

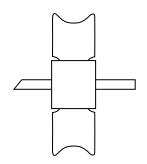
2-10 GHz Medium Power Gallium Arsenide FET

Technical Data

ATF-46171

Features

- High Output Power: $27.0 \text{ dBm Typical P}_{1 \text{ dB}}$ at 4 GHz
- High Gain at 1 dB
 Compression:
 11.0 dB Typical G 1 dB at 4 GHz
- **High Power Efficiency:** 38% Typical at 4 GHz
- Hermetic Metal-Ceramic Stripline Package


Description

The ATF-46171 is a gallium arsenide Schottky-barrier-gate field effect transistor designed for medium power, linear amplification in the 2 to 10 GHz frequency

range. This nominally 0.5 micron gate length GaAs FET is an interdigitated four-cell structure using airbridge interconnects between drain fingers. Total gate periphery is 1.25 millimeters. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

This device is suitable for applications in space, airborne, military ground and shipboard, and commercial environments. It is supplied in a hermetic high reliability package with low parasitic reactance and minimum thermal resistance.

70 mil Flange Package

Electrical Specifications, $T_A = 25$ °C

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
P _{1 dB}	Power Output @ 1 dB Gain Compression: $V_{DS} = 9 \text{ V}, I_{DS} = 125 \text{ mA}$	$f = 4.0 \mathrm{GHz}$ $f = 8.0 \mathrm{GHz}$	dBm	25.0	27.0 26.5	
$G_{1 dB}$	1 dB Compressed Gain: $V_{DS} = 9 \text{ V}, I_{DS} = 125 \text{mA}$	$f = 4.0 \mathrm{GHz}$ $f = 8.0 \mathrm{GHz}$	dB	10.0	11.0 6.0	
η_{add}	Efficiency @ P_{1dB} : $V_{DS} = 9 V$, $I_{DS} = 125 \text{ mA}$	f = 4.0 GHz	%		38	
\mathbf{g}_{m}	Transconductance: $V_{DS} = 2.5 \text{ V}$, $I_{DS} = 125 \text{ mA}$		mmho		100	
I_{DSS}	Saturated Drain Current: $V_{DS} = 2.5 \text{ V}, V_{GS} = 0 \text{ V}$		mA	200	330	450
$V_{\rm P}$	Pinch-off Voltage: $V_{DS} = 2.5 \text{ V}$, $I_{DS} = 5 \text{ mA}$		V	-5.4	-3.5	-2.0

ATF-46171 Absolute Maximum Ratings

			Absolute
Symbol	Parameter	Units	Maximum ^[1]
V_{DS}	Drain-Source Voltage	V	+14
V_{GS}	Gate-Source Voltage	V	-7
$V_{ m GD}$	Gate-Drain Voltage	V	-16
I_{DS}	Drain Current	mA	I_{DSS}
P_{T}	Power Dissipation [2,3]	W	2.0
T_{CH}	Channel Temperature	°C	175
T_{STG}	Storage Temperature	°C	-65 to +175

Thermal Resistance:	$\theta_{\rm jc} = 75$ °C/W; $T_{\rm CH} = 150$ °C				
Liquid Crystal Measurement:	1 μmSpotSize ^[4]				

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE\ TEMPERATURE} = 25$ °C.
- 3. Derate at 13 mW/°C for $T_{\rm CASE} > 25\,^{\circ}{\rm C}.$
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.

ATF-46171 Typical Performance, $T_A = 25$ °C

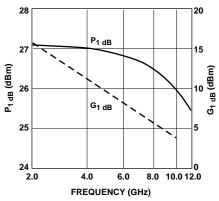


Figure 1. Power Output @ 1 dB Gain Compression and 1 dB Compressed Gain vs. Frequency. $V_{DS}=9V,\,I_{DS}=125\,\,\text{mA}.$

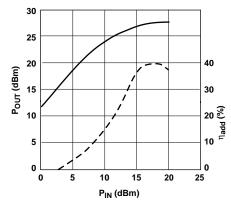
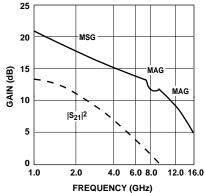
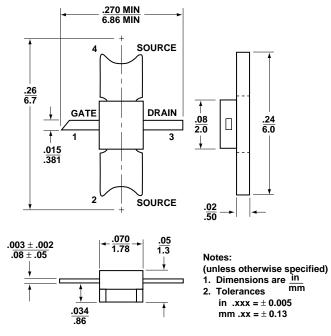



Figure 2. Output Power and Power Added Efficiency vs. Input Power. $V_{DS}=9~V,~I_{DS}=125~mA,~f=4.0~GHz.$


 $\label{eq:figure 3.} \begin{array}{l} Figure \ 3. \ Insertion \ Power \ Gain, \\ Maximum \ Available \ Gain \ and \\ Maximum \ Stable \ Gain \ vs. \ Frequency. \\ V_{DS} = 9 \ V, \ I_{DS} = 125 \ mA. \end{array}$

 $\textbf{Typical Scattering Parameters,} \ Common \ Emitter, \ Z_O = 50 \ \Omega, T_A = 25 \ C, V_{DS} = 9 \ V, I_{DS} = 125 \ mA$

Freq.	S ₁₁		\mathbf{S}_{21}		\mathbf{S}_{12}			\mathbf{S}_{22}		
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
1.0	.95	-54	12.7	4.30	138	-29.4	.034	63	.71	-22
2.0	.84	-106	11.0	3.56	99	-26.7	.046	30	.60	-44
3.0	.81	-145	8.9	2.80	67	-25.7	.052	13	.52	-71
4.0	.81	-172	6.6	2.14	40	-25.0	.056	2	.52	-101
5.0	.80	171	4.6	1.70	18	-24.4	.060	- 3	.58	-122
6.0	.79	159	3.1	1.44	1	-24.0	.063	-6	.63	-135
7.0	.78	141	2.2	1.29	-18	-23.5	.067	-10	.63	-147
8.0	.77	123	1.4	1.17	-36	-23.0	.071	-14	.64	-164
9.0	.79	108	-0.1	.99	-58	-22.5	.075	-17	.67	171
10.0	.79	100	-1.4	.85	-73	-22.0	.079	- 21	.74	152
11.0	.78	93	-2.5	.75	-86	-21.6	.083	- 24	.76	142
12.0	.76	85	-3.5	.67	-97	-20.6	.093	-32	.79	133
13.0	.73	67	-4.3	.61	-118	-19.5	.106	- 49	.80	119
14.0	.71	47	-5.8	.51	-138	-19.0	.112	-66	.83	98
15.0	.73	35	-7.5	.42	-157	-18.6	.118	-71	.85	83
16.0	.75	26	-8.9	.36	-157	-18.3	.121	-78	.90	72

A model for this device is available in the DEVICE MODELS section.

70 mil Flange Package

Package marking code is 461