··· ; ACC和PFLAG入栈保护

B0BTS1 FP00IRQ ; 检测P00IRQ

JMP EXIT INT ; P00IRQ = 0, 退出中断

B0BCLR FP00IRQ ; P00IRQ 清零

•••

•••

EXIT\_INT:

··· ; ACC和PFLAG出栈恢复

RETI ;退出中断

#### 5.4.7 、T0 中断

计数器T0C溢出时,不管T0IEN 处于何种状态,T0中断请求寄存器T0IRQ都置"1"。此时,如果T0IEN=1,那么系统将响应T0中断进入相应的中断服务子程序。如果这时T0IEN=0,那么系统并不响应该T0中断请求。对于多中断情形,尤其需要注意上述条件。

例:设置T0中断。

BOBCLR FTOIEN ; 禁止T0中断 BOBCLR FTOENB ; 关 闭 T0

MOV A, #20H ;

B0MOV T0M, A ; 设置T0时钟=Fcpu / 64

MOV A, #74H ; 初始化T0C = 74H

B0MOV T0C, A ; 设置T0间隔时间= 10 ms

B0BSET FT0IEN ; 开启T0中断 B0BCLR FT0IRQ ; T0IRQ清零 B0BSET FT0ENB ; 开启定时器T0

B0BSET FGIE ; 开放GIE

例: T0中断服务程序。

ORG 8

JMP INT SERVICE

INT SERVICE:



Wuxi I-CORE Electronics Co., Ltd.

表 835-11 版次:B3 编号: AiP8P006A-AX-A008

· ; ACC和PFLAG入栈保护

B0BTS1 FT0IRQ ; 检查是否有T0中断请求标志

JMP EXIT\_INT ; T0IRQ = 0, 退出中断

B0BCLR FT0IRQ ; 清T0IRQ

MOV A, #74H

B0MOV T0C, A ;

...

• •

EXIT\_INT:

··· ; ACC和PFLAG出栈恢复

RETI ;退出中断

## 5.4.8 、TCO 中断

TC0C溢出时,不管TC0IEN是否开启,TC0IRQ都会被置"1"。如果 TC0IRQ=1且 C0IEN=1,则系统将响应 TC0的中断请求;如果TC0IRQ=1而TC0IEN=0,则系统并不会响应TC0的中断请求。对于多中断情形,尤其需要注意上述条件。

例: TC0中断请求设置。

B0BCLR FTC0IEN ;禁止TC0中断

B0BCLR FTC0ENB ;

MOV A, #20H ;

B0MOV TC0M, A ; TC0时钟= Fcpu / 64

MOV A, #74H ; TC0C初始值=74H

B0MOV TC0C, A ; TC0间隔=10 ms

B0BSET FTC0IEN ; 允许TC0中断

B0BCLR FTC0IRQ ;清TC0中断请求标志

BOBSET FTCOENB;

B0BSET FGIE ; 允许GIE

例: TC0中断服务程序。

ORG 8 ;

JMP INT SERVICE

INT\_SERVICE:

··· ; ACC和PFLAG入栈保护

B0BTS1 FTC0IRQ ; 检查是否有TC0中断请求标志

JMP EXIT INT ; TC0IRQ = 0, 退出中断

B0BCLR FTC0IRQ ; 清TC0IRQ

MOV A, #74H

B0MOV TC0C, A ; 清TC0C

·· ; TC0中断程序

••

EXIT INT:



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

··· ; ACC和PFLAG 出栈恢复

RETI ; 退出中断

#### 5.4.9、多中断操作举例

表 835-11

在同一时刻,系统中可能出现多个中断请求。处理这种多中断情况时,必须预先对各中断请求设置不同的优先级别。中断请求标志IRQ由中断事件触发,当IRQ处于有效值"1"时,系统并不一定会响应该中断。各中断触发事件列表如下:

表 5-12 中断触发事件列表

| 中断     | 有效触发    |  |
|--------|---------|--|
| P00IRQ | PEDGE控制 |  |
| T0IRQ  | T0C溢出   |  |
| TC0IRQ | TC0C溢出  |  |

多个中断同时发生时,需要注意的是:首先,必须预先设定好各中断的优先级。其次,利用IEN和 IRQ控制系统是否响应该中断。在程序中,必须对中断控制位和中断请求标志进行检测。

例: 多中断条件下检测中断请求。

ORG 8

JMP INT SERVICE

INT SERVICE:

··· ; ACC 和 PFLAG 入栈保护

INTP00CHK: ; 检查是否有 INTO 中断请求

B0BTS1 FP00IEN ; 检查是否允许 P00 中断

JMP INTTOCHK ; 进入下一个中断

B0BTS0 FP00IRQ ; 检查是否有 P00 中断请求

JMP INTP00 : 进入 INTO 中断程序

INTTOCHK: ; 检查是否有 TO 中断请求

B0BTS1 FT0IEN ; 检查是否允许 T0 中断

JMP INTTC0CHK ; 进入下一个中断B0BTS0

FT0IRQ ; 检查是否有 T0 中断请求

JMP INTTO; 进入 TO 中断程序

INTTC0CHK: ; 检查是否有 TC0 中断请求

B0BTS1 FTC0IEN ; 检查是否允许 TC0 中断

JMP INT EXIT ;

B0BTS0 FTC0IRQ ; 检查是否有 TC0 中断请求

JMP INTTC0 ; 进入 TC0 中断程序

INT EXIT:

··· ; ACC 和 PFLAG 出栈恢复

RETI ; 退出中断



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

表 835-11

## 5.5.1 、I/O 模式

5.5 S IO □

对寄存器PnM编程设置可选择各端口的数据传送方向。

## 表 5-13 POM 寄存器(0B8H)

| Bit  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0    |
|------|---|---|---|---|---|---|---|------|
| Name | - | - | - | - | - | - | - | P00M |
| R/W  | - | - | - | - | - | - | - | R/W  |
| POR  | - | - | - | - | - | - | - | 0    |

#### 表 5-14 P1M 寄存器(0C1H)

| Bit  | 7 | 6 | 5 | 4    | 3    | 2    | 1    | 0    |
|------|---|---|---|------|------|------|------|------|
| Name | - | - | - | P14M | P13M | P12M | P11M | P10M |
| R/W  | - | - | - | R/W  | R/W  | R/W  | R/W  | R/W  |
| POR  | - | - | - | 0    | 0    | 0    | 0    | 0    |

