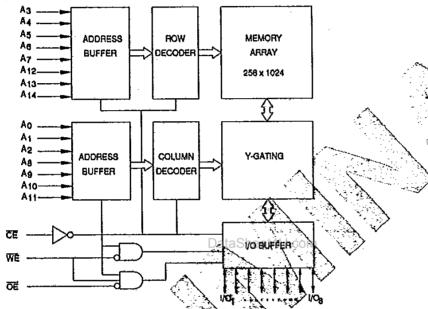
Features


- Fast Read Access Time 20ns
- Low Power

120mA Maximum (Active) 1mA Maximum (Standby)

500µA Maximum (2V Data Retention)

- Fully Static: No Clock Required
- Two Control Inputs (CE and OE)
- TTL Compatible Inputs and Outputs
- 5V ± 10% Supply
- 28 Lead Dual In-line and Surface Mount Packages
- JEDEC Pinout
- Commercial, Industrial and Military Temperature Ranges

Block Diagram

Description

The AT38256 is a high performance CMOS static Random Access Memory. Its 256K of memory is organized as 32768 words 578 bits. Manufactured with an advanced CMOS technology, the AT38256 offers access times down to 20ns with power dissipation of 660mW. When the AT38256 is desclected the standby current is just 1mA. In addition, the AT38256 offers a data retention capability of only 1mW power dissipation when operated on a 2V power supply.

The AT38256 powers down to the standby mode when deselected (\overline{CE} is HIGH). The I/O pins remain in the high impedance state unless the chip is selected (\overline{CE} is LOW), the outputs are enabled (\overline{OE} is LOW), and Write Enable is not active (\overline{WE} is HIGH).

The AT38256 is completely TTL compatible and requires a single 5V power supply. The device is fully static and does not need any clocks or refresh control signals for operation.

Pin Configurations

For .300 DIP/.600 DIP/.300 SOJ

Pin Name	Function
A0-A14	Addresses
I/O ₁ -I/O ₈	Outputs
ČE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
Vcc, GND	Power, Ground

A14 A12 A7 A6 A5 A4 A3 A2 A1 A0 VO1 VO2		1 2 3 4 5 6 7 8 9 10 11 12 13	28 27 26 25 24 23 22 21 20 19 18 17		VCC WE A13 A8 A9 A11 OE VO8 I/O7
VO3 VO3	3		17 18 15	Ë	1/08 1/05 1/04
GND	٦	19	 	٢	404

DataSheet4U.com

256K (32K x 8) CMOS A SRAM

Preliminary

DataShe

Device Operation

READ: When \overline{CE} is LOW, \overline{OE} is LOW, and \overline{WE} is HIGH, the 8 bits of data stored at the memory location determined by the address input (pins A₀ through A₁₄) are inserted on the data outputs (pins I/O₁ through I/O₈).

WRITE: When \overline{CE} is LOW and \overline{WE} is LOW, the 8 bits of data placed on the input pins (I/O₁ through I/O₈) are stored at the memory location determined by the address input (pins A₀ through A₁₄).

DATA RETENTION: When the chip is in standby mode, VCC can be reduced to as low as 2 volts without impacting data integrity. Power dissipation will be reduced to 1mW maximum.

Operating Modes

MODE\PIN	CE	ŌĒ	WE	I/O
Read	L	L	Н	Dour
Write	L	X ⁽¹⁾	L	D _{IN}
Standby (not selected)	H	X	X	High Z
Output Disable	L	Н	H	High Z

Note: 1. X can be L (Low) or H (High)

Absolute Maximum Ratings*

Temperature Under Bias55° C to 125° C
Storage Temperature65° C to 150° C
All Input Voltages with Respect to Ground0.3 $V^{(1)}$ to $V_{CC} + 0.3V$
All Output Voltages with Respect to Ground0.3V ⁽¹⁾ to V _{CC} +0.3V
Maximum Supply Voltage+7.0V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note

1. Minimum input voltages are -3.5V for pulse width less than 20 ns.

ATMEL CORP

29E D

D.C. and A.C. Operating Conditions

		AT38256
Operating	Commercial	0°C to 70°C
Temperature (Ambient)	Industrial	-40°C to 85°C
	Military	-55°C to 125°C
VCC Power Supply		5V ± 10%

