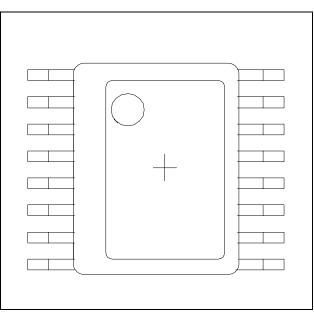


DCS1800/PCS1900 GaAs 4.8 V Single Supply Power Amplifier IC

DESCRIPTION

The AWT1902 is a 3 stage monolithic Power Amplifier IC suited for DCS 1800 (1710-1785) and PCS1900 (1850-1910) cellular telephone applications


FEATURES

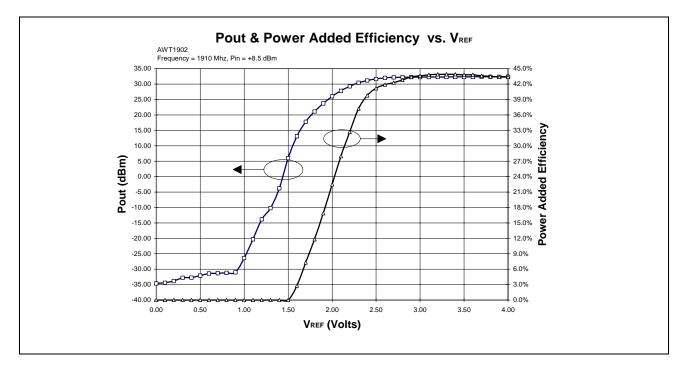
- **High Output Power**
- **High Efficiency** •
- **Built in Pulse Control**
- 16 Pin SSOP Plastic Package. •
- 50Ω Input Impedance
- Low Cost •
- Single Supply

Maximum Ratings 1.

Static sensitive electronic devices. Do not operate or store near strong electrostatic, fields. Take proper ESD precautions.

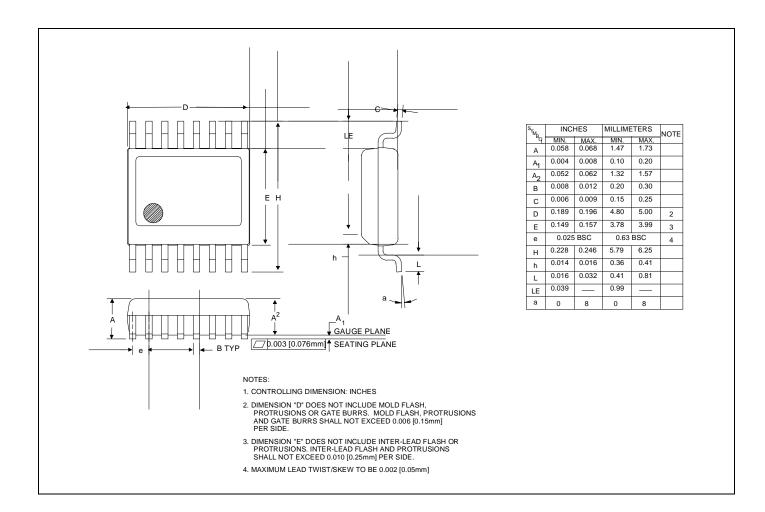
PIN	RATING	NOTES
Pin 1 - V _{D1}	+7.5V max., 0 V min.	
Pin 2 - V _{REF}	+ 5V max., 0 V min.	If V_{REF} is kept high and not pulsed, the amplifier may draw very high currents and permanent damage may
		occur.
Pin 3 - RF _{IN}	+ 12 dBm max.	AC coupled only, do not apply DC voltage.
Pin 5 - V _{DB}	+ 7.5V max., 0 V min.	
Pin 6 - V _{SS} _IN	- 7.5 V	V_{SS} IN must be between -3V and -5V to allow proper
		operation.
Pin 8 - V _{DC}	+ 7.5V max., 0 V min.	
Pin 9 - V _{D2}	+ 7.5V max., 0 V min.	
Pin 12,13,14 -	+ 7.5V max., 0 V min.	
V_{D3} , RF_{OUT}		