#### 表 5-15 P5M 寄存器(0C5H)

| Bit  | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|------|
| Name | P57M | P56M | P55M | P54M | P53M | P52M | P51M | P50M |
| R/W  |
| POR  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

|   | 位   | 字段       | 描述   |              |   |  |  |
|---|-----|----------|------|--------------|---|--|--|
| Ī | 7-0 | PnM[7:0] | Pn模. | 式控制位(n=0~5)。 |   |  |  |
|   |     |          | 0    | Pn设置为输入模式    | ; |  |  |
|   |     |          | 1    | Pn设置为输出模式    |   |  |  |

注:1.用户可通过位操作指令(B0BSET, B0BCLR)对I/O口进行编程控制;

2.P1.5只能作为输入引脚,寄存器 P1M.5 的值保持为"1"。

## 例: I/O 模式设置。

; 所有端口设为输入模式 CLR P<sub>0</sub>M CLR P<sub>1</sub>M CLR P<sub>5</sub>M ; 所有端口设为输出模式 MOV A, #0FFH **B0MOV** P0M, A B0MOV P1M, A B0MOV P5M, A ; P1.2 设为输入模式 **B0BCLR** P1M.2 **BOBSET** P1M.2 ; P1.2 设为输出模式



Wuxi I-CORE Electronics Co., Ltd.

Wuxi I-CORE Electronics Co., 版次:B3

编号: AiP8P006A-AX-A008

## 表 835-11 5.5.2 、I/O 口上拉电阻寄存器

## 表 5-16 POUR 寄存器(0E0H)

| Bit  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0    |
|------|---|---|---|---|---|---|---|------|
| Name | - | - | - | - | - | - | - | P00R |
| R/W  | - | - | - | - | - | - | - | W    |
| POR  | - | - | - | - | - | - | - | 0    |

表 5-17 P1UR 寄存器(0E1H)

| Bit  | 7 | 6 | 5 | 4    | 3    | 2    | 1    | 0    |
|------|---|---|---|------|------|------|------|------|
| Name | - | - | - | P14R | P13R | P12R | P11R | P10R |
| R/W  | - | - | - | W    | W    | W    | W    | W    |
| POR  | - | - | - | 0    | 0    | 0    | 0    | 0    |

表 5-18 P5UR 寄存器(0E5H)

| Bit  | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|------|
| Name | P57R | P56R | P55R | P54R | P53R | P52R | P51R | P50R |
| R/W  | W    | W    | W    | W    | W    | W    | W    | W    |
| POR  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

注: P1.5 只能作为输入模式,且无内部上拉电阻功能。因此P1UR.5必须保持"1"。

例: I/O 上拉电阻寄存器设置。

MOV A, #0FFH ; 使能P0, 1, 5 上拉电阻。

B0MOV P0UR, A B0MOV P1UR, A B0MOV P5UR, A

## 5.5.3 、I/O 漏极开路寄存器

P1.0有内置漏极开路功能,当使能该功能时,P1.0必须被置为输出模式。漏极开路的外部电路如下,图中的上拉电阻必不可少,漏极开路的输出高电平由上拉电阻驱动,输出低电平时为灌电流。

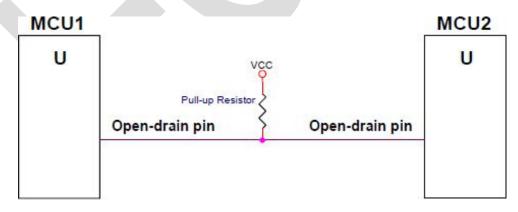



图 5-21 I/O 漏极开路寄存器



## Wuxi I-CORE Electronics Co., Ltd.

表 835-11

编号: AiP8P006A-AX-A008

## 表 5-19 P1OC 寄存器(0E0H)

| Bit  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0     |
|------|---|---|---|---|---|---|---|-------|
| Name | - | - | - | - | - | - | - | P10OC |
| R/W  | - | - | - | - | - | - | - | W     |
| POR  | - | - | - | - | - | - | - | 0     |

版次:B3

| 位   | 字段    | 描述           |
|-----|-------|--------------|
| 7-1 | -     | -            |
| 0   | P10OC | P1.0 漏极开路控制位 |
|     |       | 0 禁止漏极开路     |
|     |       | 1 漏极开路       |

例: P1.0 设置为漏极开路模式,输出高电平。

B0BSET P1.0 ; P1.0 置1

BOBSET P10M ; 设置P1.0 输出模式

MOV A, #01H ; P1.0 置为漏极开路模式

B0MOV P1OC, A

注: P1OC 为只写寄存器, 所以P10OC 只能用指令"MOV"进行设置。

例:禁止P1.0漏极开路,输出低电平。

MOV A, #0

B0MOV P1OC, A

注:禁止P1.0的漏极开路功能后,P1.0返回上一个I/O模式。

#### 5.5.4 \ I/O 数据寄存器

表 5-20 P0 寄存器(0D0H)

|   | Bit  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |
|---|------|---|---|---|---|---|---|---|-----|
|   | Name | - | - | - | - | - | - | - | P00 |
| Ī | R/W  | - | - | - |   | - | - | - | R/W |
| Ī | POR  | - | - | - | - | - | - | - | 0   |

#### 表 5-21 P1 寄存器(0D1H)

| Bit  | 7 | 6 | 5   | 4   | 3   | 2   | 1   | 0   |
|------|---|---|-----|-----|-----|-----|-----|-----|
| Name | - | - | P15 | P14 | P13 | P12 | P11 | P10 |
| R/W  | - | - | R   | R/W | R/W | R/W | R/W | R/W |
| POR  | - | - | -   | 0   | 0   | 0   | 0   | 0   |

## 表 5-22 P5 寄存器(0D5H)

| Bit  | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|------|-----|-----|-----|-----|-----|-----|-----|-----|
| Name | P57 | P56 | P55 | P54 | P53 | P52 | P51 | P50 |
| R/W  | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| POR  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

注: 当外部复位有效时, P15 的值保持为"1"。



表 835-11 版次:B3 编号: AiP8P006A-AX-A008

例: 从输入端口读取数据。

;从P0 读数据 **B0MOV** A, P0 A, P1 ;从P1 读数据 **B0MOV** ; 从P5 读数据 **B0MOV** A, P5

例:数据写到输出端口。

A, #0FFH MOV B0MOV P0, A P1, A **B0MOV** B0MOV P5, A

例:数据写到输出端口。

"1". ; P1.3 和P5.5 置为 **B0BSET** P1.3

**B0BSET** P5.5

; P1.3 和P5.5 置为 B0BCLRP1.3

**B0BCLR** P5.5



Wuxi I-CORE Electronics Co., Ltd.

