Features

- Advanced Process Technology
- Ultra Low On-Resistance

International

IOR Rectifier

- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

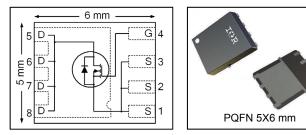
Specifically designed for Automotive applications, this HEXFET[®] Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon are. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this product an extremely efficient and reliable device for use in Automotive and wide variety of other applications.

Applications

- Injection
- Heavy Loads
- DC-DC Converter

Bass Dort Number	Baakaga Turaa	Standard	Complete Dort Number	
Base Part Number	Package Type	Form	Quantity	Complete Part Number
AUIRFN7107	PQFN 5mm x 6mm	Tape and Reel	4000	AUIRFN7107TR

Absolute Maximum Ratings


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	75	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	14	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	12	
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V	75©	A
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V	536	
I _{DM}	Pulsed Drain Current ①	300	
P _D @T _A = 25°C	Power Dissipation	4.4	W
P _D @T _{C(Bottom)} = 25°C	Power Dissipation	125	vv
	Linear Derating Factor	0.029	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy ②	123	mJ
I _{AR}	Avalanche Current ①	45	Α
TJ	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		

HEXFET® is a registered trademark of International Rectifier.

HEXFET[®] POWER MOSFET

V _{DSS}	75V	
R _{DS(on)} max (@V _{GS} = 10V)	8.5mΩ	
Q _{G (typical)}	51nC	
Ι _D (@Τ _{C (Bottom)} = 25°C)	75A	

G	D	S	
Gate	Drain	Source	

Thermal Resistance

Thermal Re	sistance								
Symb	Symbol Parameter					-	Тур.	Max.	Units
R _{0JC} (Bottom	ı)	Junction-to-Case ④						1.2	
R _{θJC} (Top)		Junction-to-Case ④						27	0.0.044
$R_{ ext{ heta}JA}$		Junction-to-Ambient S						34	°C/W
R _{θJA} (<10s)		Junction-to-Ambient (5)					22		
Static Electi	Static Electrical Characteristics @ T」 = 25°C (unless otherwise specified)								
Symbol		Parameter	Min.	Typ.	Max.	Units		Conditi	ons
V _{(BR)DSS}	Drain-to	-Source Breakdown Voltage	75			V	$V_{GS} = 0V_{S}$	I _D = 250μ	IA
	Breakdo	own Voltage Temp. Coefficient		0.074			Reference to 25°C, $I_D = 1.0$ mA		
R _{DS(on)}		rain-to-Source On-Resistance		6.9	8.5	mΩ	V _{GS} = 10V, I _D = 45A ③		
V _{GS(th)}	Gate Th	reshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$	s, I _D = 100	μA
R _G	Internal	Gate Resistance		0.82		Ω			-
gfs	Forward	Transconductance	73			S	V _{DS} = 25\	/, I _D = 45A	۱.
	Dura in ta	Osuma la sluca o Osuma st			20		V _{DS} = 75\	/, V _{GS} = 0	V
IDSS	Drain-to	-Source Leakage Current			250	μA			V, T _J = 125°C
I _{GSS}	Gate-to-	-Source Forward Leakage			100		V _{GS} = 20\	/	
	Gate-to-	-Source Reverse Leakage			-100	nA	V _{GS} = -20		
Dynamic Ele	ectrical C	Characteristics @ T」 = 25°C (unless c	therwise	specifie	ed)				
Symbol		Parameter	Min.	Тур.	Max.	Units		Conditi	ons
Q _g	Total G	ate Charge		51	77		I _D = 45A		
Q _{gs}	Gate-to-	-Source Charge		15			V _{DS} = 38V V _{GS} = 10V		
Q _{gd}	Gate-to-	-Drain ("Miller") Charge		14		nC			
Q _{sync}	Total G	ate Charge Sync. (Q _g - Q _{gd})		37			I _D = 45A,	V _{DS} =0V, '	V _{GS} = 10V
t _{d(on)}	Turn-Or	n Delay Time		8.0			V _{DD} = 75\	/	
t _r	Rise Tir	ne		12			I _D = 45A		
t _{d(off)}	Turn-Of	f Delay Time		19		ns	$R_{G} = 1.80$	2	
t _f	Fall Tim			7.0			V _{GS} = 10\	/ 3	
C _{iss}	Input Ca	apacitance		3001			$V_{GS} = 0V$		
C _{oss}	Output	Capacitance		371		pF	$V_{DS} = 25V$		
C _{rss}	Reverse	e Transfer Capacitance		151			f = 1.0 MHz		
Diode Chara	acteristic	s							
Symbol	Par	ameter	Min.	Тур.	Max.	Units		Conditi	ons
	Continuc	ous Source Current			75	^	MOSFET	symbol	
I _S	(Body Di	ode)				A	showing	the	
1	Pulsed S	ource Current			300	^	integral re	everse	
I _{SM}	(Body Di	ode) ①						on diode.	, , , , , , , , , , , , , , , , , , ,
V _{SD}	Diode Fo	orward Voltage		0.85	1.3	V	T _J = <u>25</u> °C	, I _S = 45A	, V _{GS} = 0V ③
t _{rr}	Reverse	Recovery Time		28		ns			, V _{DD} = 38V
Q _{rr}	Reverse	everse Recovery Charge		145		nC	di/dt = 50	0A/µs	