2. ELECTRICAL CHARACTERISTICS:(1)


 $(Pin = + 8.5 \text{ dBm}, V_D = + 4.8 \text{ V}_{DC}, \text{ V}_{REF} \text{ Pulsed } @ 577 \ \mu\text{S}/12.5\% \text{ Duty}, 0.5\text{V} - 3.6\text{V} \text{ max}.$ External clock or $\text{V}_{SS} = -4\text{V}.$ Tc = $25^{\text{O}}\text{C}, \text{ Zo} = 50\Omega.$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	PARAMETER
Frequency(²) DCS OR	fo	1710		1785	MHz
PCS		1850		1910	
Power Output @ V _{REF} = 3.6V	P _{OUT}		32		dBm
Power Added DCS Efficiency or @ P _{OUT} = 32 dBm PCS	PAE		45 40		%
Harmonics	2fo 3fo		- 35 - 40		dBc
Stability: < -80 dBc, all spurious outputs relative to desired signal			6:1		VSWR load, all phase angles, $P_{OUT} \le 32dBm$ $V_{DS} = + 4.8V$ $Zs = 50 \Omega$
Input Return Loss	RTN _{IN}		10		dB
Temp		-20		+70	

1. As measured in ANADIGICS test fixture.


2. Operating frequency band is dependent on external matching, see page 5 for test fixture schematic.

3. <u>DATA</u>

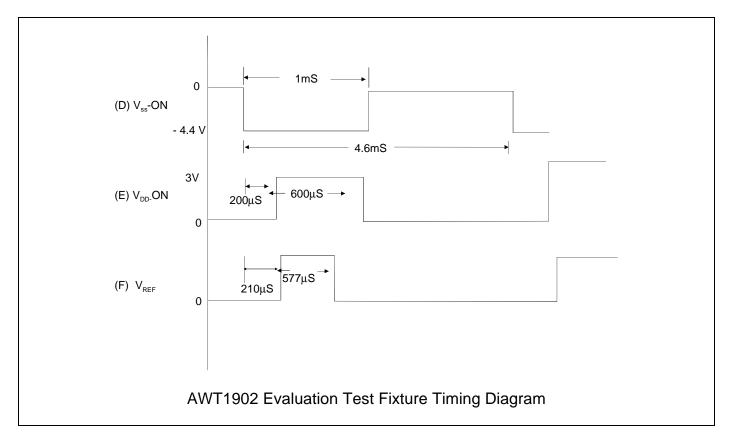
This data sheet contains technical information about product ANADIGICS is planning to introduce. The data and product specifications are subject to change prior to formal introduction. Please note : This device is NOT to be used for device qualification or production. 35 Technology Drive, Warren NJ 07059 ●(908)668 5000●(908)668 5132● Email: mktg@anadigics.com

4. Package Outline and Pin Description

	1	
Pin	Signal	Description
1	V _{D1}	1st stage drain supply (4.8V)
2	V_{REF}	Output Power control, Should be set to level that corresponds to the desired output power . Pulse control voltage (V_{REF} , 0 to 3.6V)
3	RF _{IN}	RF power input
4	GND	RF and DC Ground
5	VDB	Bias circuit supply (+ 4.8V, 3-4 mA)
6	CB/V _{SS} _IN	CB and Negative Supply (- 4.4 V)
7	CA	CA
8	N/C	
9	V _{D2}	2 _{ND} stage drain supply (+ 4.8 V)
10,11	GND	RF and DC Ground
12,13,14	V _{D3} /RF _{OUT}	3 _{RD} stage drain supply and RF _{OUT}
15,16	GND	RF and DC Ground