编号: AiP8P006A-AX-A008

版次:B3

6、外设模块

#### 6.1、定时器

## 6.1.1 、看门狗定时器

表 835-11

看门狗定时器 WDT 用于控制程序的正常执行。如果由于干扰程序进入了未知状态, WDT 溢出, MCU 复位。看门狗的工作模式由编译选项控制, 其时钟源来自内部低速振荡器 (16KHz @3V,32KHz@5V).

看门狗溢出时间 = 8192/内部低速振荡器周期(sec).

表 6-1 看门狗溢出时间

| VDD | 内部低速 RC Freq. | 看门狗溢出时间 |
|-----|---------------|---------|
| 3V  | 16KHz         | 512ms   |
| 5V  | 32KHz         | 256ms   |

注:如果看门狗被置为"Always On"模式,那么看门狗在睡眠模式和绿色模式下仍然运行。

寄存器 WDTR 控制对看门狗的清零: WDTR 置为 5AH 即可将看门狗清零。

表 6-2 WDTR 寄存器(0CCH)

| Bit  | 7     | 7 6 5 4 3 2 |       | 2     | 1     | 0     |       |       |
|------|-------|-------------|-------|-------|-------|-------|-------|-------|
| Name | WDTR7 | WDTR6       | WDTR5 | WDTR4 | WDTR3 | WDTR2 | WDTR1 | WDTR0 |
| R/W  | W     | W           | W     | W     | W     | W     | W     | W     |
| POR  | 0     | 0           | 0     | 0     | 0     | 0     | 0     | 0     |

例:如下是对看门狗定时器的操作,在主程序开头对看门狗清零。

MOV A.#5AH ; 看门狗定时器清零

**B0MOV** WDTR,A

...

CALL SUB1 **CALL** SUB2

. . .

JMP MAIN

看门狗应用注意事项如下:

- 对看门狗清零之前,检查 I/O 口的状态和 RAM 的内容可增强程序的可靠性;
- 不能在中断中对看门狗清零,否则无法侦测到主程序跑飞的状况;
- 程序中应该只在主程序中有一次清看门狗的动作,这种架构能够最大限度的发挥看门 狗的保护作用。

例:如下是对看门狗定时器的操作,在主程序开头对看门狗清零。

main:

;检测 I/O 口状态

;检测 RAM 内存

;I/O 或 RAM 出错,不对看门狗清零,并等待看门狗计时溢出 Err: JMP \$

; I/O 和 RAM 正常,看门狗清零

@RST WDT ;



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

CALL SUB1 CALL SUB2

表 835-11

•••

• • •

JMP MAIN

## 6.1.2 、定时器 T0

## 6.1.2.1 、特性

8-bit 二进制计数器 T0 可作为定时器使用。T0 溢出时(由 FFH 计到 00H),T0 在继续计数的同时给出一个超时信号,该信号即是 T0 中断触发信号。计数器 T0 主要有以下功能:

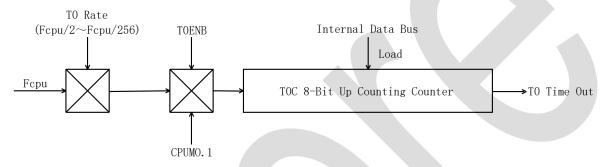



图 6-1 计数器 T0 功能

## 6.1.2.2 、 模 式 寄 存 器

T0M

表 6-3 TOM 寄存器(0D8H)

| Bit  | 7     | 6       | 5       | 4       | 3 | 2 | 1 | 0 |
|------|-------|---------|---------|---------|---|---|---|---|
| Name | T0ENB | T0rate2 | T0rate1 | T0rate0 | · | 7 | - | - |
| R/W  | R/W   | R/W     | R/W     | R/W     | • | - | - | - |
| POR  | 0     | 0       | 0       | 0       | - | - | - | - |

| 位   | 字段          | 描述              |  |  |  |  |  |  |
|-----|-------------|-----------------|--|--|--|--|--|--|
| 7   | T0ENB       | T0 计数控制位        |  |  |  |  |  |  |
|     |             | = 关闭TO 计数器      |  |  |  |  |  |  |
|     |             | 1 = 开启TO 计数器    |  |  |  |  |  |  |
| 6-4 | T0rate[2:0] | T0时钟频率控制位       |  |  |  |  |  |  |
|     |             | 0 0 0 fcpu/256. |  |  |  |  |  |  |
|     |             | 0 0 1 fcpu/128. |  |  |  |  |  |  |
|     |             |                 |  |  |  |  |  |  |
|     |             | 1 1 0 fcpu/4.   |  |  |  |  |  |  |
|     |             | 1 1 1 fcpu/2.   |  |  |  |  |  |  |
| 3-0 | -           | -               |  |  |  |  |  |  |

## 6.1.2.3 、计数寄存器 TOC

T0C 用于控制 T0 的间隔时间。



## 无锡中微爱芯电子有限公司

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

#### 表 6-4 TOC 寄存器(0D9H)

| Bit  | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|------|
| Name | T0C7 | T0C6 | T0C5 | T0C4 | T0C3 | T0C2 | T0C1 | T0C0 |
| R/W  |
| POR  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

OC 初始值计算公式如下: TOC 初始值=256-(T0 中断间隔时间\*输入时钟)

例: 断间隔时间设置为 10ms, 高速时钟选择外部 4MHz, Fcpu=Fosc/4, T0RATE=010 (Fcpu/64)。

TOC 初始值= 256 - (T0 中断间隔时间 \* 输入时钟)

= 256 - (10 ms \* 4 MHz / 4 / 64)

= 256 - (10-2 \* 4 \* 106 / 4 / 64)