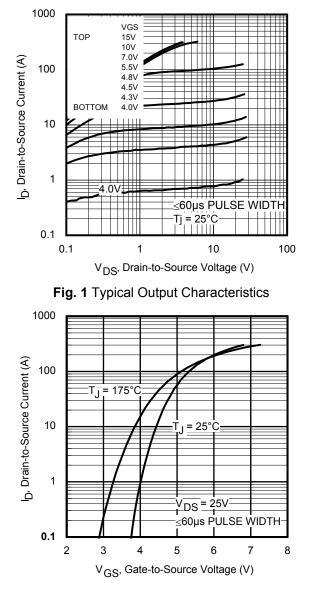


Fig. 3 Typical Transfer Characteristics

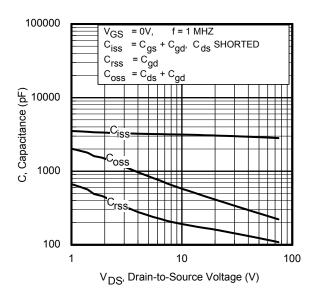


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

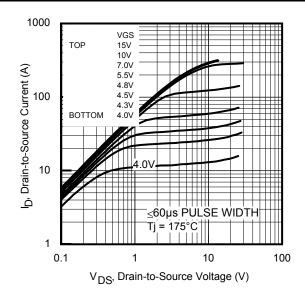


Fig. 2 Typical Output Characteristics

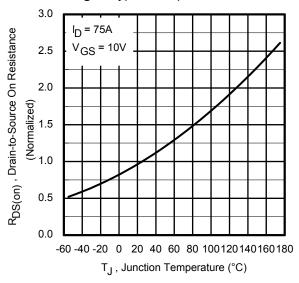
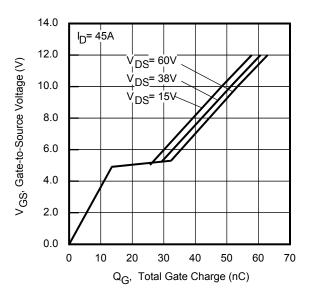
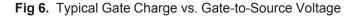




