

Preliminary Datasheet

AUIRCS3040N

Features

- Integrated Power Stage Module
- Integrated high + low side driver and MOSFET
- 40V, 30A current capability for high efficiency
- Converters and Inverters
- CMOS Schmitt-triggered inputs
- Matched propagation delay for both channels
- Thermal enhanced package
- Exposed leads for visual inspection
- Under Voltage Lock Out function
- Automotive Qualified
- Leadfree, RoHS compliant

Typical Applications


- 12V to 28V DC-DC single and multi-phase converters for Micro and Mild hybrid vehicles.
- Buck and buck-boost single and multiphase converters.
- Brush and Brushless Motor Drivers at 12V and 24V for Cars and trucks.

Product Summary

Topology	40V AU-Convert/ <i>R</i> ™ Power Stage
V _{DCIN}	40V
I _{OUT} @ Tc=100C	30A
Switching Frequency (max)	400kHz

Package

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM lead. Stresses beyond those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

Symbol	Definition	Min.	Max.	Units
V _{DCIN}	Power Input Voltage		40	
V _{cc}	Bias Supply Voltage	-0.3	20	
V _{IN}	Logic input voltage	-0.3	5.0	V
V _B	High side positive floating supply voltage	-0.3	Vs + 20	v
V _S Phase Voltage		V _B - 20	40	
I _D @ TC = -40 to 100 C Continuous Drain Current on VDCIN, Vs and COM pins.			30	А
Rth _{JC} Thermal resistance, junction to case		—	3	°C/W
T _J Junction temperature		_	150	
T _s Storage temperature		-55	150	°C
T _L Lead temperature (soldering, 10 seconds)			300	0

Recommended Operating Conditions

For best operation the device should be used within the recommended conditions. All voltage parameters are absolute voltage referenced to COM=VSS.

Symbol	Definition	Min.	Max.	Units
V _{DCIN}	Power Input Voltage	10	40	
V _{CC}	Bias Supply Voltage	10	20	
V _{IN}	Logic input voltage	VSS	5	
V _B	High side positive floating supply voltage	Vs	Vs+20	- V
Vs	Phase Voltage	Note 1	40	
V _{SS}	Logic Ground	-5	5	
Fsw	Switching frequency**	1	400	kHz
Rin	Input resistance*	100	5k	Ω
T _A	Ambient Temperature	-40	125	°C

Note 1: Logic operational for VS of -5V to 40V. Logic state held from -4V to -VBS.

* input resistance value to be calculated based on the desired rise time and switching frequency.

** thermal balance to be verified accordingly

International

Static Electrical Characteristics

Unless otherwise specified, these specifications apply for an operating ambient temperature range of -40°C≤Ta≤125°C and power supply V_{CC} =15 V. The V_{IN} and I_{IN} parameters are referenced to VSS and are applicable to input leads: LIN and HIN. The V_O and I_O parameters are referenced to COM.

Symbol	Definition	Min	Тур	Мах	Units	Test Conditions	
	Gate Driver Section						
V _{IL}	PWM logic "0" input voltage			0.7	v		
V _{IH}	PWM logic "1" input voltage	2.5			- V	VCC=10V-20V	
I _{IN+}	PWM logic "1" input bias current			13		VIN=3.3V	
I _{IN-}	PWM logic "0" input bias current			2	μA	VIN=0V	
C _{IN}	Equivalent input capacitance (1)		7		pF		
I _{QBS}	Quiescent VBS supply current		120	250			
I _{QCC}	Quiescent VCC supply current		200	350	μA	VIN=0V or 3.3V	
I _{LK}	Offset supply leakage current			200		VB=VS=200V	
V _{CCUVHYS}	Vcc supply undervoltage hysteresis		1				
V _{CCUV+}	Vcc supply undervoltage turn on threshold	6	7	8			
V _{CCUV-}	Vcc supply undervoltage turn off threshold	5	6	7			
V _{BSUVHYS}	Vcc supply undervoltage hysteresis		1		v		
V _{BSUV+}	Vcc supply undervoltage turn on threshold	6	7	8			
V _{BSUV-}	Vcc supply undervoltage turn off threshold	5	6	7			
	Power MOSFET Sectio						
I _{DCS}	VDCIN to VS leakage current			TBD	uA	Vs=0V, VDCIN=40, LIN and HIN=0V.	
R _{DSONH}	Drain to Source Resistance High Side MOSFET	-	6	10	mOhm	LIN=0V, HIN=5V, IDC _{IN} =20A, T=25C	
R _{dsonl}	Drain to Source Resistance Low Side MOSFET	-	6	10	mOhm	LIN=5V, HIN=0V, IVS _{IN} =20A, T=25C	