= 100

= 64H

表 6-5 T0 定时间隔列表

|        |          | = \tau + \tau - \tau | 0.577 / 0      | /f >+ ++ C                | 227.627     |  |  |
|--------|----------|----------------------|----------------|---------------------------|-------------|--|--|
|        |          | 高速模式 (Fc)            | ou = 4MHz / 4) | 低速模式 (Fcpu = 32768Hz / 4) |             |  |  |
| T0RATE | T0CLOCK  | 最大溢出间隔               | One step =     | 最大溢出间隔                    | One step =  |  |  |
|        |          | Max                  | max/256        | Max                       | max/256     |  |  |
| 000    | Fcpu/256 | 65.536 ms            | 256 us         | 8000 ms                   | 31250 us    |  |  |
| 001    | Fcpu/128 | 32.768 ms            | 128 us         | 4000 ms                   | 15625 us    |  |  |
| 010    | Fcpu/64  | 16.384 ms            | 64 us          | 2000 ms                   | 7812.5 us   |  |  |
| 011    | Fcpu/32  | 8.192 ms             | 32 us          | 1000 ms                   | 3906.25 us  |  |  |
| 100    | Fcpu/16  | 4.096 ms             | 16 us          | 500 ms                    | 1953.125 us |  |  |
| 101    | Fcpu/8   | 2.048 ms             | 8 us           | 250 ms                    | 976.563 us  |  |  |
| 110    | Fcpu/4   | 1.024 ms             | 4 us           | 125 ms                    | 488.281 us  |  |  |
| 111    | Fcpu/2   | 0.512 ms             | 2 us           | 62.5 ms                   | 244.141 us  |  |  |

## 6.1.2.4 、T0 操作时序

T0 停止计数,禁止 T0 中断并将 T0 中断请求标志清零。

B0BCLR FT0ENB B0BCLR FT0IEN B0BCLR FT0IRQ

设置 T0 计时速率。

MOV A,#0xxx00b ;通过设置寄存器TOM 的 bit4~bit6 可控制T0 的

计数速率,设置范围 x000xxxxb~x111xxxxb

B0MOV T0M,A

设置 T0 中断间隔时间。

MOV A,#7FH

B0MOV T0C,A

设置 T0 工作模式。

**B0BSET FT0IEN** 

开启 T0。

**BOBSET FTOENB** 

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

#### 6.1.3 、定时/计数器 TC0

表 835-11

#### 6.1.3.1、特性

8-bit 二进制增量计数器 TC0 可根据实际需要,分别采用内部时钟和外部时钟两种时钟源作为计数时基。其中,内部时钟来自 Fcpu,外部时钟 INT0 由 P0.0 引脚(下降沿触发) 输入。寄存器 TC0M 控制具体时钟源的选择。通常,TC0 计数到 0xFF 变为 0X00 时,系统给出溢出信号触发 TC0 中断,同时开始重新计数。在 PWM 模式下,TC0 的溢出由ALOAD0 和 TC0OUT 控制的 PWM 周期决定。

TC0 的主要作用如下:

- 8-bit 可编程定时器:根据选定的时钟频率在特定时间产生中断信号;
- 外部事件计数:通过对 INTO 口输入信号下降沿的检测,统计系统"事件"数;
- 蜂鸣器输出
- PWM 输出

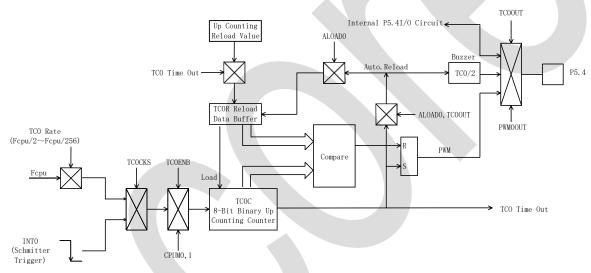



图 6-2 定时/计数器 TC0

#### 6.1.3.2 、 模 式 寄 存 器

TC0M

表 6-6 TC0M 寄存器(0DAH)

| Bit  | 7      | 6        | 5        | 4        | 3      | 2      | 1      | 0       |
|------|--------|----------|----------|----------|--------|--------|--------|---------|
| Name | TC0ENB | TC0rate2 | TC0rate1 | TC0rate0 | TC0CKS | ALOAD0 | TC0OUT | PWM0OUT |
| R/W  | R/W    | R/W      | R/W      | R/W      | R/W    | R/W    | R/W    | R/W     |
| POR  | 0      | 0        | 0        | 0        | 0      | 0      | 0      | 0       |

| 位   | 字段           | 描述              |  |  |  |  |  |
|-----|--------------|-----------------|--|--|--|--|--|
| 7   | TC0ENB       | TC0 计数控制位。      |  |  |  |  |  |
|     |              | 0 禁止TC0 定时器;    |  |  |  |  |  |
|     |              | 1 开放TC0 定时器。    |  |  |  |  |  |
| 6-4 | TC0rate[2:0] | CO 内部时钟选择控制     |  |  |  |  |  |
|     |              | 0 0 0 fcpu/256; |  |  |  |  |  |
|     |              | 0 0 1 fcpu/128; |  |  |  |  |  |
|     |              |                 |  |  |  |  |  |



## Wuxi I-CORE Electronics Co., Ltd.

版次:B3

表 835-11

编号: AiP8P006A-AX-A008

|   |         | 1 1 0 fcpu/4;                             |  |  |  |  |  |  |  |
|---|---------|-------------------------------------------|--|--|--|--|--|--|--|
|   |         | 1 1 1 fcpu/2。                             |  |  |  |  |  |  |  |
| 3 | TC0CKS  | TC0 时钟源控制位                                |  |  |  |  |  |  |  |
|   |         | 0 内部时钟(Fcpu or Fosc);                     |  |  |  |  |  |  |  |
|   |         | 1 外部时钟,由P0.0/INTO输入。                      |  |  |  |  |  |  |  |
| 2 | ALOAD0  | 自动重载控制。仅当PWM0OUT=0时有效。                    |  |  |  |  |  |  |  |
|   |         | 0 禁止TC0 自动重载;                             |  |  |  |  |  |  |  |
|   |         | 1 允许TC0 自动重载。                             |  |  |  |  |  |  |  |
| 1 | TC0OUT  | TC0 超时输出信号控制。仅当PWM0OUT = 0 时有效。           |  |  |  |  |  |  |  |
|   |         | 0 禁止, P5.4 作为输入/输出口;                      |  |  |  |  |  |  |  |
|   |         | 1 允许, P5.4 输出TC0OUT 信号。                   |  |  |  |  |  |  |  |
| 0 | PWM0OUT | PWM 输出控制                                  |  |  |  |  |  |  |  |
|   |         | 0 禁止PWM 输出;                               |  |  |  |  |  |  |  |
|   |         | 1 开放PWM 输出, PWM 输出占空比由TC0OUT 和 ALOAD0 控制。 |  |  |  |  |  |  |  |

