Key Features

AS 8446

Programmable PWM DC Motor Driver / Controller with µP Interface (Three Wire Interface)

Programmable PWM DC Motor Driver / Controller

- Programmable Functions and Parameters for Motor
- Current, Voltage and Speed Regulation
- Single Voltage Supply in the range
- Vbat = 6.0 V to 18 V (Vbat,max = 30 V)¹
- Total Power Efficiency up to 96 %
- Low RF Emission within the whole frequency range due to an integrated special EMC optimized driver
- Dynamically self-adjusting slew rate regulated switching technology
- Fully protected by programmable failure handling procedures via µP
- Fast Over Current and Over / Under Voltage Detection and Protection, Battery Voltage Monitoring
- External and On Chip Temperature Detection and Protection
- Motor Current and Speed Measurement with a shunt resistor and capability of trimming the chip for an external shunt value
- Programmable Parameters:
 - EMC compliant Driver Functions
 - Over Current, Over / Under Voltage Threshold Values
 - Motor Failure Threshold Levels
 - Motor Current Measurement Range
 - Trimming for the current measurement shunt
 - PWM Frequency, Charge Pump Monitor
- Charge Pump to control high side drivers
- Integrated 5 V Power Supply for external components (μ P, etc.)
- Standby and Wake-up capability
- Sleep / Wake-up Mode system controlled by the μP and the Wake-up Pin
- SOIC 28 Package

General Description

The AS8446 is a complete and fully protected PWM DC motor driver/controller, which can be implemented by interfacing a low cost 8-bit μ P and a high-side N-channel power FET switch.

It is an advanced PWM DC motor controller subsystem with an excellent EMC behavior targeted especially for high current automotive applications. The optimization of the EMC behavior of the entire module only by software changes makes it easier to implement it in harsh environments. The programmability of parameters and functions allows the adaptation of the AS8446 to a wide range of applications. So the system can act either as a motor current or motor speed or motor voltage regulator. Also a full diagnosis of motor failures and power FET failures, over temperature and over/under voltage can be formed by programmable failure handling procedures using the motor characteristic and the real time measured motor current, motor speed and battery voltage.

Applications

- Fan cooler
- Air conditioning
- Fuel pumps
- Water and oil pumps
- General purpose DC Motor Regulators

Typical Application Diagram

DATA SHEET

Functional Description

Overview

The AS8446 is a complex integrated circuit, which contains both low and high voltage circuitry to regulate PWM brush DC motors with an external n-channel power FET and an 8-bit μP . The regulation loop is a closed loop environment where a uP is connected to the device with a Three-Wire Interface. The AS8446 measures and delivers the motor current as an analog value to the μP . The μP uses a special algorithm to calculate the motor speed by considering the motor current as a function of time. This technique allows the system to act either as a motor current or a motor speed regulator. The AS8446 also monitors and delivers the battery voltage to the μP as an analog value and by leveraging this voltage-monitoring feature a motor voltage regulator could be implemented also. A full diagnosis of motor and power FET failures is performed automatically by the programmable failure handling functions after carefully analyzing the motor characteristics, real-time motor current, motor speed and battery voltage.

The dynamically self-adjusting slew rate regulated switching technology (patented) is one of the most important features of this ASSP in automotive applications. This technology enables two features of the PWM DC motor regulator, which were up till now impossible to realize:

- Excellent EMC behavior (very low RF emission in the whole frequency range)
- High power efficiency up to 96 % @ f_{PWM} = 20 kHz (fall / rise time down up to < 150 ns)

Most of the parameters (e.g. PWM frequency, slew rate, over current threshold, current measurement range, etc.) of the AS8446 can be programmed (setting up the internal registers) through the Three-Wire Interface, which makes the regulator a versatile and easily adaptable device to a wide range of regulation modes and motors.

The field programmability option of the slew rate regulation parameters makes it easier to comply with the system level EMC behavior (regulator board, motor, power cables, etc.) A bandgap is used as a reference for a Low Drop Voltage Regulator with a nominal output voltage of 5 V.

This regulator is capable to deliver a supply current of up to 40 mA. Higher current is possible with an external bipolar transistor.

The device is bundled with a set of software to handle the regulation loop, motor speed measurement and failure detection. A sleep/wake up system is integrated to bring the

AS8446 into a power save mode. It is controlled via the specified wake-up pin.

A short overview of the main features follows.

- programmable PWM DC motor current, speed or voltage regulator
- single voltage supply in the range Vbat = 6.0V to 18V (Vbat,max = 30 V)
- Low-Battery-Mode guarantees operation also when battery voltage is between 6.0V and 6.5V; In this mode the output driver is constantly on (100% PWM), Vpump-Vbat ≥ 4.0V.
- applicable directly to the automotive battery supply (burst, surge, load dump)
- closed loop regulation of the motor speed, motor current or motor voltage with a µP.
- high power efficiency of the whole regulator module (up to 96 % @ f_{PWM} = 20 kHz)
- low RF emission within the whole frequency range
- fully protected by programmable failure handling
 procedures (see below: Security Functions)
- fast over current and over / under voltage detection and protection
- motor current and motor speed measurement with only one shunt resistor (typ. measurement voltage at nominal motor current: 50 mV)
- on chip trimming capability of the external shunt resistor
- Sleep/wake up mode system controlled by the µP and the wake-up pin
- Three Wire Interface
- programming possibilities of the following regulator parameters inside of the AS8446:
 - PWM frequency (generated by μP, e.g. 20 kHz)
 - charge pump voltage monitoring and protection
 - slew rate control parameters (EMC behavior)
 - power FET Gate driver currents up to 500 mA
 - over current threshold level
 - over / under voltage threshold level
 - motor current measurement range and trimming of the external current measurement resistor
- programming possibilities of the following regulator parameters / functions via the μP
 - motor failure threshold levels (motor currents and voltages) for all motor failures: blocked motor, open wire, no load, shorted motor segments, etc.
 - failure handling procedures for all motor failures, over / under voltage and for over temperature (type of reaction and timing)
 - sleep mode criteria and sleep mode signal to the AS8446

- closed loop regulation timing with μP for speed, current and voltage control
- special features e.g. suppression of particular motor speeds, dynamical change of the over current threshold level, etc.

Security Functions

Extensive diagnosis of the DC motor and the power FET as well as failure handling procedures are programmable via a μ P.

- over current detection and protection
- no load detection of the motor
- open wire detection (motor or power switch)
- short circuit of the power switch detection
- blocked motor detection and protection
- short circuited motor segments detection and protection
- protection of the power FET and the AS8446, if the motor works in generator mode
- battery voltage monitoring and over / under voltage detection and protection
- two over temperature detection and protection modes
 - external temperature sensor
 - on chip temperature sensor

Item (Start up values)	AS 8446
Over Voltage Threshold	40.0 V
Under Voltage Threshold	2.5 V
Minimum Charge Pump Voltage	4.0 V
Over Current Threshold (Shunt	125 mV
Measurement voltage)	
Mode after Start up	sleep
	mode

Table 1 Start up values of the AS 8446

Pin Description

The AS8446 Motor Driver/Controller contains the driver/controller chip in a SOIC28 package

The complete PWM DC Motor Regulator board needs an additional μ P to close the regulation loop and control the whole regulator (dual package solution, free choice of the controlling μ P).