⁽¹⁾ Guaranteed by design

Dynamic Electrical Characteristics

Unless otherwise noted, these specifications apply for an operating junction temperature range of -40°C \leq Ta \leq 125°C with bias conditions of V_{CC} = VBS = 15 V.

Symbol	Definition			Max	Units	Test Conditions		
	Gate Driver Section							
t _{ON}	Turn-on propagation delay ⁽¹⁾	_	60	120		VS=0		
t _{OFF}	Turn-off propagation delay ⁽¹⁾	_	60	120		VS=0V and 200V		
DM1	Channel to channel turn on delay matching ⁽¹⁾			20	ns			
DM2	Channel to channel turn off delay matching ⁽¹⁾			20				
	Module Section							
fsw	Switching Frequency			400	kHz			
D	Maximum Duty Cycle (2)			100	%	VB-VS=15Vdc		

⁽¹⁾ Guaranteed by design, Vin 50% to Vs 50%.

⁽²⁾ When using separated floating supply

Input/Output table

HIN	LIN	VS
L	L	High Z
н	L	н
L	н	L
Н	Н	ND

Table is valid with values within recommended operating conditions. There is no minimum deadtime protection embedded in the device. High Z condition is valid as long as COM < Vs < VDCIN.

Functional Block Diagram:

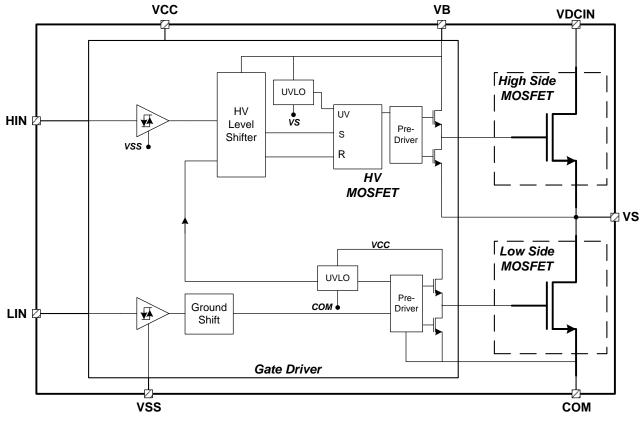


Figure 1

AUIRCS3040N

Gate Driver Input/Output Pins Equivalent Circuit Diagrams

International

IOR Rectifier

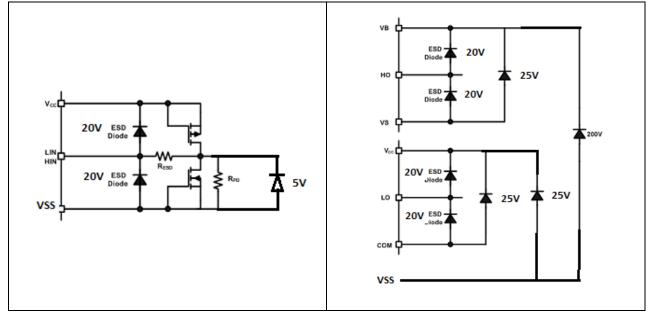
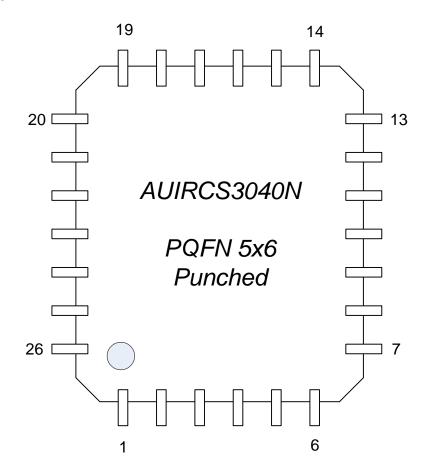
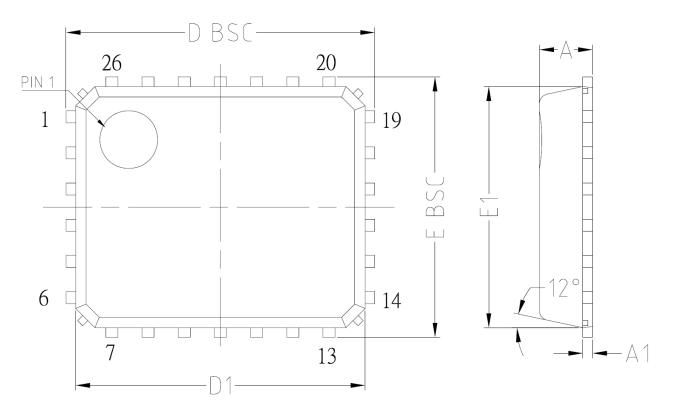
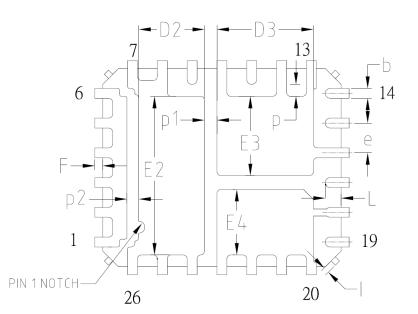



Figure 2

Lead Definitions





PIN	Symbol	Description		
14, 19	NOC	Not Connected		
10, 12, 13, 16	VSS	Logic Ground		
18, 20-23	VDCIN	INPUT DC Voltage		
7-8, 24-26	VS	Phase Voltage – Reference of the floating supply voltage		
1-6	COM	Power Ground		
9	VCC	Supply voltage		
