
www.DataSheet4U.com

AVR32000: Introduction to AVR32 header files

Features
• Register and Bit-Name Definitions
• Use of Bit-field and Bit-mask
• Use of type definitions
• Use of Macros
• Deviance Between Hardware Registers and Header Register Naming

1 Introduction
The purpose of this application note is to give new users a basic introduction to the
header files for AVR®32 microcontrollers. The usage of I/O registers, bit-names
and module type definitions. It will also cover more advanced usage of the header
files like the I/O modules structures. This application note is specific for IAR
Systems® AVR32 compiler and GNU GCC for AVR32 compiler.

32-bit
Microcontrollers

Rev. 32005A-AVR32-05/06

2 AVR32000
32005A-AVR32-05/06

2 Register and Bit-Name Definitions
The header files for AVR32 are split into many small files. One header file defines the
core and one header file defines each module. This eases the portability of the code
to other devices because the source code does not have to know which version of a
module is used in a specific device, the only necessary include is the unique device
header file.

All code, which includes a device module, must start by including the io header file for
the AVR32 devices. The io header file for devices uses the following convention:

avr32/io.h

The io.h header file knows the target device by a flag passed to the compiler.

Within the io.h file the devices and their specific header file are included, which
includes and defines all modules available for the target device. This eases the users
need to know what the include file for a specific module is named, since all defines for
a module are present by including a single general header file.

Registers are named as they are given in the datasheet, and extended with a defined
prefix. Naming of registers use the following convention:

AVR32_<module name>_<register name>

Example for USART control register:

AVR32_USART_CR

Bit-field names are named as they are given in the datasheet including a prefix.
Naming of bit-fields use the following convention:

AVR32_<module name>_<register name>_<bit-field name>

Example for USART transceiver enable in the control register:

AVR32_USART_CR_TXEN

The offset and mask of a bit-field name in a register is also available with a more
explained define. Naming of bit-field offsets and masks use the following convention:

AVR32_<module name>_<register name>_<bit-field name>_OFFSET

AVR32_<module name>_<register name>_<bit-field name>_MASK

Example for USART transceiver enable in the control register:

AVR32_USART_CR_TXEN_OFFSET

AVR32_USART_CR_TXEN_MASK

For reducing code text size it is possible to use abbreviated bit-field names. If the bit-
field name is unique and all values with that name are the same for all registers, the
register name is dropped in the definition of the bit-field name.

 AVR32000

 3

32005A-AVR32-05/06

Example for USART transceiver enable bit in the control register can be written:

AVR32_USART_CR_TXEN

Or

AVR32_USART_TXEN

3 Use of Header Files

3.1 Use of Bit-field and Bit-mask
Registers are available by using type definitions, typedef, or by direct access. All
registers can be defined as pointers to a memory address, and are accessible by
dereferencing the pointer.

Registers are defined as an offset to the base address, for simplifying access to the
registers of each module instance (see Figure 3-1). Naming of the pointer to the base
address use the following convention:

AVR32_<module name><module instance starting at 0>

Example for USART module instance A pointer to base address:

AVR32_USART0

Figure 3-1. Memory mapping to registers for the AP7000 USART0 module to header
files.

CR

MR

IER

PDC

IDR

0xFFE00C00 Offset Header file direct access

0x0000

0x0004

0x0008

0x0012

0x0016 - 0x00FC

0x0100 - 0x0128

AVR32_USART0.cr

AVR32_USART0.mr

AVR32_USART0.ier

AVR32_USART0.idr

3.1.1 Use of type definitions

All modules have a type definition, in C and C++ known as typedef. These can be
used to access the I/O memory concerning this module.

4 AVR32000
32005A-AVR32-05/06

All type definitions are a volatile pointer that consists of one or several structures.
Naming of type definitions use the following convention:

volatile avr32_<module name>_t *

Example using type definitions for accessing the USART0:

volatile avr32_usart_t * myUsart = &AVR32_USART0;

myUsart->mr = (1<<AVR32_USART_TXEN_OFFSET);

3.1.2 Use of pointers

The bit-fields and bit-masks are accessed by writing values to registers defined in the
module structure, which is defined in the header file for the module.

Example using a pointer to USART0 struct for accessing MR in the USART0:

AVR32_USART0.mr = (1<<AVR32_USART_TXEN);

3.2 Use of Macros
There is a set of defined macros for accessing system registers. Using regular C calls
cannot access these registers; they have to be accessed by the assembler functions
mtsr and mfsr.

Five macros has been defined for generating the compiler independent code needed
to access these registers:

• AVR32_SET_SR_BIT(sregister, bitname)
• AVR32_SET_SR_REG(sregister, regval)
• AVR32_CLEAR_SR_BIT(sregister, bitname)
• AVR32_TOGGLE_SR_BIT(sregister, bitname)
• AVR32_READ_SR_REG(sregister, return_value)

The macros are defined in the “avr32/macro.h” file, also included with this application
note.

Example for setting the global interrupt flag in the status register:

AVR32_SET_SR_BIT(AVR32_SR, AVR32_SR_GM);

This will translate to the following code for the GCC compiler:

volatile long avr32_sr_set_value;

avr32_sr_set_value = __builtin_mfsr(AVR32_SR);

avr32_sr_set_value |= AVR32_SR_GM;

__builtin_mtsr(AVR32_SR, avr32_sr_set_value);

4 Deviance Between Hardware Registers and Header Register Naming
Some hardware registers may have names that are reserved in the C and C++
standard. The naming of these registers is renamed in the header files.

 AVR32000

 5

32005A-AVR32-05/06

A general convention is used when a register has a reserved name; an underscore is
added to the end of the register name in the header file.

Example setting the register if in a module MODULE, would according to the previous
standard be written as:

(&AVR32_MODULE)->if = 0;

But due to “if” being a reserved word, the header file name of the register is altered:

(&AVR32_MODULE)->if_ = 0;

5 Macro file
Included with this application note is a header file containing macros for accessing the
system register by using the mfsr and mtsr. The header file is located under
src/macro.h. This file is also shipped with the header files for AVR32 devices.

5.1 Example usage
The example below set, clear, toggle and read the global interrupt flag.

#include <avr32/io.h>

#include “macro.h”

int main(int argc, char * argv[])

{

 AVR32_SET_SR_BIT(AVR32_SR, AVR32_SR_GM);

 AVR32_CLEAR_SR_BIT(AVR32_SR, AVR32_SR_GM);

 AVR32_TOGGLE_SR_BIT(AVR32_SR,AVR32_SR_GM);

 volatile unsigned int readSystemRegister;

 AVR32_READ_SR_REG(AVR32_SR, readSystemRegister);

return 0;

} /* End main */

5.2 Doxygen documentation
All source code is prepared for doxygen automatic documentation generation.
Premade doxygen documentation is also supplied with the source to this application
note, located in src/doxygen/index.html.

Doxygen is a tool for generating documentation from source code by analyzing the
source code and using known keywords. For more details see
http://www.stack.nl/~dimitri/doxygen/.

32005A-AVR32-05/06

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, and others are the
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Register and Bit-Name Definitions
	3 Use of Header Files
	3.1 Use of Bit-field and Bit-mask
	3.1.1 Use of type definitions
	3.1.2 Use of pointers

	3.2 Use of Macros

	4 Deviance Between Hardware Registers and Header Register Naming
	5 Macro file
	5.1 Example usage
	5.2 Doxygen documentation