Pinout AS8446

Pin	Name	Туре	Note
1	CMN	HV AI	Current Measurement Input
			(negative side)
2	CMP	HV AI	Current Measurement Input
			(positive side)
3	VMO	HV AI	Motor Voltage Input
4	Vbat	S	Battery Voltage, Main Supply
5	TP	HV AI	Temperature Sensor Input
6	FAIL	LV DO	Error Status Output of
			AS8446
7	CS	LV DIPU	Chip Select, Enable Pin of
			Three Wire Interface
8	ADC	HV AO	Analog Measurement Output
			(multiplexed)
9	Wake-up	HV AIO	Wake-up Pin
10	n.c.		
11	Tst 1	LV DIPU	Test Pin 1 (1)
12	Tst 2	LV DO	Test Pin 2 (2)
13	DATAin	LV DIPD	Data Input of the Three-Wire
			Interface
14	DATAout	LV DO_T	Data Output of the Three-
			Wire Interface
15	Clk	LV DIPD	Clock of the Three-Wire
			Interface
16	PWM	LV DIPU	PWM Input (Control of the
			Power FET Driver)
17	Tst 3	LV DO	Test Pin 3 (2)
18	WD	LV DIPU	Watch Dog Input
19	RESET	LV DO	Reset Output (controlled by
			Watch Dog)
20	lref	LV AIO	Reference Current Pin
21	VDD	AI	VDD feedback input
22	VDDctrl	HV AO	VDD supply (5 V generated
			by the on chip voltage
			regulator)
23	CP1	HV AIO	Charge Pump Capacitor (Vbat
			side)
24	CP2	HV AIO	Charge Pump Capacitor
0.5	<i>.</i>		(Vpump side)
25	Vpump	AO	Charge Pump Buffer
00			
20		HV AU	
27	GND_P	5	Power Ground
28	VSS	8	Digital/Analog Ground

Table 2 PIN description of AS 8446

Note (1) Must be connected to VDD Note (2) Must be left open

Block Diagram

General Application Diagram

Figure 3 General Board Diagram of a complete PWM DC Motor Regulator

Remarks:

- a) The communication between the AS8446 and the controlling μP is realized via the Three-Wire Interface
- b) The communication of the whole motor regulator module with the environment can be realized in different ways:
 1. low voltage 5 V digital input using a digital μP port
 - 2. low voltage 5 V analog output using an analog ADC input of the μP
- c) The EMC parameters to optimize the EMC behavior of the whole regulator system can be stored in the program of the μP and transmitted to the AS8446 via Three-Wire Interface during start up of the system.
- d) The customer has free choice of the μ P.

Absolute Maximum Ratings (NON OPERATING)

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Operating Conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter	Symbol	Min	Max	Unit	Note		
Battery voltage	Vbat	-0.3	30	V	(1)		
Pumped voltage	Vpump	-0.3	44	V			
Low Power Supply Voltage	VDD	-0.3	7	V			
Input Pin Voltage (Low voltage pins)	Vin	-0.3	VDD+0.3	V			
Input Current (latchup immunity)	lscr	-100	100	mA	125°C		
ESD		-0,9	0,9	kV	Norm: MIL 883 E method 3015 (2)		
Total Power dissipation	Pvtot		500	mW			
Junction temperature	Tj		150	°C			
Storage temperature	Tstg	-55	150	°C			
Humidity		5	85	%	Non condensing		
Body temperature	TBody		240	°C	Norm: IPC/JEDEC J-STD 020 C		
Note (1): Load Dump, 500ms, according to	DIN40839		1	1			
Note (2): Except for Pin 1 (CMN) and Pin 25 (Vpump): ESD = +/- 0,5 kV							

Table 3 Absolute Maximum Ratings

Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Note
Battery voltage (normal	Vbat	6.5		18	V	(1)
operating-mode)						
Battery voltage (Low-Battery-	Vbat	6.0		6.5	V	Vpump-Vbat \geq 4.0V;
mode)						Vout = const. high; (2)
Pumped voltage	Vpump	Vbat + 4V	Vbat + 10V	Vbat + 14V	V	(2)
Low Voltage Power Supply	VDD	4.8		5.15	V	(2);(3)
Standby Current (power down)	I_pd1 _{Vbat}			(50)	μA	Tamb < 27 °C; (4)
Standby Current (power down)	I_pd2_{Vbat}			90	μA	Tamb < 125 °C;
						Vbat = 13.5V
Ambient temperature	Tamb	-40		125	°C	
Nata (1), Jump Ctarts Mast < 201/	1	- /h-				

Note (1): Jump Start: Vbat < 28V, 1 min, 1 pulse/h

Note (2): Low Battery mode guarantees operation when the battery voltage is below 6.5V; In this mode the output driver is constantly on (100% PWM), Vpump-Vbat \geq 4.0V at 250µA load on Pin OUT; the load current of VDD is limited to 2.5mA Note (3): Low Drop voltage regulator; 40 mA max. external load at VDD; higher current with external transistor possible Note (4): only as information. Will not be tested

Table 4 Operating Conditions

Thermal Characteristics

Parameter	Symbol	Min	Max	Unit	Note
Thermal resistance from junction to ambient	Rth,ja		76.2	°C/W	free air, single layer PCB

Table 5 Thermal Characteristic

Characteristics for Analog and Digital Inputs and Outputs

CMOS LV Digital Input

Pins: Clk, DATAin, CS, PWM, WD

Parameter	Symbol	Min	Max	Unit	Note
High Level Input Voltage	VIH	0.7 * VDD		V	
Low Level Input Voltage	VIL		0.3 * VDD	V	
Input Leakage Current	ILEAK	-1	1	μA	pull-up/down current for inputs with
					pull-up/down typ. 60µA

Table 6 CMOS Input parameters

CMOS LV Digital Output

Pins: RESET, DATAout, FAIL

Parameter	Symbol	Min	Max	Unit	Note
High Level Output Voltage	VOH	VDD -0.5		V	C _{LOAD} = 50 pF
Low Level Output Voltage	VOL		VSS +0.4	V	CLOAD = 50 pF

Table 7 CMOS Output parameters

Analog Signals Input / Output

Pins: Vpump, CP1, CP2, OUT, CMP, CMN, VMO, ADC, TP, Iref

Parameter, I	Pin Name	Pin type	Symbol	Min	Тур	Max	Unit	Note
Charge Pum	p Voltage, pin: Vpump	HV S	Vpump	Vbat + 6	Vbat	Vbat + 14	V	(1)
				Vbat + 4	+ 10			
Charge pump	p switched capacitor	HV AIO	VCP1	VSS		Vbat	V	
voltage, pin:	CP1							
Charge pump	p switched capacitor	HV AIO	Vcp2	VSS		Vbat + 14	V	
voltage, pin:	CP2							
HS driver so	urce current, pin: OUT	HV AO	lout_p	-500			mA	(2)
HS driver sin	nk current, pin: OUT	HV AO	lout_n			500	mA	(2)
Motor curren	nt measurement inputs,	HV AI	VCMP, VCMN	-1.5		Vbat	V	
Common mo	de range, pins: CMP, CMN							
Motor voltage	e input, pin: VMO	HV AI	V _{VMO}	-1.5		Vbat	V	
Analog meas	surement output voltage,	LV AO	VA_current	0		VDD	V	Multiplexed analog
pin: ADC								output (3)
External tem	iperature sensor input,	LV AI	V _{TP_th}	0	0.5	VDD	V	Threshold voltage:
threshold vol	ltage, pin: TP				VDD			VDD / 2
Reference cu	urrent generation voltage,	LV AI	Vref		1.0		V	(4)
pin: Iref								
Note (1): e	external capacitors CP1/2 = 100	nF, CP0 = 40	0 nF recomme	nded;		•		•
0	on chip Vpump monitoring and pr	otection: Vpu	ump_min = (Vba	at + 6 V) or (Vbat + 4	V), programm	able	
Note (2): ty	ypical rise/ fall time at the exterr	nal Power MC	SFET source:	0.2 µs to 0.5	ōμs,			
ir	ndependently programmable rise	and fall time	es, voltage rang	ge of the volt	age Vou	r = 0 Vpump		
Note (3): N	Multiplexed output (controlled by	register R15	<3:0> = ADC_0	CH, see secti	on Sum	mary of all pro	gramm	able
r	egisters (parameters, function	s) Full motor	current measu	rement rang	e corres	ponds to VADC =	= 4.0 V.	Multiplexed output
n	nust not be switched during or	peration!						
Note (4): re	egulated voltage Vref = 1.0 V, ex	kternal resist	or Rref = 22 k	2 must be co	nnected	to generate the	e 45 μA	
r	reference current. Use Pin Iref to connect Rref only.							