Fig. 4 Normalized On-Resistance vs. Temperature

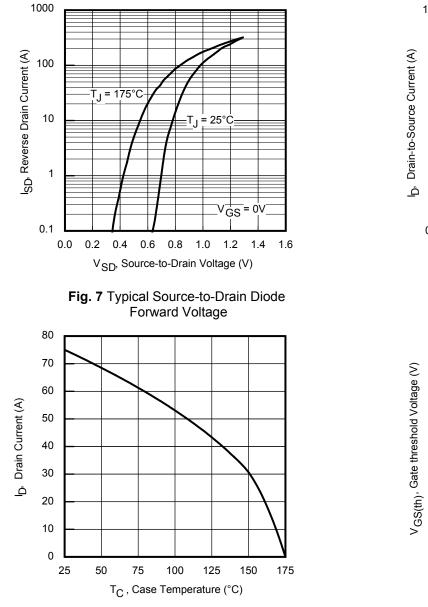


Fig 9. Maximum Drain Current vs. Case Temperature

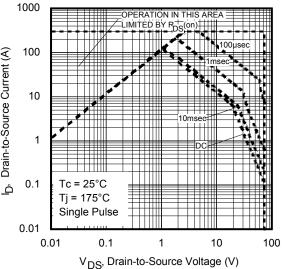


Fig 8. Maximum Safe Operating Area

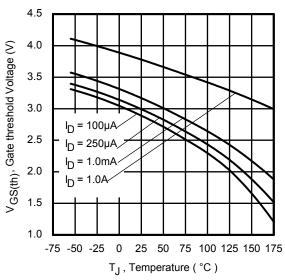
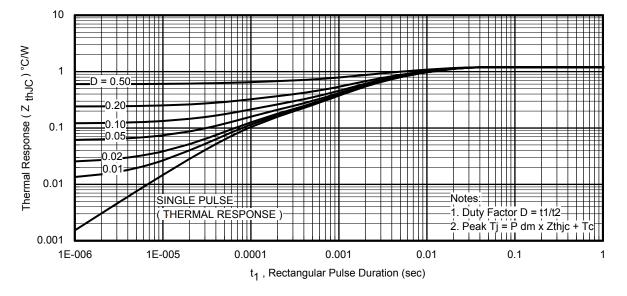
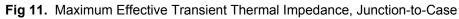