11	LIN	Low Side Input Driver		
15	HIN	High Side Input Driver		
17	VB	Positive floating supply voltage		

International

Package Information: PQFN 5x6 punched

	COMMON						
	DIMENSIONS MILLIMETER			DIMENSIONS INCH			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	1.000	1.100	1.200	0.0393	0.0433	0.0472	
A1	0.200 REF.				0.0079 REF		
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
L	0.350	0.400	0.450	0.0138	0.0157	0.0177	
F	0.050	0.200	0.250	0.0019	0.0079	0.0098	
е		0.750 BSC.			0.0295 BSC		
р		0.300 BSC.		0.0118 BSC.			
p1		0.315 BSC.		0.0124 BSC.			
p2	0.300 BSC.			0.0118 BSC.			
D	6.4 BSC.			0.2520 BSC.			
D1		6.0 BSC.		0.2362 BSC.			
D2	1.600	1.650	1.700	0.0630	0.0650	0.0670	
D3	2.375	2.425	2.475	0.0935	0.0955	0.0974	
Е		5.4 BSC.			0.2126 BSC		
E1	5.0 BSC.				0.1969 BSC		
E2	3.950	3.950 4.000 4.050		0.1555	0.1575	0.1594	
E3	1.950	2.000	2.050	0.0768	0.0787	0.0807	
E4	1.600	1.650	1.700	0.0630	0.0650	0.0670	
Ι			0.150			0.0059	

Figure 4

Application Information

A- Typical Applications

1- Single Phase Buck Converter

Figure 5 shows a typical application diagram in which the AUIRCS3040N is used as power stage of a buck converter from a V_{DCIN} supply to a lower Vout power supply. The AU-Convert/*R* allows a dramatically reduced component count implementation of the power stage. The digital controller provides the input signals for both high and low side MOSFETs taking care of the needed dead time; a bootstrap network (i.e. DB, RB and CBs) realizes the power supply for the higher voltage well of the gate driver that is responsible for the High side MOSFET driving.