Table 8 Analog signal parameters

Wake-up system

Parameter	Pin type	Symbol	Min	Max	Unit	Note
Low Level Input Voltage	HV AIO	V _{IL}	-8	0.4 * Vbat	V	
High Level Input Voltage		ViH	0.6 * Vbat	Vbat	V	
Input Hysteresis		V _{HYS}	0.05 * Vbat	0.1 * Vbat	V	V _{IH} - V _{IL}

Table 9 Wake-up system signal parameter

Start up Behavior

Programming Capabilities

There are in total 18 registers to program the behavior of the AS8446 via the Three Wire Interface

Register No	Register Name	Meaning
R1<4:0>	SRon	EMC parameter 1, rising edge
R2<4:0>	SRon_stat	EMC parameter 2, rising edge
R3<2:0>	SRon_min	EMC parameter 3, rising edge
R4<4:0>	SRoff	EMC parameter 1, falling edge
R5<3:0>	Sroff_stat	EMC parameter 2, falling edge
R6<1:0>	Acu_on/off	EMC parameter, rising and falling edge, multiplying factor 1 or 2
R7<4:0>	AV_TRIMM	Motor current measurement amplification (steps of 1.25%)
R8<1:0>	AV_RANG_norm	Motor current measurement amplification, normal measurement channel (large
		steps)
R9<2:0>	OVERC_level	Over current threshold value
R10<1:0>	AV_RANG_over	Motor current measurement amplification, over current measurement channel
		(large steps)
R11<2:0>	VBAT_RANG	Range of supply voltage (max. battery voltage to measure)
R12<2:0>	OVER_VOLT	Over voltage threshold value
R13<2:0>	UNDER_VOLT	Under voltage threshold value
R14<0:0>	VPUMP_MIN	Min. pumped voltage (Vpump – Vbat)
R15<3:0>	ADC_CH	Selection of one of the analog channel to be connected to pin ADC (Analog-
		MUX)
R16<0:0>	WATCH_D	Switch on or off of watch dog function
R17<1:0>	SLEEP	Switch on or off of sleep mode
R18<7:0>	FAILURE_STAT	Failure status register
Full description	is of all registers see	below.

Table 10 Meaning of the AS 8446 registers.

Driver Programming (Slew Rate Regulation Parameters)

The Power FET driver is controlled in two different ways:

- 1. By the digital input PWM (output of the PWM generator of the μP) to realize the PWM duty cycle of the motor drive for regulating the motor current, speed or voltage in the closed loop.
- 2. By the dynamically self-adjusting slew rate regulated switching technology during the rising and falling edges of the motor voltage.

There are 6 registers to program the driving parameters in different time intervals of the rising and the falling edge of the motor voltage independently (definition of the time functions of the power FET driver gate currents in wide ranges):

Rising edge: registers R1<4:0>, R2<4:0>, R3<2:0> and R6<0>

Falling edge: registers R4<4:0>, R5<3:0> and R6<1>

These registers can be programmed via the Three-Wire Interface and thus the EMC behavior of the system (motor, power switches, cables) can be adapted and optimized to a particular application. Although the total rising and falling times are very short (t_{RISE} or t_{FALL} < 150 ns with driver currents to the power FET gate up to 500 mA), the RF emission (EMC) is very low. See also section **Summary of all programmable registers (parameters, functions)**.

A detailed description of these programming and EMC optimization will be given in the application manual of the AS8446.

Register / timing	Programma	ble range		Programm	nable range		Unit	Note
part of rising edge								
	R6<	0> = 1, Acu_o	on/off	R6<0	> = 0, Acu_o	n/off		
	min	max	step	min	max	step		
R1<4:0> = SRon	0	496	16	0	248	8	mA	R1 = 0, 1, 2, 31
(V _{motor} = 12.7 V)								
R1<4:0> = SRon	0	(1240) ¹	40	0	(620) ¹	20	mA	
(V _{motor} = 30.7 V)								
R2<3:0> = SRon_stat	1.0	32	1.0	0.5	16	0.5	mA	R2 = 0, 1, 2, 15
R3<2:0> = SRon_min	20	160	20	10	80	10	mA	R3 = 0, 1, 2, 7
(V _{motor} = -0.5 V)								
Note (1): The total dr	river current	out_on must be	limited to 50	0 mA (I _{out_o}	n < 500 mA)	in the rea	al applica	tion with the given
V _{motor} max =	V _{bat} by appre	opriate progra	mmina.					

Rising edge (switch on): Programmable Gate Drive Source Currents (13 bit)

Falling edge (switch off): Programmable Gate Drive Sink Currents (10 bit)

Programming of the motor current measurement unit and the over current detection unit

The motor current measurement unit operates with an external current measurement resistor R_{meas} in the high side motor line. The chip has two measurement amplification channels with separately programmable amplification factors:

- a) normal motor current measurement, channel 1
- $AV_{meas_norm} = V_{A_current} / V_{meas}$ with $V_{meas} = (V_{CMP} V_{CMN})$, analog output **A_current** (multiplexed to output **ADC**) and b) over current measurement with extended measurement range, channel 2
 - AV_{meas_overc} = V_{A_overc} / V_{meas}, analog output A_overc (multiplexed to output ADC).

In general all programming possibilities in table 14 can be used to build up a measurement system in the defined limits. The programming words are sent from the µP via the Three-Wire Interface to the AS8446 during start up of the system. The typical value of V_{meas_nom} = (V_{CMP} - V_{CMN})_{nom} is 50 mV, corresponding to 100% of the motor current.

In the whole system the analog outputs **A_current** or **A_overc** are used by the ADC of the μ P to regulate and control the system. There is only one exception: The over current detection and protection is realized directly by the over current measurement channel in order to act very fast in case of an over current situation e.g. short circuit of the motor.

Figure 8 shows the programming of the normal current measurement channel (red lines, output voltage VCUR) and the over current measurement channel with extended measurement range (blue lines, output voltage VCOVER). The three lines with the parameters AV_TRIMM = 70, 80, 90 indicate the trimming range of the external measurement resistor (<u>+</u> 12.5 % in steps of 1.25 %). The total range of the normal measurement amplification is AV_{meas_norm} = 70 to 360 corresponding to input voltages V_{meas_max} = 11 mV to 57 mV. The total range of the over current measurement amplification is AV_{meas_overc} = 17.5 to 90 corresponding to input voltages V_{meas_max} = 44 mV to 229 mV.

Figure 9 shows an example of the programming of the over current threshold level (generation of the over current signal VPOV, red lines): AV_{meas_overc} = 20 and OVERC_level = 0.5 V to 4.0 V in steps of 0.5 V. All programming possibilities are given in table 14 below.

Programming of the motor current measurement and over current detection unit

The motor current measurement unit transforms the differential voltage over the measurement resistor at the high side motor line ($V_{CMP} - V_{CMN}$) = Imotor * Rmeas to the ground related voltage $V_{A_current}$ (channel1) and to the ground related voltage V_{A_overc} (channel2) with a programmable amplification.

Definition and programming of the voltage amplifications AV_{meas_norm} and AV_{meas_overc} of the motor current measurement unit:

a) channel 1: $AV_{meas_norm} = V_{A_current} / (V_{CMP} - V_{CMN}) = AV_TRIMM * AV_RANGE_norm$

b) channel 2: AV_{meas_overc} = V_{A_overc} / (V_{CMP} - V_{CMN}) = AV_TRIMM * AV_RANGE_over