D.C. and Operating Characteristics

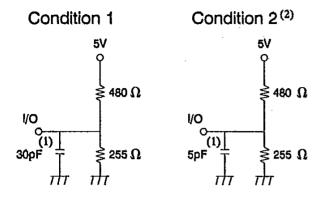
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ILI	Input Load Current	$V_{IN}=0$ to V_{CC}	-1.0	•	1.0	μA
ILO	Output Leakage	$\overline{CE} = 2.2V \text{ to VCC} + 0.3V \text{ or}$				
		$\overline{OE} = 2.2 \text{V to V}_{CC} + 0.3 \text{V or}$	-1.0		1.0	μA
		$\overline{WE} = -0.3V \text{ to } 0.8V$				•
		$V_{I/O} = 0$ to V_{CC}				
Isbi	Standby Current	$\overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.2\text{V},$				
	(CMOS)	$V_{IN} \ge (V_{CC}-0.2V)$ or $\le 0.2V$. 1	mA
I _{SB2}	Standby Current	$\overline{CE} = 2.2 \text{V to V}_{CC} + 0.3 \text{V},$			25	mA
	(TTL)	$V_{IN} = V_{IL} \text{ or } V_{IH}$				
Icc	VCC Active Current	$\overline{CE} = -0.3V$ to 0.8V,			120	mA
	(TTL)	Iour = 0mA, min cycle				
V _{IL} (1)	Input Low Voltage		-0.3 (2)		0.8	· V
V _{IH} ⁽¹⁾	Input High Voltage		2.2V		V _{CC} + 0.3	V
Vol	Output Low Voltage	$I_{OL} = 8.0 \text{mA}$		<u> </u>	0.4	V
Von	Output High Voltage	$I_{OH} = -4.0 \text{mA}$	2.4			V

Note:

- 1. These are voltages with respect to device GND.
- 2. $V_{IL} = -3.0V$ for pulse width less than 20ns.

AT38256

6-20


Pin Capacitance (f=1MHz TA = 25°C)(1)

Symbol	Parameter	Conditions	Min	Max	Unit	
Cour	Input/Output Capacitance	$V_{OUT} = 0V$		8	pF	
CIN	Input Capacitance	$V_{IN} = 0V$		8	pF	

Note:

1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Output Test Load

· · · · · · · · · · · · · · · · · · ·
Condition
$V_{IH} = 3.0V$
$V_{IL} = 0V$
$t_R = 5 ns$
$t_F = 5ns$
1.5V
See Figure 1

Figure 1

Notes:

1. Capacitance Load includes scope and jig

capacitances

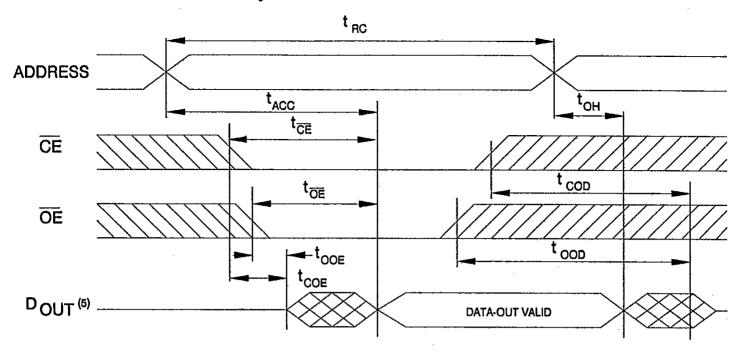
2. For tooe, tooe, tood, twoe, two

A.C. Characteristics for Read

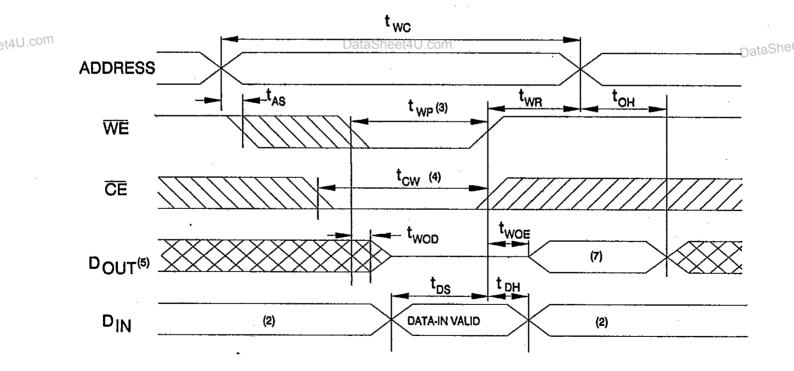
THOI OTIM	WALL TO THE STATE OF THE STATE				
		AT38256-20	AT38256-25	AT38256-35	
Symbol	Parameter	Min Max	Min Max	Min Max	Unit
trc	Read Cycle Time	20	25	35	ns
tACC	Address Access Time	20	25	35	ns
tCE	CE Access Time	20	25	35	ns
com tob	OE Access Time	DataSheet412.com	12	20	nspatas
ton	Output Hold Time	5	5	5	ns
tcoe (1)	CE Output Enable Time	5	5	5	ns
tooe (1)	OE Output Enable Time	0	0	0	ns
tcop (1)	CE Output Disable Time	15	15	1.5	ns
toop (1)	OE Output Disable Time	13	13	15	ns