The VSS and COM pins are the signal and power grounds respectively; those two points have to be connected together in a single point of the pcb to improve the signal integrity and, as a consequence, the module driving.

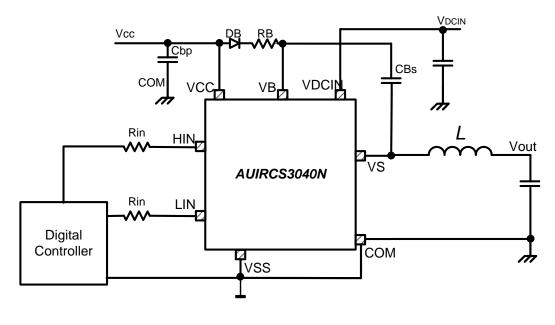


Figure 5

2- Multiphase Buck Converter

Figure 6 shows another typical application diagram in which AUIRCS3040N is used as power stage in a multiphase buck converter. For better understanding the bootstrap connection of AU-Convert*IR* 2, 3 and 4 are not shown. This solution allows a better and more reliable system integration dramatically reducing the component count

It is possible to easily evaluate the power managed by each phase in a specific application considering that each AU-Convert*IR* stage is able to manage up to 30A in a controlled thermal environment. For instance this power is equal about to 400W in a typical 14V battery application. As a consequence, converter in Fig. 6 with 4 phases can ideally manage up to 1.8kW.

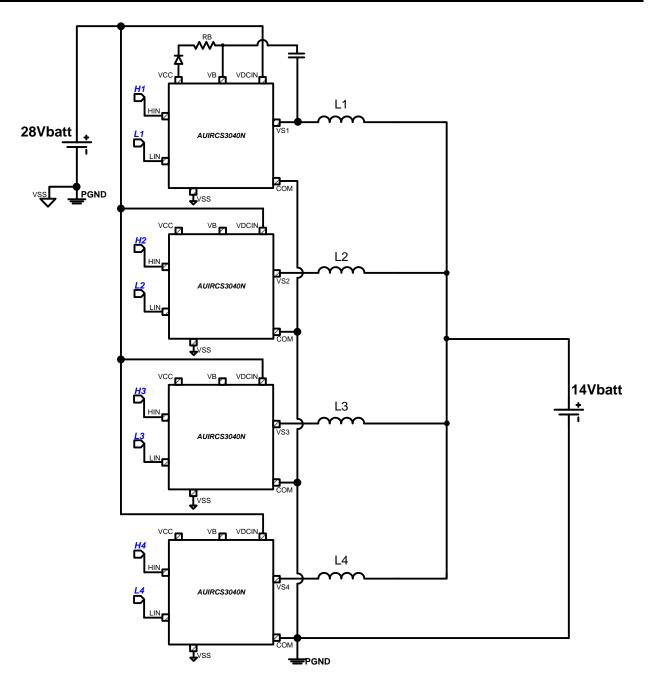


Figure 6

International

IOR Rectifier

3- Single Phase Buck-Boost Converter

Figure 7 shows another possible typical application in which the AUIRCS4030N can be exploited as integrated power stage: it is a buck boost bidirectional DC-DC converter. The 14Vtyp battery is subjected to load cycles that could cause deep battery discharge; an auxiliary 14V battery allows, through the buck boost converter, easy load cycle compensation. Just two AU-Convert*IR* stages realize the whole DC-DC converter in place of the usual six sockets (i.e. two gate drivers and four power switches).