Register No	Register Name	Meaning						
R7<4:0>	AV_TRIMM	Voltage amplification factor1 of the current measurement unit in						
		small steps (trimming of the external current measurement resistor)						
		for the normal and over current analog measurement output						
		$R7 = 0 \rightarrow AV_TRIMM = 70$						
		$R7 = 1 \rightarrow AV_TRIMM = 71$						
		$R7 = 2 \rightarrow AV_TRIMM = 72$						
		$R7 = 10 \rightarrow AV_TRIMM = 80$ (default value)						
		$R7 = 11 \rightarrow AV_TRIMM = 81$						
		$R7 = 19 \rightarrow AV_TRIMM = 89$						
		$R7 = 20 \rightarrow AV_TRIMM = 90$						
		$R7 > 20 \rightarrow AV_TRIMM = 90$						
R8<1:0>	AV_RANGE	Voltage amplification factor2 of the normal analog measurement						
		output (A_current)						
		$R8 = 0 \rightarrow AV_RANGE = 1 \qquad (default value)$						
		$R8 = 1 \rightarrow AV_RANGE = 2$						
		$R8 = 2 \rightarrow AV_RANGE = 3$						
		$R8 = 3 \rightarrow AV_RANGE = 4$						
R9<2:0>	OVERC_level	Threshold value of the internal over current detection						
		Def.: Vocmax = 4/5 * VDD (typ. 4.0 V)						
		Vocstep = (4/5 * VDD) / 8 (typ. 0.5 V)						
		$R9 = 0 \rightarrow OVERC_level = Vocmax \qquad (typ. 4.0 V)$						
		$R9 = 1 \rightarrow OVERC_level = Vocmax - Vocstep (typ. 3.5 V)$						
		$R9 = 2 \rightarrow OVERC_level = Vocmax - 2^{*}Vocstep $ (typ. 3.0 V)						
		$R9 = 3 \rightarrow OVERC_level = Vocmax - 3^{Vocstep} $ (typ. 2.5 V)						
		$\frac{1}{2}$						
D10<1.0>		R9 = 7 → OVERC_level = Vocmax - 7 Vocstep (typ. 0.5 V)						
R10<1:0>	AV_RANGE_OVER	voltage amplification factor2 of the over current analog						
		$P10 = 0 \rightarrow AV PANCE ever = 1 * 1/4 (default value)$						
		$R10 = 1 \rightarrow AV RANGE over = 2 * 1/4$						
		$R10 = 2 \rightarrow AV RANGE over = 3 * 1/4$						
		$R10 = 3 \rightarrow AV RANGE over = 4 * 1/4$						
Remark 1. The	e maximum of the val	id analog output voltage of the outputs A current and A overc must be 4.0.V						
Remark 2. The	e total voltage amplifi	cation of the current measurement unit is determined by						
normal current	t analog output A .cu	called of the current measurement and is determined by $rept: \Delta V_{max} = \Delta V_{max} + \Delta V_{max}$						
(default value)	· 80)							
over current a	nalog output A overc	: AVmeas overc = VA overc / (VCMP - VCMN) = AV TRIMM * AV RANGE over						
(default value)	: 20)							
1.20.0010 10100	/							

Remark 3: The external current measurement voltage over the measurement resistor Rmeas (V_{CMP} - V_{CMN}) = Imotor * Rmeas where the internal over current detection is switched on can be determined by: (V_{CMP} - V_{CMN})_{overc} * AV_TRIMM * AV_RANGE_over = OVERC_level (V_{CMP} - V_{CMN})_{overc} = OVERC_level / (AV_TRIMM * AV_RANGE_over) example: OVERC_level = 4 V, AV_TRIMM = 80, AV_RANGE_over = 1/4 → (V_{CMP} - V_{CMN})_{overc} = 200 mV Remark 4: Example of the programming of the current measurement / over current detection unit: Step1: Definition of the nominal voltage drop over the external current measurement resistor Rmeas $(V_{CMP} - V_{CMN})_{nom} = Imotor_{nom} * Rmeas e.g. (V_{CMP} - V_{CMN})_{nom} = 50 A * 1 m\Omega = 50 mV$ Step2: Definition of the over current threshold value of (VCMP - VCMN) e.g. (VCMP - VCMN)overc = 100 mV Step3: Determination of the voltage amplification of the normal current measurement channel so that the nominal output voltage V_{A current nom} = 4.0 V e.g. AV_TRIMM * AV_RANGE = 80 * 1 \rightarrow V_{A_current-nom} = 50 mV * 80 = 4.0 V Step4: Determination of the voltage amplification of the over current measurement e.g. AV_TRIMM * AV_RANGE_over = 80 * $1/4 \rightarrow V_{A_overc_max}$ = 100mV * 20 = 2.0 V \leq 4.0 V Step5: Determination of the programming of the internal over current threshold value (OVERC_level) With the formula: (VCMP - VCMN)overc = OVERC_level / (AV_TRIMM * AV_RANGE_over) and all values above: OVERC_level = (V_{CMP} - V_{CMN})_{overc} * (AV_TRIMM * AV_RANGE_over) = 100 mV * 80 *1/4 = 2.0 V → R9 = 4 Remark 5: The amplifications AV_{meas_norm} and AV_{meas_overc} of the current measurement unit can be adapted to the external measurement resistor Rmeas by the programming word AV_TRIMM in steps of 1.25 % in the range of <u>+</u> 12.5% (trimming of R_{meas}).

Table 13 Programming of the motor current measurement an over current detection unit

Summary of all programmable registers (parameters, functions)

Register / address	Internal name		Meaning							
Ra <b1:b0> me All registers of 1. The start u 2. The start u 3. The start u by the enab</b1:b0>	eans: address = a, m can be write and re p reset of all regist p reset of the regis p reset of the regis ble signal of the cha	ost signifi ad by the ers unles ter R17 is ter R18 (f arge pum	icant data Three-W s the R17 done by ailure reg p VPok.	bit = b1, fire Interf and the the nPO gister) is	least sigr ace (write R18 is de Rraw (co done wit	nificant da e priority one by th ntrolled k h a delay	ta bit = b has the e signal by the vol after the	0 Three-Wi nPOR (cc Itage VDI e nPOR, t	re Interfa ontrolled Draw) <u>onl</u> his delay	ce). by the VDD). <u>y</u> . is generated
P	Programming of th	ne driver	output	currents	(indepe	ndent fo	r switch	on and	switch c	off)
R0<7:0>		Not used	ł							
R1<4:0>	SRon	Slew rate	e regulati	on progra	mming, or	n switch,	or positiv		ltogo	
		SPon - (vvmouepe n 1 2			current	or positive		naye	
		I _{SRon} = V	v _{mo} * Acu	_on * SRo	on * K1	Vv	_{MO} > 0			
		Register write by: Three Wire Interface Register read by: Three Wire Interface and FET driver unit								
									start up volues	
D0 (4:0)	OD a stat	-	-	-	1	1	Ĩ	1	1	Start up values
R2<4:0>	SRON_Stat	Siew rate	e regulatio	on progra	mming, or	h switch,				
		SRon st	at = 0.1	2 31	:111					
			$= 20 \mu \Delta$	* (SRon	ctat + 1) *	Acu on				
		"SRON_stat	- 2.0 μΑ		3(4(' ')	Acu_on				
		Register	write by:	Three Wi	re Interfa	ce				
		Register	read by:	Three Wi	re Interfac	e and FE	T driver u	ınit		
		-	-	-	d4	d3	d2	d1	d0	
		-	-	-	1	1	1	1	1	start up values
R3<2:0>	SRon_min	Slew rate	e regulati	on progra	mming, oi	n switch,		1		
		voltage \	√vмo depe	endent dri	ver outpu	t current f	or negativ	ve V _{VMO} v	oltage	
		SRon_min = 0, 1, 2,7								
		I _{SRon_min}	= V _{Vmo} *	(SRon_m	in + 1) *A	cu_on * K	2 Vvмo	0 < 0		
		Register	write by:	Three Wi	re Interfa	ce				
		Register	read by:	Three Wi	re Interfac	e and FE	T driver u	ınit		
		-	-	-	-	-	d2	d1	d0	
		-	-	-	-	-	1	1	1	start up values