A.C. Characteristics for Write

		AT38256-20	AT38256-25	AT38256-35	
Symbol	Parameter	Min Max	Min Max	Min Max	Unit
WC	Write Cycle Time	20	25	35	ns
AS	Address Setup Time	0	0	0	ns
WP	Write Pulse Width	15	20	30	nš
cw	CE Setup Time	15	20	30	ns
WR	Write Recovery Time	2	2	2	ns
DS	Data Setup Time	12	12	15	ns
DH	Data Hold Time	0	0	0	ns
WOE (1)	WE Output Enable Time	0	0	0	ns
twop (i)	WE Output Disable Time	13	13	15	ns

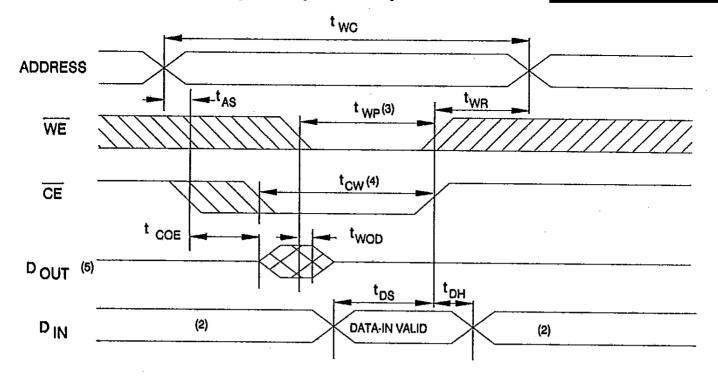

Note:

1. Tansition is measured by ± 500 mV from the normal state with the output test load circuit, condition 2. This parameter is sampled and is not 100% tested.



6-21

www.DataSheet4U.com A.C. Waveforms for Read Cycle (1)



A.C. Waveforms for Write Cycle 1 (WE Write) (6)

DataSheet4U.com www.DataSheet4U.com

Www.DataSheetAll.com A.C. Waveforms for Write Cycle 2 (CE Write) (6)

et4U.com

DataSheet4U.com

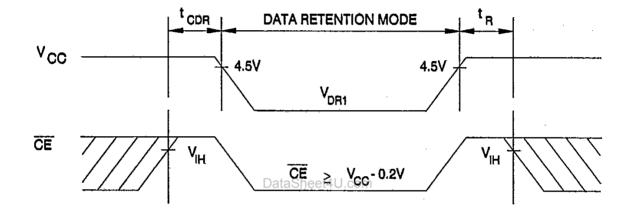
DataShe

Notes:

- 1. During a Read Cycle, WE should be HIGH.
- 2. During this period, I/O pins are in the output state.
- 3. A Write occurs when \(\overline{CE}\) and \(\overline{WE}\) are LOW at the same time.
 A Write begins at the latest transition among \(\overline{CE}\) going LOW, and \(\overline{WE}\) going LOW.
 A Write ends at the earliest transition among \(\overline{CE}\) going HIGH, and \(\overline{WE}\) going HIGH.
 twp is measured from the beginning of Write to the end of Write.
- 4. tow is measured from the later of CE going LOW or going HIGH to the end of Write.
- 5. If CE or OE is HIGH, or WE is LOW, DOUT goes to a high impedance state.
- 6. During a write cycle, $\overline{OE} = V_{IH}$ or V_{IL} .
- 7. Dour is equal to the Input Data written during the same cycle.