注: 若 TC0CKS=1,则 TC0 用作外部事件计数器,此时不需要考虑 TC0RATE 的设置, P0.0 口无中断信号 (P0.0IRQ=0)。

## 6.1.3.3 、计数寄存器 TC0C

TC0C 控制 TC0 的时间间隔。

表 6-7 TC0C 寄存器(0DBH)

| Bit  | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| Name | TC0C7 | TC0C6 | TC0C5 | TC0C4 | TC0C3 | TC0C2 | TC0C1 | TC0C0 |
| R/W  | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| POR  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

TC0C 初始值的计算公式如下: TC0C 初始值 = N - (TC0 中断间隔时间 \* 输入时钟) N 为 TC0 二进制计数范围, TC0 共有六种工作模式: TC0 定时器、TC0 事件计数器、TC0 Fcpu 时钟源、TC0 Fosc 时钟源、PWM 模式和无 PWM 模式。各模式下参数的设定如下表所示:

表 6-8 参数设定表

| TC0CKS | PWM0 | ALOAD0 | TC0OUT | N   | TC0C范围        | TC0C二进制计数范 | 注释     |
|--------|------|--------|--------|-----|---------------|------------|--------|
|        | 0    | v      | X      | 256 | 0x00~0xFF     | 00000000b~ | 每计数256 |
|        |      | A      | Λ      | 230 | 0.000 -0.21 1 | 11111111b  | 次溢出    |
|        | 1    | 0      | 0      | 256 | 0x00~0xFF     | 0000000b~  | 每计数256 |
|        | 1    | U      | U      | 230 | 230 0X00~0XFT | 11111111b  | 次溢出    |
| 0      | 1    | 0      | 1      | 64  | 0x00~0x3F     | xx000000b~ | 每计数64  |
| 0      | 1    | U      | 1      | 04  | 0200~0231     | xx111111b  | 次溢出    |
|        | 1    | 1      | 0      | 32  | 0x00~0x1F     | xxx00000b~ | 每计数32  |
|        | 1    | 1      | U      | 32  | 0200~0211     | xxx11111b  | 次溢出    |
|        | 1    | 1      | 1      | 16  | 0x00~0x0F     | xxxx0000b~ | 每计数16  |
|        | 1    | 1      | 1      | 10  | 0200~0201     | xxxx1111b  | 次溢出    |
| 1      | _    | _      | _      | 256 | 0x00~0xFF     | 00000000b~ | 每计数256 |
| 1      | _    | -      | -      | 230 | UAUU UAIT     | 11111111b  | 次溢出    |

例: TC0 中断时间设为 10ms, 时钟源选择 Fcpu(TC0KS = 0), 无PWM 输出(PWM0=0),



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

高速时钟 = 4MHz. Fcpu= Fosc/4, TC0RATE = 010 (Fcpu/64)。

TC0C 初始值 = N - (TC0 中断时间 \* 输入时钟)

= 256 - (10 ms \* 4 MHz / 4 / 64)

= 256 - (10-2 \* 4 \* 106 / 4 / 64)

= 100

表 835-11

= 64H

表 6-9 T0 定时间隔列表

|         |          | 高速模式 (F   | Fcpu = 4MHz / 4) | 低速模式 (Fe | cpu = 32768Hz / 4) |
|---------|----------|-----------|------------------|----------|--------------------|
| TC0RATE | TC0CLOCK | 最大溢出间隔    | 单步间隔时间 =         | 最大溢出间隔   | 单步间隔时间 =           |
|         |          | Max       | max/256          | Max      | max/256            |
| 000     | Fcpu/256 | 65.536 ms | 256 us           | 8000 ms  | 31250 us           |
| 001     | Fcpu/128 | 32.768 ms | 128 us           | 4000 ms  | 15625 us           |
| 010     | Fcpu/64  | 16.384 ms | 64 us            | 2000 ms  | 7812.5 us          |
| 011     | Fcpu/32  | 8.192 ms  | 32 us            | 1000 ms  | 3906.25 us         |
| 100     | Fcpu/16  | 4.096 ms  | 16 us            | 500 ms   | 1953.125 us        |
| 101     | Fcpu/8   | 2.048 ms  | 8 us             | 250 ms   | 976.563 us         |
| 110     | Fcpu/4   | 1.024 ms  | 4 us             | 125 ms   | 488.281 us         |
| 111     | Fcpu/2   | 0.512 ms  | 2 us             | 62.5 ms  | 244.141 us         |

#### 6.1.3.4 、自动重载寄存器 TC0R

TC0 的自动重载功能由 TC0M 的 ALOAD0 位控制。当 TC0C 溢出时,TC0R 的值自动 装入 TC0C 中。这样,用户在使用的过程中就不需要在中断中重新赋值。

TC0 为双重缓存器结构。若程序对 TC0R 进行了修改,那么修改后的 TC0R 值首先被暂存在 TC0R 的第一个缓存器中,直到 TC0 溢出后,才被真正存入 TC0R 缓存器中,从而避免 TC0 中断时间出错以及 PWM 和蜂鸣器误动作。

注:在 PWM 模式下,系统自动开启自动重装功能。位寄存器 ALOAD0 用于控制溢出范围。

表 6-10 TCOR 寄存器(0CDH)

| Bit  | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| Name | TC0R7 | TC0R6 | TC0R5 | TC0R4 | TC0R3 | TC0R2 | TC0R1 | TC0R0 |
| R/W  | W     | W     | W     | W     | W     | W     | W     | W     |
| POR  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

TCOR 初始值计算公式如下: TCOR 初始值 = N - (TCO 中断间隔时间 \* 输入时钟)

上式中,N为TC0的最大计数范围。TC0的溢出时间有如下六种可能情况:

表 6-11 TC0 的溢出时间情况

| TC0CKS | PWM0 | ALOAD0 | TC0OUT | N   | TC0C 范 围  | TC0C 二进制计数范          |
|--------|------|--------|--------|-----|-----------|----------------------|
| 0      | 0    | X      | X      | 256 | 0x00~0xFF | 00000000b~11111111b  |
|        | 1    | 0      | 0      | 256 | 0x00~0xFF | 00000000b~11111111b  |
|        | 1    | 0      | 1      | 64  | 0x00~0x3F | xx000000b~xx111111b  |
|        | 1    | 1      | 0      | 32  | 0x00~0x1F | xxx000000b~xxx11111b |
|        | 1    | 1      | 1      | 16  | 0x00~0x0F | xxxx00000b~xxxx1111b |
| 1      | -    | -      | -      | 256 | 0x00~0xFF | 00000000b~11111111b  |

例: TC0 中断间隔时间设置为 10ms, 时钟源选 Fcpu (TC0KS = 0), 无 PWM 输出,



Wuxi I-CORE Electronics Co., Ltd.

www.i-core Electronics co. 版次:B3

编号: AiP8P006A-AX-A008

(PWM0 = 0), 高速时钟为外部 4MHz, Fcpu = Fosc/4, TC0RATE = 010 (Fcpu/64)。

TCOR 初始值 = N - (TCO 中断间隔时间 \* 输入时钟源)

= 256 - (10 ms \* 4 MHz / 4 / 64)

= 256 - (10-2 \* 4 \* 106 / 4 / 64)

= 100

表 835-11

= 64H

#### 6.1.3.5 、TC0 时钟频率输出(蜂鸣器输出)

蜂鸣器输出即 TC0 计数/定时器的频率输出功能。对 TC0 时钟频率进行适当设置, TC0经过 2 分频后作为 TC0OUT 并输出到 P5.4 引脚,同时,P5.4 的普通 I/O 功能自动被屏蔽。TC0OUT 输出波形如下:

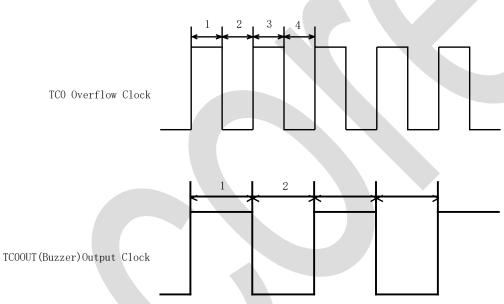



图 6-3 TC0 时钟频率输出

例:设置 TC0OUT (P5.4)。其中,外部高速时钟 = 4MHz,TC0OUT 频率 = 0.5KHz,TC0 频率 = 1KHz, TC0 时钟源采用内部时钟 Fcpu/4, TC0RATE2~TC0RATE1 = 110, TC0C = TC0R = 131。

MOV A,#01100000B B0MOV TC0M,A ; TC0 速率 Fcpu/4 MOV A,#131 ; 自动加载参考值设置

B0MOV TC0C,A B0MOV TC0R,A

B0BSET FTC0OUT ; TC0 的输出信号由 P5.4 输出,禁止 P5.4 的普

通 I/O 功能

B0BSET FALOAD1 ; 允许 TC0 自动重载功能

BOBSET FTCOENB ; 开启 TCO 定时器

注:蜂鸣器的输出有效时,"PWM0OUT"必须被置为 0。



Wuxi I-CORE Electronics Co., Ltd.

编号: AiP8P006A-AX-A008

版次:B3

6.1.3.6 、TC0 操作举例

表 835-11

TC0 定时器可用于定时器中断、事件计数、TC0OUT 和 PWM。下面分别举例说明。

例:停止 TC0 计数器,禁止 TC0 中断并将 TC0 中断请求标志清零。

B0BCLR FTC0ENB B0BCLR FTC0IEN B0BCLR FTC0IRO

例:设置 TC0 的速率 (不包含事件计数模式)。

MOV A, #0xxx0000b ; TC0M 的 bit4~bit6 控制 TC0 速率,设置范围为

x000xxxxb~x111xxxxb

B0MOV TC0M,A ; 禁止 TC0 中断

例:设置 TC0 的时钟源。

B0BCLR FTC0CKS ;选择内部时钟

or

BOBSET FTCOCKS ;选择外部时钟

例: TC0 自动重载模式设置。

B0BCLR FALOAD0 ; 开放自动重载功能

or

BOBSET FALOADO ; 禁止 TCO 自动重载

例: TC0 中断间隔时间设置。

MOV A,#7FH ; TC0 模式决定 TC0C 和 TC0R 的值

B0MOV TC0C,A ; 设置 TC0C B0MOV TC0R,A ; 设置 TC0R

B0BCLR FALOAD0 ; ALOAD0,TC0OUT=00,PWM 周期=0~255

B0BCLR FTC0OUT

or

BOBCLR FALOADO ; ALOADO, TCOOUT = 01, PWM 周期 = 0~63

B0BSET FTC0OUT

or

B0BSET FALOAD0 ; ALOAD0, TC0OUT = 10, PWM 周期 = 0~31

B0BCLR FTC0OUT

or

B0BSET FALOAD0 ; ALOAD0, TC0OUT = 11, PWM 周期 = 0~15

B0BSET FTC0OUT

例:设置 TC0 模式。

BOBSET FTCOIEN ; 开放 TCO 中断功能

or

BOBSET FTCOOUT ; 开放 TCOOUT (蜂鸣器) 功能

or

BOBSET FPWM0OUT ; 开放 PWM 功能

例: 开启 TC0。



Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

**B0BSET** 

表 835-11

FTC0ENB

; 开放 TC0

## 6.1.4 · PWM0

#### 6.1.4.1、特性

PWM 信号输出到 PWM0OUT (P5.4 引脚), TC0OUT 和 ALOAD0 控制 PWM 输出的量程 (256、64、32 和 16)。8-bit 计数器 TC0C 计数过程中不断与 TC0R 相比较,当 TC0C 计数到两者相等时,PWM 输出低电平,当 TC0C 再次从零开始计数时,PWM 被强制输出高电平。PWM0 输出占空比 = TC0R/计数量程(计数量程 = 256、64、32 或 16)。