R4<4:0> SRoff Slew rate regulation programming, off switch,									
	voltage V	Vvмo depe	endent dri	ver input	current fo	r positive	Vvmo volt	age	
	SRoff =	0, 1, 2,	31	•				0	
	I _{SRoff} = V	vmo * Acu	_off * SRo	off * K3					
	Register	write by:	Three Wi	re Interfa	ce				
	Register read by: Three Wire Interface and FET driver unit								
	-	-	-	d4	d3	d2	d1	d0	
	-	-	-	1	1	1	1	1	start up values
SRoff_stat	Slew rate	e regulati	on progra	mming, of	ff switch,				
	constant								
	SRoff_st								
I _{SRoff_stat} = 20 μA * (SRoff_stat + 1)									
	Register	egister write by: Three Wire Interface							
Register read by: Three Wire Interface and FET driver unit								-	
	-	-	-	-	d3	d2	d1	d0	
	-	-	-	-	1	1	1	1	start up values
Acu_on Acu_off	Current	amplificat	ion of the	driver for	r on and o	ff switch			
	R6<0> =	$0 \rightarrow Acu$	_on = (lo	ut / lin) _{on}	= 256				
	R6<0> =	1 → Acu	_on = (lo	ut / lin) _{on}	= 512				
	R6<1> =								
	R6<1> =								
	Register	write by:	Three Wi	re Interfa	ce				
	Register	read by:	Three Wi	re Interfac	ce and FE	T driver u	unit		
	-	-	-	-	-	-	Acu_off	Acu_on	-
	-	-	-	-	-	-	0	0	start up values
	.1								
	6.41							• • • • • •	
Programming o	f the mo	tor curre	ent meas	uremen	t and ov	er curre	nt detect	ion unit	
Programming o	f the mo nit transfo	tor curre	ent meas lifferential	voltage o	t and over over the m	er curren neasurem	nt detect	t ion unit	
Programming o rrent measurement u = Imotor * Rmeas to	f the mo nit transfo the grour	tor curre orms the d	ent meas lifferential voltages	uremen voltage o Va_current (t and over over the m (channel1	er curren neasurem : normal (nt detect ent resiste current me	c ion unit or easureme	nt channel) and
-	SRoff SRoff_stat Acu_on Acu_off	SRoff Slew rat voltage v	SRoffSlew rate regulation voltage VvMo dependent SRoff = 0, 1, 2, IsRoff = VvMo * Acu Register write by: Register read by: $-$ 	SRoffSlew rate regulation progravel voltage VVMO dependent dri SRoff = 0, 1, 2, 31 ISRoff = 0, 1, 2, 31 ISRoff = VVmo * Acu_off * SRot Register read by: Three Wit Register read by: Three Wit I SRoff_statSRoff_statSlew rate regulation progra constant driver input current SRoff_stat = 0, 1, 2, 15 ISRoff_stat = 20 μ A * (SRoff_stat Register read by: Three Wit Register read by: Three Wit RefAcu_on Acu_offCurrent amplification of the R6<0> = 0 \Rightarrow Acu_on = (lo R6<1> = 1 \Rightarrow Acu_off = (lo Register write by: Three Wit Register read by: Three Wit Register rea	SRoffSlew rate regulation programming, o voltage V_{VMO} dependent driver input SRoff = 0, 1, 2, 31 $I_{SRoff} = V_{Vmo} * Acu_off * SRoff * K3$ Register write by: Three Wire Interface Register read by: Three Wire Interface $ d4$ $ d4$ $ d4$ $ -$	SRoffSlew rate regulation programming, off switch, voltage V_{VMO} dependent driver input current fo SRoff = 0, 1, 2, 31 $I_{SRoff} = V_{Vmo} * Acu_off * SRoff * K3$ Register write by: Three Wire Interface Register read by: Three Wire Interface and FE<	SRoffSlew rate regulation programming, off switch, voltage Vvmo dependent driver input current for positive SRoff = 0, 1, 2, 31 $I_{SRoff} = V_{Vmo} * Acu_off * SRoff * K3$ Register write by: Three Wire Interface Register read by: Three Wire Interface and FET driver u	SRoffSlew rate regulation programming, off switch, voltage VvMo dependent driver input current for positive VvMo volt SRoff = 0, 1, 2, 31 IsRoff = Vvmo * Acu_off * SRoff * K3Register write by: Three Wire Interface Register read by: Three Wire Interface and FET driver unit0403041111SRoff_statSlew rate regulation programming, off switch, constant driver input current SRoff_stat = 0, 1, 2, 15 IsRoff_stat = 20 μ A * (SRoff_stat + 1) * Acu_offRegister write by: Three Wire Interface Register read by: Three Wire Interface and FET driver unit1Acu_on Acu_offCurrent amplification of the driver for on and off switch R6<0> = 0 \rightarrow Acu_on = (lout / lin)_on = 256 R6<0> = 1 \rightarrow Acu_off = (lout / lin)_off = 256 R6<1> = 1 \rightarrow Acu_off = (lout / lin)_off = 512Register write by: Three Wire Interface Register read by: Three Wire Interface 	SRoffSlew rate regulation programming, off switch, voltage VvMo dependent driver input current for positive VvMo voltage SRoff = 0, 1, 2, 31 IsRoff = Vvmo * Acu_off * SRoff * K3Register write by: Three Wire Interface Register read by: Three Wire Interface and FET driver unit $ -$ <

Voltage amplification of the normal current measurement channel:

1. $AV_{meas_norm} = V_{A_current} / (V_{CMP} - V_{CMN}) = AV_TRIMM * AV_RANGE_norm$

Voltage amplification of the normal current measurement channel

2. $AV_{meas_overc} = V_{A_overc} / (V_{CMP} - V_{CMN}) = AV_TRIMM * AV_RANGE_over$

R7<1.0>	AV TRIMM	R7 = 0		IMM = 70						1
1(1 \ 4.02		D7 = 1		1101101 - 70 110101 - 71						
		$R_{I} = 1$								
		R/ - Z		1101101 - 12						
) (1-6		`			
		$R_{1} = 10$	$\rightarrow AV_{II}$) (det	ault value	:)			
		R/=11	$\rightarrow AV_{II}$	X = 0	I					
		:	N N / T							
		R7 = 19								
		R7 = 20	$R7 = 20 \rightarrow AV_TRIMM = 90$							
		$R7 > 20 \rightarrow AV_TRIMM = 90$ Register write by: Three-Wire Interface								
		Register	Register read by: Three-Wire Interface and current measurement unit							-
		-	-	-	d4	d3	d2	d1	d0	
		-	-	-	0	1	0	1	0	start up values
R8<1:0>	AV_RANGE_norm	R8 = 0	\rightarrow AV_RA	NGE-nor	m = 1	(default v	alue)			
		R8 = 1	\rightarrow AV_RA	NGE-nor	m = 2					
		R8 = 2	\rightarrow AV_RA	NGE-nor	m = 3					
		R8 = 3	\rightarrow AV_RA	NGE-nor	m = 4					
		Register	egister write by: Three-Wire Interface							
		Register	Register read by: Three-Wire Interface and current measurement unit							
		-	-	-	-	-	-	d1	d0	
		-	-	-	-	-	-	0	0	start up values
R9<2:0>	OVERC_level	Threshold value of the internal over current detection								
		Def.: Vo	cmax = 4/	5 * VDD			(t	yp. 4.0 V)		
		Vocs	tep = (4/5	* VDD) /	8		(t	yp. 0.5 V)		
		R9 = 0 -	→ OVERC	level = \	/ocmax		(t	yp. 4.0 V)		
		R9 = 1 -	→ OVERC	level = \	/ocmax –	Vocstep	(t	vp. 3.5 V)		
		R9 = 2 -	→ OVERC	level = \	/ocmax -	2*Vocster	o (t	vp. 3.0 V)		
		R9 = 3 -	→ OVERC	level = \	/ocmax -	3*Vocster	o (t	vp. 2.5 V)		
		:					- (-) - · - · · ·)		
		R9 = 7 -	→ OVFRC	level = \	/ocmax -	7*Vocster	o (t	vp. 0.5 V)		
		Register	write by:	Three-Wi	re Interfa	ce	- (-) - · · · · ·)		
		Register	read by:	Three-Wi	re Interfac	ce and cu	rrent mea	surement	unit	
		-		_	_	_	d2	d1	d0	-
			_	_	-	_	0	1	1	start up values
R10<1.0>	AV RANGE over	Voltage	amplificat	ion factor	2 of the o		v nt analogi		' rement	
1110 \$1.02					2 01 116 0		nt analogi	ie measu	ement	
					or – 1 * 1	// (do	fault valu	c)		
		$P_{10} = 0$		ANGE_0V	r = 0 * 1	4 (ue	iault valu	e)		
		$R_{10} = 1$		ANGE_0V	$c_1 - 2 = 1/$	4				
		$R_{10} = 2$			er – J 1/	4				
		RIU - J		ANGE_0V	el – 4 I/ rolatorfo	4				
		Register	write by:	Three M			rrant ma-	ouromost	unit	
		Register	read by:	intee-wi		se and cu	nent mea	Surement	unn	4
		-	-	-	-	-	-		au 0	start up volues
		-	-	-	-	-	-	0	0	start up values