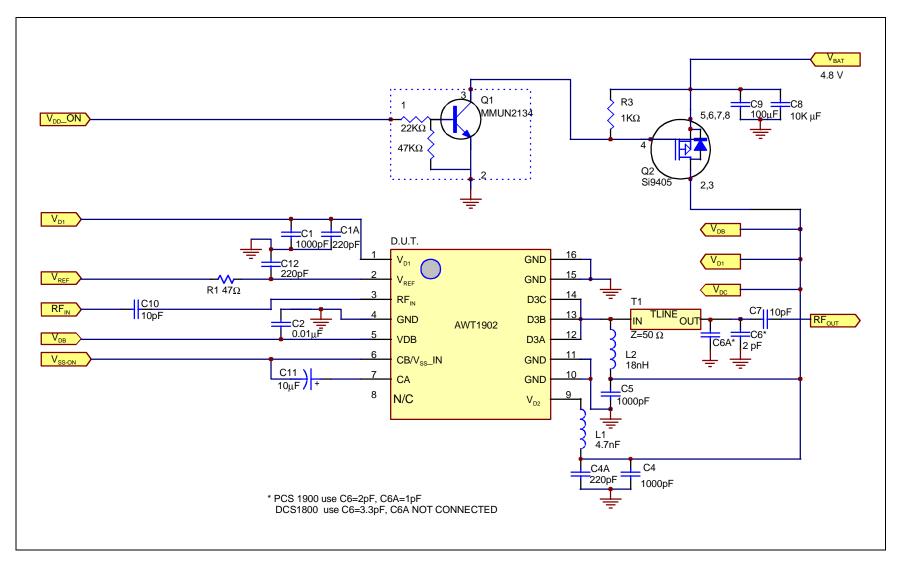
This data sheet contains technical information about product ANADIGICS is planning to introduce. The data and product specifications are subject to change prior to formal introduction. Please note : This device is NOT to be used for device qualification or production. 35 Technology Drive, Warren NJ 07059 ●(908)668 5000●(908)668 5132● Email: mktg@anadigics.com

5. <u>Power Amplifier Evaluation Test Fixture Operation Procedure</u>.


Power Up: Dual supply operation, (for Single Supply operation please contact ANADIGICS).

- A. Begin by setting all power supplies to zero volts.
- B. Set the RF input power level to +8.5 dBm
- C. Set V_{DC} and V_{BAT} to + 4.8 volts.
- D. Apply a periodic square wave (PRF=217Hz, pulse width = 1m Sec, amplitude = -4.4V) to V_{SS} -ON. (pin 6).
- E. Apply a synchronized periodic square wave (PRF=217Hz, pulse width = 600 μ Sec, pulse delay = 200 μ Sec, amplitude = 3V) to V_{DD}_ON. This signal turns on the pass transistor, which then applies positive voltage (VBAT) to the drains of the amplifier.
- F. Pulse V_{REF} (power control) with a synchronized periodic square wave (PRF=217Hz, pulse width = 577 µSec, pulse delay = 210µsec), and adjust its' amplitude for a desired output power (0V < V_{REF} < 3.6V). Make sure that the pulse generator is properly terminated, otherwise, you may apply as much as twice the generator voltage to the V_{REF} pin.

Note: The square wave signals in steps E and F are synchronized to the square wave signal in step D. Furthermore, the pulse widths and delays in steps D through F, (timing sequence), should be tailored for each system application. The important point to remember, is to ensure that negative voltage is always present during the time the power amplifier is operating (positive voltage applied to drains). Please see timing diagram shown below.


Power Down

To power down the device follow the above procedure in reverse order.

This data sheet contains technical information about product ANADIGICS is planning to introduce. The data and product specifications are subject to change prior to formal introduction. Please note : This device is NOT to be used for device qualification or production. 35 Technology Drive, Warren NJ 07059 •(908)668 5000•(908)668 5132• Email: mktg@anadigics.com awt1902, 22/04/98, 4

AWT1902 Evaluation Test Fixture Schematic

This data sheet contains technical information about product ANADIGICS is planning to introduce. The data and product specifications are subject to change prior to formal introduction. Please note : This device is NOT to be used for device qualification or production.

COMPONENT	VALUE	SIZE
C1,C4,C5	1000 pF	0603
C1A,C4A,C12	220 pF	0603
C7,C10	10 pF	0805
C6	* 2 pF	0603
C6A	*1 pF	0603
C8	10,000 μF	-
C9	100 μF	-
C2	0.01 μF	2410
L1	4.7 nH	0603
L2	18 nH	1008
R1	47 ohms	0603
R3	1K ohms	0603
T1	Zo = 50	
Q1	MMUN2134	MOTOROLA
Q2	SI9405	SILICONIX

* PCS1900 use C6 = 2pF, C6A = 1pF, DCS1800 use C6 =3.3pF, C6A Not Connected