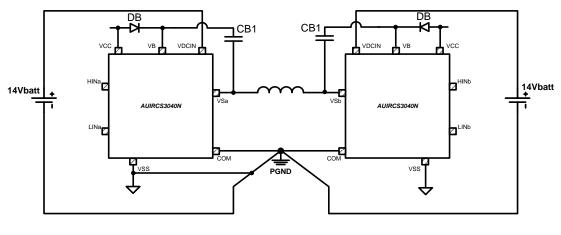
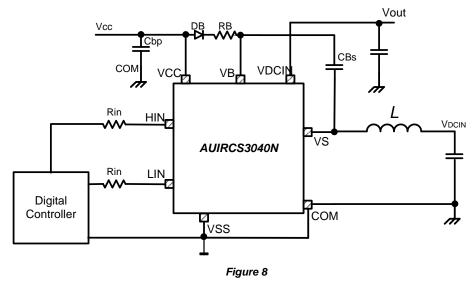
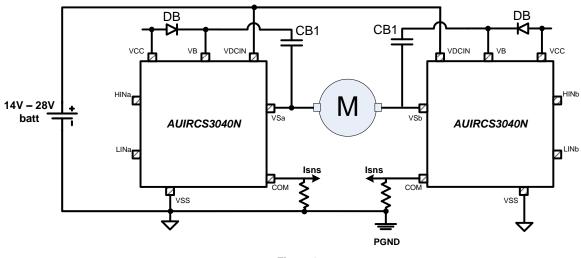



Figure 7

4- Boost Converter

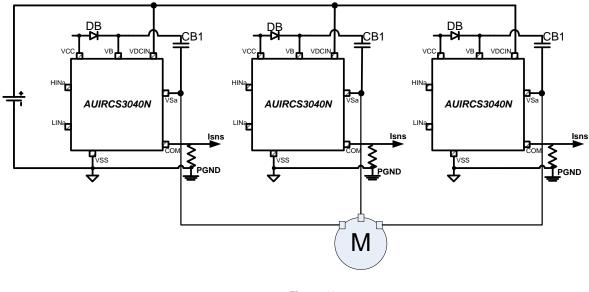
Figure 8 shows a typical application diagram in which the AUIRCS3040N is used as power stage of a boost converter from a V_{DCIN} supply to a higher Vout power supply. The AU-Convert*IR* allows a dramatically reduced component count implementation of the power stage. The digital controller provides the input signals for both high and low side MOSFETs taking care of the needed dead time; a bootstrap network (i.e. DB, RB and CBs) realizes the power supply for the higher voltage well of the gate driver that is responsible for the High side MOSFET driving.



5- Brush Motor driver stage

The following Figure 9 shows the device application as motor driver for an Brush motor in a full bridge configuration. Operation frequency in this case is suggested to be up to 20kHz, however much higher frequency is possible for the device.

The device can be directly driven by any uP or DSP with 3.3V or 5V logic output signals. Short circuit protections are not embedded into the device and they have to be added externally.



6- Brushless motor driver stage

Figure 10 shows the device application as a Brushless motor driver.

Operation frequency in this case is suggested to be up to 20kHz, however much higher frequency is possible for the device.

The device can be directly driven by any uP or DSP with 3.3V or 5V logic output signals. Short circuit protections are not embedded into the device and they have to be added externally.

B- AU-Convert*IR*: Estimated Power Losses

Based on the application conditions (i.e. VDCIN, fsw, L) it is possible to estimate the AUIRCS3040N overall power consumption.

Fig. 11 shows typical and maximum power losses of the power stage as a function of the output current lo in a typical application condition.

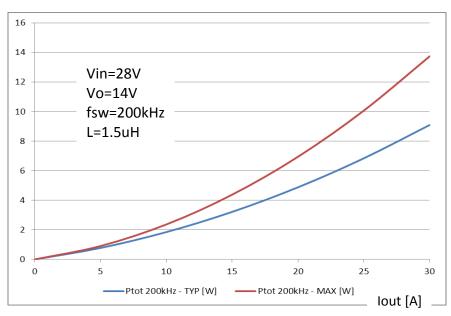


Fig. 11: Typical and Maximum AUIRC3040N power losses as a function of the DC-DC converter output current.

Fig. 12 shows the AUIRCS3040N power losses as a function of the switching frequency in the same application condition.