	Programming o	of the ba	ttery vol	tage mo	nitor and	d over /	under vo	oltage de	etection	
R11<2:0>	VBAT_RANGE	R11= 0 ·	→ VBAT_	RANGE =	$5 \rightarrow Vb$	at-max =	20 V			
		R11= 1 ·	\rightarrow VBAT_	RANGE =	$8 \rightarrow Vb$	at-max =	32 V			
		R11= 2 ·	\rightarrow VBAT_	RANGE =	$10 \rightarrow Vb$	at-max =	40 V			
		R11= 3 ·	$11= 3 \rightarrow VBAT_RANGE = 15 \rightarrow Vbat-max = 60 V$							
		R11= 4 ·	R11= 4 \rightarrow VBAT_RANGE = 20 \rightarrow Vbat-max = 80 V							
		Register	Register write by: Three-Wire Interface							
		Register	read by:	Three-Wi	re Interfac	e and vo	ltage mon	itor		
		-	-	-	-	-	d2	d1	d0	
		-	-	-	-	-	0	1	0	start up values
R12<2:0>	OVER_VOLT	R11= 0 ·	\rightarrow VBAT_	RANGE =	$5 \rightarrow Vb$	at-max =	20 V			
		R11= 1 ·	R11= 1 \rightarrow VBAT_RANGE = 8 \rightarrow Vbat-max = 32 V							
	R11= 2 \rightarrow VBAT_RANGE = 10 \rightarrow Vbat-max = 40 V									
		R11= 3 \rightarrow VBAT_RANGE = 15 \rightarrow Vbat-max = 60 V								
		R11= 4 ·	→ VBAT_	RANGE =	20 → Vb	at-max =	80 V			
		Register	write by:	Three-Wi	re Interfa	ce				
		Register	read by:	Three-Wi	re Interfac	e and vol	ltage mon	itor		
		-	-	-	-	-	d2	d1	d0	
		-	-	-	-	-	1	1	1	start up values
R13<2:0>	UNDER_VOLT	Step of l	JNDER_V	OLT = 0.2	25 V * VB	AT_RANG	θE			
		UNDER_	VOLT = ().25 V * V	BAT_RAN	IGE * (R1	3 + 1)			
		Start up	value: UN	IDER_VO	LT = 7.5 \	/				
		Register write by: Three-Wire Interface								
		Register read by: Three-Wire Interface and voltage monitor								
		-	-	-	-	-	d2	d1	d0]
		-	-	-	-	-	0	0	0	start up values

Programming of the charge pump voltages										
R14<0:0>	VPUMP_MIN	R14 = 0	\rightarrow VPUM	P_MIN =	4.0 V					
		R14 = 1	R14 = 1 \rightarrow VPUMP_MIN = 6.0 V							
		Register write by: Three-Wire Interface Register read by: Three-Wire Interface and charge pump								
		-	-	-	-	-	-	-	d0	
		-	-	-	-	-	-	-	0	start up values

			Program	mming c	of the ana	alog MUX	(
R15<3:0>	ADC_CH	R15 = 0	→ A_cui	rrent	(normal	current m	easureme	nt channe	el)	
		R15 = 1	\rightarrow A_ove	erc	(over current measurement channel)					
		R15 = 2	\rightarrow Vbat_	mon	(Vbat me					
		R15 = 3	R15 = 3 → TP			(temperature measurement channel)				
		The foll	owing sig	nals can	be given a	at the ADC	coutput fo	or chip te	st	
		purpose	S:		-		-			
		R15 = 4	→ Vtem	p	(tempera	ature volta	ge of the	internal s	sensor)	
		R15 = 5	→ PVov	er	(Over vo	Itage Vba	t signal)			
		R15 = 6	\rightarrow PVun	der	(Under v	oltage Vb	at signal)			
		R15 = 7	→ PTove	er_in	Over te	mperature	signal, ir	iternal)		
		R15 = 8	→ PTove	er_ex	Over te	mperature	signal, e	xternal)		
					,	•		,		
		Registe	Register write by: Three-Wire Interface							
		Registe	Register read by: Three-Wire Interface and analog MUX							
		-	-	-	-	d3	d2	d1	d0	-
		-	-	-	-	0	0	0	0	start up values
Note: Don	ot switch the anal	og MUX dui	ring opera	ation!						
			Progr	amming	of the wa	tch dog				
R16<0:0>	WATCH_D	R16 = 0	→ watch	i dog is o	ff (watch o	dog not us	sed)			
		R16 =1	→ watch	dog is or	n (watch d	og used)				
		Perieter write by: Three Wire Interface								
		Registe	Register read by: Three-Wire Interface and watch dog							
		Registe							40	_
		-	-	-	-	-	-	-	0	start up values
		-	-	-	-	-	-	-	0	start up values

	Programming of the sleep mode									
R17<0:0>	SLEEP	R17 = 0 - R17 = 1 - Register r Wake-up	R17 = 0 → no sleep mode (normal operation) R17 = 1 → sleep mode (power down) Register reset to low by the Wake-up Interface. Wake-up = low (high / low edge) → R17<0:0> set to low							
		-	-	-	-	-	-	-	d0	
		-	-	-	-	-	-	-	1	
										start up values

	Failure Regi	sters and T	est Mode Re	egister (on o	chip temper	ature det	ection)	
R18<7:0>	FAILURE_STAT	R18<0> → F	Poverc	(bit 0 contains	the over curre	nt status)		
		R18<1> → F	PVover	(bit 1 contains				
		R18<2> → F	PVunder	(bit 2 contains	Vbat)			
		R18<3> → F	PTover_in	(bit 3 contains	the on chip ov	er temperatu	re status)	
		R18<4> → F	PTover_ex	(bit 4 contains	the external ov	ver temperat	ure status)	
		R18<5> → \	/DDover	(bit 5 contains	the over voltag	ge status of V	/DD, 5 V)	
		R18<6> → \	/DDunder	(bit 6 contains	the under volta	age status of	VDD, 5 V)	
		R18<7> = 0	→ band ga on chip	ap Voltage is t over tempera	the reference ture detection	voltage for n (normal fi	the unction)	
		R18<7> = 1	→ the volt	age at pin TP	is the referei	nce voltage	for	
		Registers R ²						
		Register R18	3<6:0> re	ad by Three-V aic	Nire Interface	e and corres	sponding	
		Register R18	3<7> w	rite by Three-	Wire Interface	e only		
		Register R18						
		analog switch						
TEMP_TEST	VDDunder	VDDover	PTover_ex	PTover_in	PVunder	PVover	Poverc	
0	0	0	0	0	0	0	0	start up values

Table 14

Summary of the programming capabilities of the AS 8446

Three -Wire µP-Interface

Data transfer from the microprocessor or PC to the AS8446 and vice versa is accomplished by means of Three-Wire Interface. The Three-Wire Interface of the AS8446 acts generally in slave mode. The master in the whole regulator board is either the controlling µP (normal regulator module in volume production) or a PC (development or field programming mode e.g. to realize the EMC optimization).

All registers (see section **Summary of all programmable registers (parameters, functions)**) can be written and read by the Three-Wire Interface.

Pin DATAout is high ohmic if the Three-Wire Interface chip select signal CS is not active (high). During an over voltage situation the write access to the Three-Wire Interface is blocked.

Physical Interface

Supported modes, and bit order are shown in Figure 10 and Figure 11.

The DATAin signal must be valid with the rising edge of the clock Clk, the DATAout is valid with the falling edge of the clock Clk.

The clock frequency should be as low as useful in the particular application. It is recommended not to use a clock frequency f_{clk} higher than 10 MHz.

The MSB is always transmitted / received first.

Communication Protocol

The Three-Wire Interface -interface acts as communication interface between the µP or PC and the registers within the AS8446. For efficient register access, a protocol has been defined with the following features:

Purely master-slave protocol with μP or PC as master

Two different frames: One read and one write frame

Frame is delimited by the status of CS (CS = frame delimiter or chip select signal), one frame consists of 16 Bits (header byte and data byte).

Special remark for interface lock condition: If a frame does not consist of 16 bits (can be caused e.g. by spiking, noise or interrupt), the interface will be locked. In order to leave this lock situation CS = high and one or several clock pulses must be set. Setting CS = high alone will not be sufficient.

Referring to Figure 10 and Figure 11, a Clk pulse with CS = high must be set in order to reset the interface and to ensure a safe communication.