www.DataSheet4U.com Data Retention Characteristics

Symbol	Conditions	Min	Тур	Max	Unit
VDR1	$\overline{CE} \ge V_{CC} - 0.2V$		-		<u> </u>
		2.0	•	5.5	V
ICCDR1	$V_{CC} = 2.0V$				
	$\overline{CE} \ge V_{CC} - 0.2V$ and				
	$V_{IN} \ge (V_{CC} - 0.2V)$ or $\le 0.2V$	•		500	μΑ
ICCDR2	V _{CC} = 3.0V and	····			
<u>.</u>	$V_{IN} \ge (V_{CC} - 0.2V)$ or $\le 0.2V$			750	μA
tcdr		0			ns
t _R		trc(1)			ns
	VDR1 ICCDR1 ICCDR2	VDR1 $\overline{CE} \ge V_{CC} - 0.2V$ $I_{CCDR1} \qquad V_{CC} = 2.0V$ $\overline{CE} \ge V_{CC} - 0.2V \text{ and}$ $V_{IN} \ge (V_{CC} - 0.2V) \text{ or } \le 0.2V$ $I_{CCDR2} \qquad V_{CC} = 3.0V \text{ and}$ $V_{IN} \ge (V_{CC} - 0.2V) \text{ or } \le 0.2V$ t_{CDR}	$VDR1 \qquad \overline{CE} \ge V_{CC} - 0.2V$ 2.0 $I_{CCDR1} \qquad V_{CC} = 2.0V$ $\overline{CE} \ge V_{CC} - 0.2V \text{ and}$ $V_{IN} \ge (V_{CC} - 0.2V) \text{ or } \le 0.2V$ $I_{CCDR2} \qquad V_{CC} = 3.0V \text{ and}$ $V_{IN} \ge (V_{CC} - 0.2V) \text{ or } \le 0.2V$ $t_{CDR} \qquad 0$	VDR1 $\overline{CE} \ge V_{CC} - 0.2V$ 2.0 ICCDR1 $V_{CC} = 2.0V$ $\overline{CE} \ge V_{CC} - 0.2V$ and $V_{IN} \ge (V_{CC} - 0.2V)$ or $\le 0.2V$ ICCDR2 $V_{CC} = 3.0V$ and $V_{IN} \ge (V_{CC} - 0.2V)$ or $\le 0.2V$ tCDR 0	VDR1 $\overline{CE} \ge V_{CC} - 0.2V$ 2.0 5.5 ICCDR1 $V_{CC} = 2.0V$ $\overline{CE} \ge V_{CC} - 0.2V$ and $V_{IN} \ge (V_{CC} - 0.2V)$ or ≤ 0.2V 500 ICCDR2 $V_{CC} = 3.0V$ and $V_{IN} \ge (V_{CC} - 0.2V)$ or ≤ 0.2V 750 tCDR 0


Note:

1. tRC = Read Cycle Time

ATMEL CORP

29E D

Data Retention Waveform (CE Control)

et4U.com

Ordering information

tacc	loo	(mA)	Ordering Code	Paakaga	Operation Dance
(ns)	Active	Standby	Ordering Code Package		Operation Range
20	120	1.0	AT38256-20NC AT38256-20XC	28P3 28X	Commercial (0° to 70°C)
			AT38256-20NI AT38256-20XI	28P3 28X	Industrial (-40° to 85°C)
25	120	1.0	AT38256-25PC AT38256-25NC AT38256-25XC	28P6 28P3 28X	Commercial (0° to 70°C)
			AT38256-25PI AT38256-25NI AT38256-25XI	28P6 28P3 28X	Industrial (-40° to 85°C)
			AT38256-25BM AT38256-25DM	28B 28D6	Military (-55° to 125°C)
35	120	1.0	AT38256-35PC AT38256-35NC AT38256-35XC	28P6 28P3 28X	Commercial (0° to 70°C)
			AT38256-35PI AT38256-35NI AT38256-35XI	28P6 28P3 28X	Industrial (-40° to 85°C)
			AT38256-35BM AT38256-35DM	28B 28D6	Military (-55° to 125°C)

et4U.com

DataSheet4U.com

Package Type		
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)	
28B	28 Lead, 0.300* Wide, Ceramic Side Braze Dual Inline (Side Braze)	
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)	··
28P3	28 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)	
28X	28 Lead, 0.300" Wide, Plastic J-Leaded Small Outline (SOIC)	