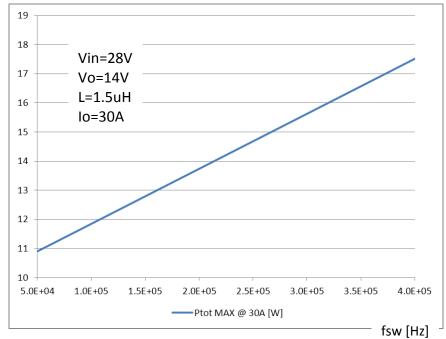
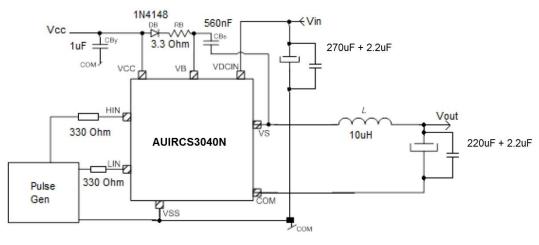


Fig. 12: Maximum power consumption of the power stage as a function of the switching irequency.

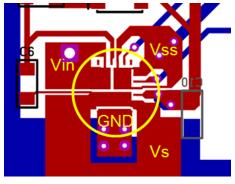
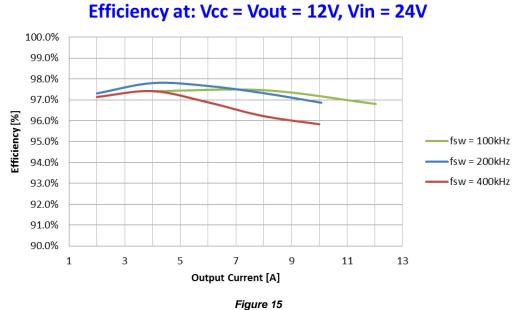

The above pictures can be exploited in the design of the case to ambient thermal resistance whose sizing has to be done considering that the maximum junction temperature for the AUIRCS3040N is 150C.

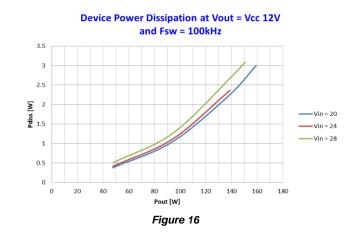
International

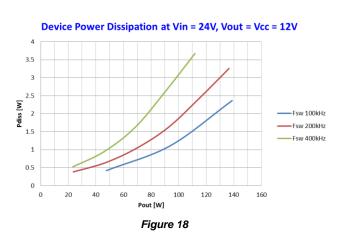
AUIRCS3040N

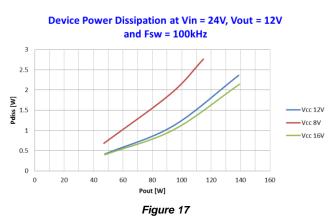
C- AU-Convert*IR*: Efficiency, Power Losses and Thermal Measurements

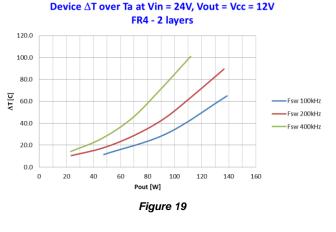
The device performances have been evaluated in a demoboard in buck configuration, the application schematic is the following:


Figure 14


The pcb copper traces under the device are shown in Fig. 14, the board is a standard FR4 – 2 copper layers standard thickness, the related thermal resistance junction – air measured in this condition was of 27.5C/W The converter operating conditions are the following: $V_{DCIN} = 20 - 24 - 28 V$ $V_{OUI} = 12V$ $V_{CC} = 8 - 12 - 16V$ Ta = 27CFsw = 100 - 200 - 400 kHz


Efficiency, device power losses and temperature increase are reported in the following page.



Qualification Information

Qualification Loval		Automotive (per AEC-Q100)				
Qualification Leve		Comments: This part number passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture Sensitivit	ty Level	PQFN 5x6 Punched TBD				
Machine Model		TBD				
		(per AEC-Q100-003)				
ESD	ESD Human Body Model		TBD (AEC-Q100-002)			
	Charged Device		TBD			
	Model	(per AEC-Q100-011) AEC-Q101-005				
IC Latch-UP Test		TBD (per AEC-Q100-004)				
RoHS Compliant		Yes				

† Qualification standards can be found at International Rectifier web site: http://www.irf.com

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

> WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245 Tel: (310) 252-7105