Data Fields

HEADER H

MSB			ŀ		LSB		
R/W	-	-	A4	A3	A2	A1	A0

A4, A3, A2, A1, A0: Address A (Register address to read or to write)

R/W = MSB, A0 = LSB.

R/W: Read or Write

R/W =0: Read (Data are read/transmitted from the AS8446 via the DATAout pin.)

R/W =1: Write (Data are write/transmitted from the μ P or PC to the AS8446 via the DATAin pin.)

DATA D							
MSB			[)			LSB
D7	D6	D5	D4	D3	D2	D1	D0

D7...D0: Data (Denotes the data of the register addressed. D7=MSB, D0=LSB)

Note:

To ensure a correct register setting the use of µP based verification (Write, Read-Back, Verify) is mandatory.

Electrical Parameters and Functionality of the Subblocks

All parameters are valid in the temperature range Tamb = -40 °C to +125 °C if not otherwise mentioned.

5V Regulator

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	NOTE
Regulated Output Voltage	VDD	4.8	5.0	5.15	V	(1)
Load Current at VDD	IOUT			40	mA	(2), (3), (4)
Under voltage detection threshold	VDDunder	4.3			V	
Over voltage detection threshold	VDDover			5.6	V	
Note (1): For use of the internal voltage r	egulator the Pir	is V _{DD} and	VDDctrl	must be o	connect	ed. An external
capacitor of 4.7µF to 10µF need	ds to be connec	ted at the	VDD pi	n.		
Note (2): Valid for Vbat \ge 6.5V; for 6.0V \le Vbat < 6.5V the load current is limited to 2.5mA.						
Note (3): There is also the possibility to use an external regulator (Bipolar transistor). It is up to the user to select						

the suitable external components.

Note (4):	The max. power dissipation on chip must be respected
	(estimation: Pchip_vdd = ((Vbatmax - 5 V) * lvdd_ex + Vbat * lvdd_in) < 400 mW)

Design Example

Figure 12: Design example for operation of external voltage regulator

Power on Reset

Figure 13 Transfer characteristic of PORn circuitry

 $T_1...$ Philips NPN medium power transistor BCX 56 $C_{VDD}...$ Panasonic FK-series $100\mu F$ / 16V

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	NOTE
Off threshold for Reset generation	Voff_PORS	2.1	3.5	4.5	V	Ramp up
Hysteresis of Reset signal	Hyst_PORS	0.1		0.8	V	

Sleep / wake up system

The whole IC is put in sleep mode (power down mode) by the control signal SLEEP set via the Three Wire Interface (SLEEP = high, content register R17).

The whole start up and sleep mode behavior is shown in figure 4.

In sleep mode the following actions are done:

- the power FET driver output OUT is hold at low (VSS)
 - the oscillator, the charge pump and all other blocks are put in a high ohmic status
 - the 5 V regulator is switched off (no external supply at pin VDD, this way all devices on the motor regulator board supplied
 - by VDD, e.g. the μP and the external temperature sensor, are powered down)
- a raw internal 5 V supply V_{DDraw} is generated to supply the wake up system and the whole logic block

- the total current consumption of the IC is less than 90 μ A

During sleep mode the Wake-up Pin must be at high level (V_{BAT}).

Applying a "low"-pulse on the wake-up pin will wake up the IC.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	NOTE
Current Consumption in Sleep Mode	lvbat_pd			90	μA	R17<0> = 1 (SLEEP =
(Tamb = -40 °C to 125 °C)						high)
Current Consumption in Sleep Mode	lvbat_pd27			(50)	μA	
(Tamb = -40 °C to 27 °C) (1)						
Note (1): only as information. Will not be	ested.					•

Reference Current Generator

The reference current generator uses a bandgap based 1 V reference voltage to generate a buffered 1 V voltage reference at pin **Iref**. A 22 k Ω external resistor must be used to generate the 45 μ A current reference.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	NOTE
Voltage at pin Iref	Vref	0.95	1.0	1.05	V	

High Side Power FET Driver / Slew Rate Regulation

The supply voltage of this driver is about 10 V higher than the Vbat (n-channel power FET to drive) and is delivered by the on chip charge pump at pin Vpump.

The Power FET driver is controlled in two different ways:

<u>First</u> by the digital output of the PWM generator of the μ P to realizing a certain duty cycle of the motor drive and so to regulate the motor current, voltage or speed in a closed loop.

The driver output OUT is set to low (the motor is switched off) independently of the PWM signal under the following conditions:

•	over current condition:	The over current signal Poverc is set to high by the over
	(Poverc = high)	current detection unit and reset to low via the Three Wire Interface
•	under voltage condition of Vbat:	The under voltage signal PVunder is set and reset by the voltage
	(PVunder = high)	monitor.
•	over voltage condition of Vbat:	The over voltage signal PVover is set and reset by the voltage
	(PVover = high)	monitor.

 charge pump voltage Vpump - Vbat is too low: The charge pump OK sig (VPok = low) monitor.

The charge pump OK signal VPok is set and reset by the charge pump monitor.

The threshold values of these parameters are programmable (see section **Summary of all programmable registers** (parameters, functions)).

the calibration of the motor current measurement unit is not yet finished: Mcalib = low. The motor current must be zero respectively the voltage (V_{CMP} - V_{CMN}) must be zero during the calibration.

This calibration is done after the start up of the system including the ready signal of the charge pump: power on reset signal nPOR <u>and</u> Vpok = high starts the calibration. The calibration procedure needs about 200 μs (see figure 4). Summary of logic driver function: OUT = PWM <u>and</u> /Poverc <u>and</u> /PVunder <u>and</u> /PVover <u>and</u> VPok <u>and</u> Mcalib

<u>Second</u> by the analog motor voltage to regulate the slew rate during the rising and falling edge of the motor voltage (EMC conform technology). This slew rate control respectively regulation is executed by a feedback of the motor voltage V_{motor} available at the pin Vmo. The characteristics (parameters) of this slew rate regulation can be programmed via the Three-Wire Interface independently for the falling and rising edge of the motor voltage and can therefore be adapted to a specific application (motor and its environment).

This programming of the output current characteristics (gate current of the external power FET) in both directions is shown in section **Summary of all programmable registers (parameters, functions)**.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	NOTE			
Tolerances of driver	IOUTon	-50%		+50%		lout_on = I _{SRon-stat} + I _{SRon} + I _{SRon_min}			
output current (pin						The relative tolerances between adjacent			
OUT), sourcing						programming steps of the driver current are less			
						than 10%.			
Tolerances of driver	Tolerances of driver IOUToff -50% +50% Iout_off = IsRoff-stat + IsRoff								
output current (pin						The relative tolerances between adjacent			
OUT), sinking						programming steps of the driver current are less			
						than 10%.			
- max. pulse duration	- max. pulse duration = 1μs @ 20 kHz or max. external charge to load: 250 nC @ 20 kHz								
$^{-}$ valid for I _{OUT} = 5 mA 500 mA and Vbat = 12 V , Vpump = 22 V									
⁻ Programmable by th	Programmable by the registers R1 to R6								

Charge Pump and internal Oscillator

The charge pump is a one-stage pump that generates a pumped voltage Vpump about 10 V higher than the supply voltage Vbat for Vbat > 13.5 V. It uses two external capacitors only, the capacitor Cp12 as the switched capacitor and Cp0 as the storage capacitor.

The pumped voltage (Vpump - Vbat) is monitored to detect over or under voltages (protection of the power FET gate): (Vpump - Vbat) = 10 V to 12 V : Normal voltage regulation of the charge pump

(Vpump - Vbat) < (Vpump - Vbat)_{low} : The digital signal VPok is indicating this under voltage and disabling the power FET driver. The threshold value (Vpump - Vbat)_{low} can be programmed to be 6 V or 4 V (VPUMP_MIN).