参考寄存器保持输入 00H 可使 PWM 的输出长时间维持在低电平,通过修改 TC0R 可改变 PWM 输出占空比。

注: TC0 为双重缓存器结构,调整 TC0R 的值可以改变 PWM 的输出占空比。用户可随时改变 TC0R 的值,但是只有在 TC0 溢出后,这一修改值才真正被写入 TC0R 中。

| ALO | TC0O                   | PWM占空比       | TC0C有效                  | TC0R有效    | TC0C   | MAX.PWM输出频     | 注释     |  |
|-----|------------------------|--------------|-------------------------|-----------|--------|----------------|--------|--|
| AD0 | UT                     | 范围           | 值                       | 值         | 范围     | 率(Fcpu = 4MHz) |        |  |
| 0   | 0                      | 0/256~255/25 | 55/25 0x00~0xFF 0x00~0x | Owon Ower | 0x00~0 | 7.8125K        | 每计数256 |  |
|     | 6                      | 6            |                         | UXUU~UXFF | xFF    | 7.8123K        | 次溢出    |  |
| 0   | 0                      | 0/64~63/64   | 0x00~0x3F               | 0x00~0x3F | 0x00~0 | 31.25K         | 每计数64  |  |
|     |                        |              |                         |           | xFF    | 31.23K         | 次溢出    |  |
| 1   | 1 0                    | 0 0/32~31/32 | 0x00~0x1F               | 0x00~0x1F | 0x00~0 | 62.5K          | 每计数32  |  |
| 1 0 | 0/32~31/32             | 0X00~0X1F    | UXUU~UXII               | x3F       | 02.3K  | 次溢出            |        |  |
| 1 1 | 1 0/16~15/16 0x00~0x0F | 000 00E      | 0x00~0x0F               | 0x00~0    | 125K   | 每计数16          |        |  |
|     |                        | 0x00~0x01    | UXUU~UXUF               | x1F       | 123K   | 次溢出            |        |  |

表 6-12 PWM0 输出

PWM 输出占空比随 TCOR 的变化而变化: 0/256~255/256。

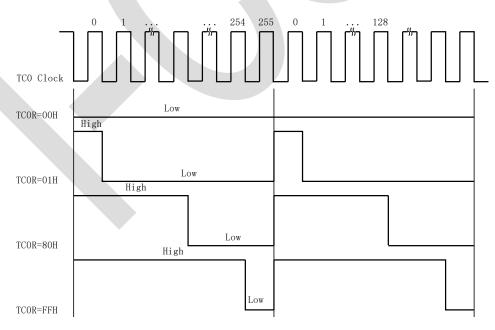
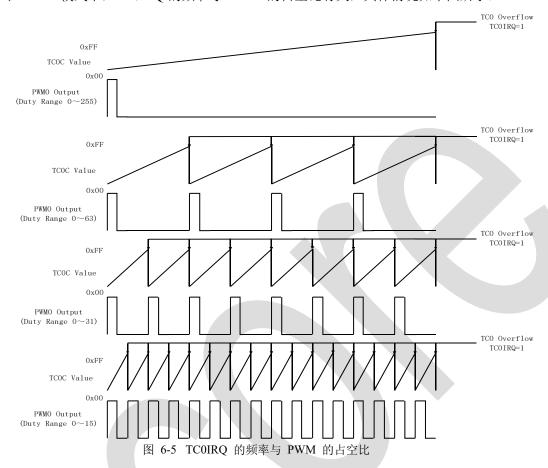



图 6-4 PWM 输出占空比

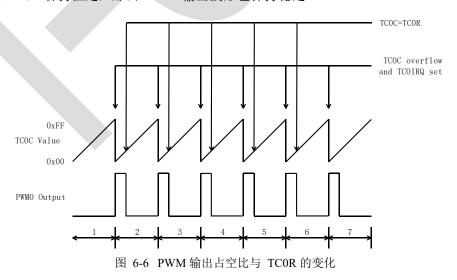


Wuxi I-CORE Electronics Co., Ltd.


版次:B3

编号: AiP8P006A-AX-A008

## 6.1.4.2 、TC0IRQ 和 PWM 输出占空比


表 835-11

在 PWM 模式下, TC0IRQ 的频率与 PWM 的占空比有关, 具体情况如下图所示:



## 6.1.4.3 、PWM 输出占空比与 TC0R 的变化

在 PWM 模式下,系统随时比较 TC0C 和 TC0R 的异同。若 TC0C<TC0R,PWM 输出高电平,反之则输出低电平。当 TC0C 发生改变的时候,PWM 将在下一周期改变输出占空比。如果 TC0R 保持恒定,那么 PWM 输出波形也保持稳定。



## 无锡中微爱芯电子有限公司

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008

上图所示是 TC0R 恒定时的波形。每当 TC0C 溢出时,PWM 都输出高电平,TC0C ≥ TC0R 时,PWM 即输出低电平。下面所示是 TC0R 发生变化时对应的波形图:

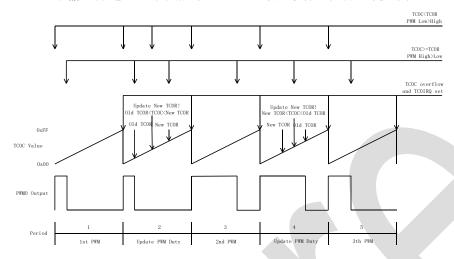



图 6-7 TCOR 发生变化时对应的波形图

在 period 2 和 period 4 中,显示新的占空比(TC0R),但 PWM 在 period 2 和 period 4 的占空比要在下一个 period 才会改变。这样,可以避免 PWM 不随设定改变或在同一个周期内改变两次,从而避免系统发生不可预知的误动作。

#### 6.1.4.4 、PWM 编程举例

例: PWM 输出设置。外部高速振荡器输出频率 = 4MHZ, Fcpu = Fosc/4, PWM 输出占空比 = 30/256, 输出频率 1KHZ, PWM 时钟源来自外部时钟, TC0 速率 = Fcpu/4,

 $TC0RATE2 \sim TC0RATE1 = 110$ , TC0C = TC0R = 30.

MOV A,#01100000B

B0MOV TC0M,A; TC0 速率=Fcpu/4

MOV A,#30; PWM 输出占空比=30/256

B0MOV TC0C,A B0MOV TC0R,A

BOBCLR FTCOOUT; 占空比变化范围: 0/256~255/256.