Fig 10. Threshold Voltage vs. Temperature

4

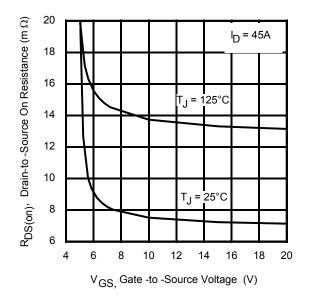


Fig 12. Typical On-Resistance vs. Gate Voltage

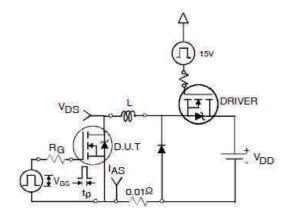


Fig 14a. Unclamped Inductive Test Circuit

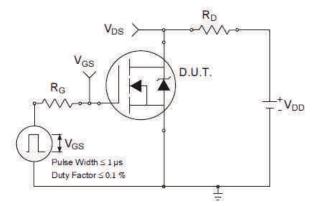


Fig 15a. Switching Time Test Circuit

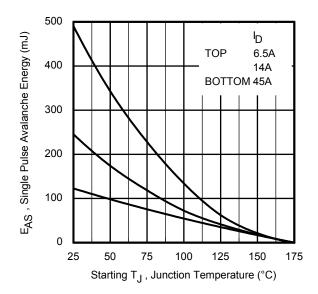


Fig 13. Maximum Avalanche Energy vs. Drain Current

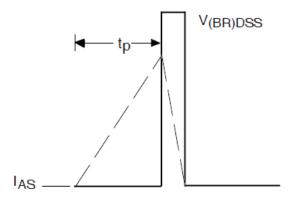


Fig 14b. Unclamped Inductive Waveforms

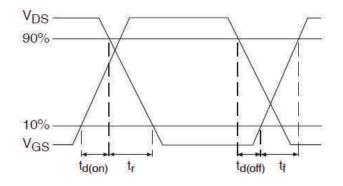


Fig 15b. Switching Time Waveforms

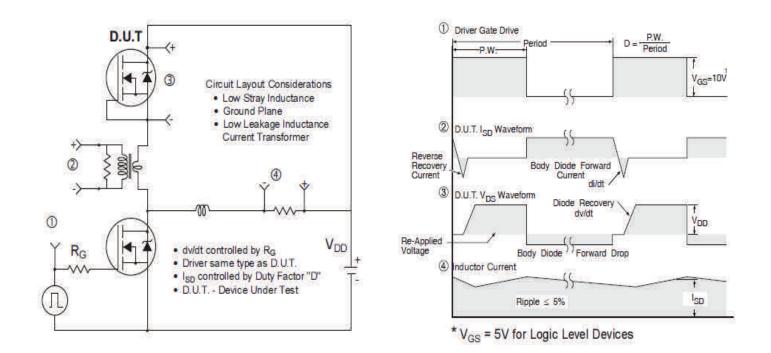


Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

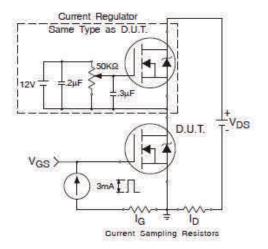


Fig 17a. Gate Charge Test Circuit

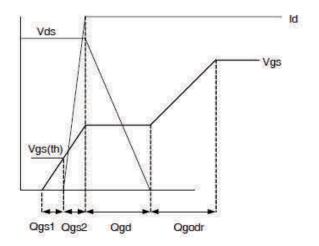
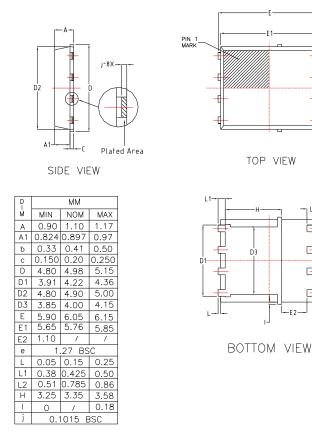
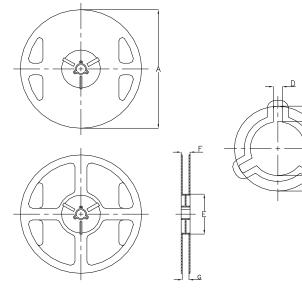



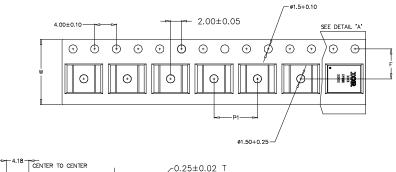
Fig 17b. Gate Charge Waveform

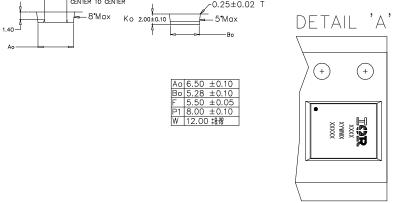
PQFN 5x6 Outline "E" Package Details

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: <u>http://www.irf.com/technical-info/appnotes/an-1136.pdf</u>


For more information on package inspection techniques, please refer to application note AN-1154: <u>http://www.irf.com/technical-info/appnotes/an-1154.pdf</u>

PQFN 5x6 Outline "E" Part Marking


Note: For the most current drawing please refer to IR website at http://www.irf.com/package/


PQFN 5x6 Outline "E" Tape and Reel

NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts.

	RE	EL DIME	NSIONS		
S	TANDAR	D OPTIO	N (QTY 40	100) TR	
	METRIC		IMPERIAL		
CODE	MIN	MAX	MIN	MAX	
A	329.5	330.5	12.972	13.011	
В	20.9	21.5	0.823	0.846	
С	12.8	13.5	0.504	0.532	
D	1.7	2.3	0.067	0.091	
Е	97	99	3.819	3.898	
F	Ref	17.4			
G	13	14.5	0.512	0.571	

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

			Automotive		
		(per AEC-Q101)			
		Comments: This part number(s) passed Automotive qualifi- cation. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.			
Moisture Sensitivity Level		PQFN 5x6	MSL1		
Human Body Model		Class H1C (+/- 2000V) ^{††}			
		AEC-Q101-001			
ESD	Charged Device Model	Class C5 (+/- 2000V) ^{††}			
		AEC-Q101-005			
RoHS Compliant		Yes			

† Qualification standards can be found at International Rectifier's web site: <u>http://www.irf.com/</u>

†† Highest passing voltage.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- \odot Starting T_J = 25°C, L =0.12mH, R_G = 50 Ω , I_{AS} = 45A.
- $\ \, \ \, {\sf R}_{\theta} \ \, {\sf is measured at TJ of approximately 90^{\circ}C. }$
- S When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994: <u>http://www.irf.com/technical-info/appnotes/an-994.pdf</u>
- © Calculated continuous current based on maximum allowable junction temperature.

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center

http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

101 N. Sepulveda Blvd., El Segundo, California 90245

Tel: (310) 252-7105