B0BCLR FALOAD0

B0BSET FPWM0OUT; PWM0 输出至 P5.4, 禁止 P5.4 I/O 功能

B0BSET FTC0ENB

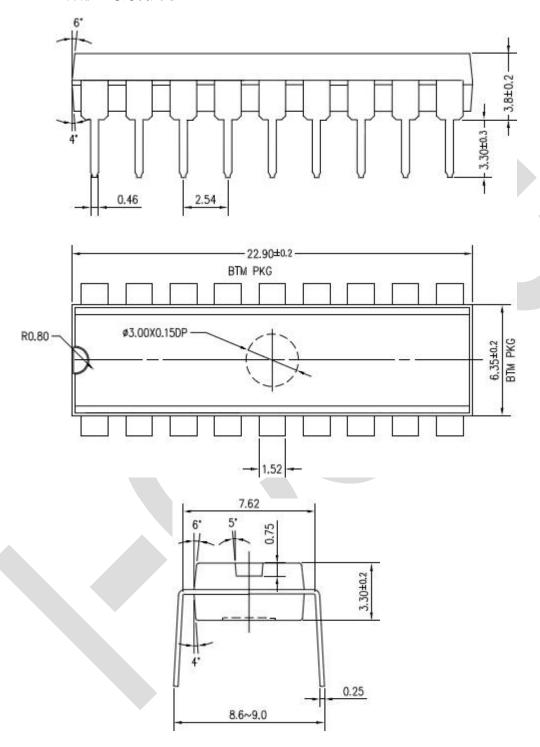
注: TCOR 为只写寄存器,不能用 INCMS 和 DECMS 指令对其进行操作。

例:改变 TCOR 的内容。

MOV A, #30H B0MOV TC0R, A INCMS BUF0

NOP

B0MOV A, BUF0 B0MOV TC0R, A

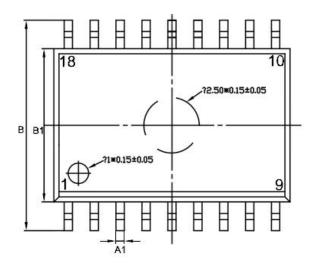

版次:B3

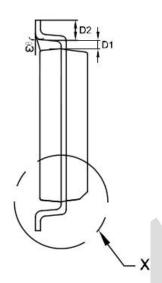
编号: AiP8P006A-AX-A008

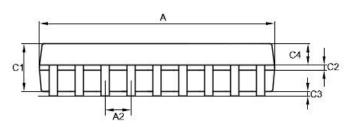
## 7、封装尺寸与外形图

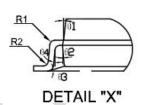
## 7.1、DIP18 外形图与封装尺寸

表 835-11





版次:B3


编号: AiP8P006A-AX-A008

## 表 835-11 7.2、SOP18 外形图与封装尺寸









| 尺寸<br>标注 | 最小(mm)     | 最大(mm) | 尺寸<br>标注 | 最小(mm)  | 最大(mm) |  |
|----------|------------|--------|----------|---------|--------|--|
| Α        | 11.35      | 11.68  | D1       | 0.5TYP  |        |  |
| A1       | 0.36       | 0.51   | D2       | 0.7     | 0.97   |  |
| A2       | 1.27       | TYP    | R1       | 0.25TYP |        |  |
| В        | 10.01      | 10.64  | R2       | 0.25TYP |        |  |
| B1       | 7.37 7.62  |        | θ1       | 7° TYP  |        |  |
| C1       | 2.2        | 2.6    | θ2       | 7° TYP  |        |  |
| C2       | 0.204~0.33 |        | 03       | 0°      | 8"     |  |
| C3       | 0.10~      | 0.25   | θ4       | 10°     | TYP    |  |
| C4       | 1.01       | YP     | 70       | SIO.    |        |  |



版次:B3

编号: AiP8P006A-AX-A008

## 8、声明及注意事项

表 835-11

## 8.1、产品中有毒有害物质或元素的名称及含量

|      | 有毒有害物质或元素                                                                                  |           |           |                             |                        |                              |                           |                           |                                           |                 |
|------|--------------------------------------------------------------------------------------------|-----------|-----------|-----------------------------|------------------------|------------------------------|---------------------------|---------------------------|-------------------------------------------|-----------------|
| 部件名称 | 铅<br>(Pb)                                                                                  | 汞<br>(Hg) | 镉<br>(Cd) | 六阶<br>铬<br>(Cr<br>(VI)<br>) | 多溴<br>联苯<br>(PB<br>Bs) | 多溴<br>联苯<br>醚<br>(PB<br>DEs) | 邻苯二<br>甲酸二<br>丁酯<br>(DBP) | 邻苯二<br>甲酸丁<br>苄酯<br>(BBP) | 邻苯二甲<br>酸二 (2-<br>乙 基 巳<br>基) 酯<br>(DEHP) | 邻苯二甲酸二异丁酯(DIBP) |
| 引线框  | 0                                                                                          | 0         | 0         | 0                           | 0                      | 0                            | 0                         | 0                         | 0                                         | 0               |
| 塑封树脂 | 0                                                                                          | 0         | 0         | 0                           | 0                      | 0                            | 0                         | 0                         | 0                                         | 0               |
| 芯片   | 0                                                                                          | 0         | 0         | 0                           | 0                      | 0                            | 0                         | 0                         | 0                                         | 0               |
| 内引线  | 0                                                                                          | 0         | 0         | 0                           | 0                      | 0                            | 0                         | 0                         | 0                                         | 0               |
| 装片胶  | 0                                                                                          | 0         | 0         | 0                           | 0                      | 0                            | 0                         | 0                         | 0                                         | 0               |
| 说明   | ○:表示该有毒有害物质或元素的含量在 SJ/T11363-2006 标准的检出限以下。<br>×:表示该有毒有害物质或元素的含量超出 SJ/T11363-2006 标准的限量要求。 |           |           |                             |                        |                              |                           |                           |                                           |                 |

## 8.2、注意

在使用本产品之前建议仔细阅读本资料;

本资料中的信息如有变化, 恕不另行通知;

本资料仅供参考,本公司不承担任何由此而引起的任何损失;

本公司也不承担任何在使用过程中引起的侵犯第三方专利或其它权利的责任。

## 无锡中微爱芯电子有限公司

Wuxi I-CORE Electronics Co., Ltd.

版次:B3

编号: AiP8P006A-AX-A008



无锡中微爱芯电子有限公司

国芯思辰(深圳)科技有限公司

深圳公司:深圳市福田区石厦街新天世纪商务中心A座1513室

公司网址:www.zhongke-ic.com

联系电话:0755-82565229