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE
Pumped voltage	Vpump - Vbat	10	10.5	12	V	Vbat = 13.5 V, Iload = 5 mA
Pumped voltage	Vpump - Vbat	4.0	5.0		V	Vbat = 6.5 V, Iload = 2.5 mA
Pumped voltage	Vpump - Vbat	4.0			V	$6.0V \le Vbat < 6.5V$ (low-Battery-
						mode), lload = 250µA
Under voltage threshold	(Vpump - Vbat) _{low}	5.4	6.0	6.6	V	falling (Vpok)
(VPUMP_MIN = 1)						
Under voltage threshold	(Vpump - Vbat) _{low}	3.4	4.0	4.6	V	falling (Vpok)
$(VPUMP_MIN = 0)$						
regulated voltage	(Vpump - Vbat) _{high}	10	10.5	12	V	rising
threshold						
frequency	f _{pump}	40	50	70	kHz	

Motor Current Measurement Unit / Over Current Detection

The motor current measurement unit functions with an external current measurement resistor R_{meas} in the high side motor line. The chip has two measurement amplification channels with separately programmable amplification factors $AV_{meas_normal} = V_{A_current} / (V_{CMp} - V_{CMn})$ (analogue output **A_current**) and $AV_{meas_over} = V_{A_overc} / (V_{CMp} - V_{CMn})$ (analogue output **A_current**) and $AV_{meas_over} = V_{A_overc} / (V_{CMp} - V_{CMn})$ (analogue output **A_current**) and $AV_{meas_over} = V_{A_overc} / (V_{CMp} - V_{CMn})$ (analogue output **A_overc**). The maximal valid nominal analogue output voltage level $V_{A_current}$ and V_{A_overc} of theses channels is 4.0 V (100% value of the output voltage $V_{A_current}$ (nominal value).

In general, all programming possibilities can be used to build up a measurement system within the defined limits.

It is recommended to use a nominal differential voltage (V_{CMp} - V_{CMn}) > 50 mV to avoid larger tolerances of the amplification factor caused by offset.

The programming of theses two amplification channels is usually realized in a way that the measurement range of the over current measurement channel is wider than the normal current measurement channel.

In the whole system the analogue outputs **A_current** and **A_overc** are used via an ADC in the controlling µP to regulate and control the system. There is one exception only: The over current detection and protection is realized directly by the over current measurement channel to be able to act very fast in case of an over current situation (short circuit).

The measurement unit contains a low pass filter to prevent wrong measurement if short transients of the measurement input voltage occurs (cut-off frequency about 500 kHz).

The motor current measurement unit is endowed with an auto calibration procedure for the offset voltage. The motor current respectively the measurement voltage (Vcmp - Vcmn) must be zero during this calibration.

This calibration is done after the start up of the system including the ready signal of the charge pump: power on reset signal nPOR <u>and</u> Vpok = high starts the calibration. The calibration procedure needs about 200 μs.

a) Motor current measurement (normal current amplification channel: A_{CMV_normal}, programmed by AV_RANGE_norm (Register R8<1:0>) and AV_TRIMM (Register R7<4:0>)

The nominal measurement differential voltage V_{meas_nom} (corresponding to 100% of the nominal motor current) V_{meas_nom} = (V_{CMp} - V_{CMn})_{nom} = I_{motor_nom} * R_{meas} must be fixed by the value of R_{meas}. So the value of this measurement resistor is given by R_{meas} = (V_{CMp} - V_{CMn})_{nom} / I_{motor_nom}.

The voltage amplification of this motor current measurement unit $AV_{meas_normal} = V_{A_current} / (V_{CMp} - V_{CMn})$ is programmable in the range $AV_RANGE_norm * AV_TRIMM = (1, 2, 3, 4) * (70, 71, ... 89, 90)$ Examples:

 $AV_RANGE_norm = 1: A_{CMV_normal} = 70, 71, 72, ..., 80, ..., 89, 90$

AV_RANGE_norm = 4: A_{CMV_normal} = 280, 284, 288, ..., 320, ..., 360

(The programming values of **AV_RANGE_norm** >1 are intended for a measurement of low currents with a higher digital resolution, but in this cases the tolerances of the amplification factor is high due to the remaining offset of the measurement amplifier.)

This way the analog output value $V_{A_current}$ of the current measurement unit can be adapted to the external measurement resistor R_{meas} (trimming of this resistor in the range <u>+</u> 12.5%).

The nominal (respectively 100%) voltage of the measurement unit $V_{A_current}$ (this is the nominal input voltage of the ADC on the μ P) must be 4.0 V.

b) Over current detection and protection (over current amplification channel A_{CMV_over})

The over current amplification channel uses the same input voltage V_{meas} = (V_{CMp} - V_{CMn}) as the normal current amplification channel.

The voltage amplification of this over current measurement channel $A_{CMV_over} = V_{A_overc} / (V_{CMp} - V_{CMn})$ is programmable by AV_RANGE_over (Register R10<1:0>) and AV_TRIMM (Register R7<4:0>)

in the range

A_{CMV_over} = AV_RANGE_over * AV_TRIMM = (1/4, 2/4, 3/4, 4/4) * (70, 71, ... 89, 90)

Examples:

AV_RANGE_over = 1/4: A_{CMV_over} = 17.5, 17.75, 18, ..., 20, ..., 22.25, 22.5

AV_RANGE_over = 4/4: A_{CMV_over} = 70, 71, 72, ..., 80, ..., 89, 90

The adjustment (trimming) of the measurement resistor R_{meas} is realized by the same programming parameter **AV_TRIMM** (<u>+</u> 12.5%) like in a).

The maximal output voltage of the over current amplification channel V_{A_overc} (this is the nominal input voltage of the ADC on the μP) must be 4.0 V.

The threshold value of the over current detection can be programmed by the programming parameters **OVERC_level** (in conjunction with **AV_RANGE_over** and **AV_TRIMM**) in the following way.

The voltage over the external measurement resistor where the over current situation is detected (Vmeas_over) is given by: V_{meas_over} = **OVERC_level** / (**AV_TRIMM** * **AV_RANGE_over**) with **OVERC_level** = 0.5 V, 1.0 V, 1.5 V, ... 4.0 V See also section **Summary of all programmable registers (parameters, functions)** for the programming of the parameters

above. PARAMETER SYMBOL MIN MAX UNIT NOTE (Programming, nominal amplification) Tolerance of voltage AAguy group = 6 + 6 - % Vrece = 50 mV R8 = 0 \rightarrow 80

Tolerance of voltage	$\Delta A_{\text{CMV}_normal}$	- 6	+ 6	%	$V_{meas} = 50 \text{ mV}, R8 = 0 \rightarrow 80$
amplification, normal		- 10	+ 10	%	$V_{meas} = 25 \text{ mV}, R8 = 1 \rightarrow 160$
current measurement		- 20	+ 20	%	V _{meas} = 16.67mV, R8 = 2 → 240
channel ¹⁾		- 20	+ 20	%	V _{meas} = 12.5 mV, R8 = 3 → 360
Tolerance of voltage	ΔA_{CMV_over}	- 6	+ 6	%	$V_{meas} = 200 \text{ mV}, R10 = 0 \rightarrow 20$
amplification, over		- 6	+ 6	%	$V_{meas} = 100 \text{ mV}, R10 = 1 \rightarrow 40$
current measurement		- 6	+ 6	%	$V_{meas} = 60.6 \text{ mV}, R10 = 2 \rightarrow 60$
channel ¹⁾		- 6	+ 6	%	$V_{meas} = 50 \text{ mV}, \text{ R10} = 3 \rightarrow 80$
Tolerance of linearity	∆lincurrent	- 3	+ 3	%	(($\Delta V_{A_current} / \Delta V_{meas_nom}$) - ACMV_normal) / ACMV_normal
ACMV_normal					
Tolerance of linearity	Δ linoverc	- 3	+ 3	%	(($\Delta V_{A_overc} / \Delta V_{meas_nom}$) - ACMV_overc) / ACMV_overc
A _{CMV_overc}					
Tolerance of over	Δ overclevel	- 10	+ 10	%	R10 = 0, R9 ≤ 3, Tamb > 25 °C
current thresholds					
Tolerance of over	Δ overclevel	- 20	+ 10	%	R10 = 0, R9 ≤ 3, Tamb = -40 °C
current thresholds					
Tolerance of over	Δ overclevel	- 20	+ 20	%	R10 = 0, R9 > 3, Tamb = (-40 to 125) °C
current thresholds					
Cut off frequency	fcut-off	400	800	kHz	
Note (1): The offset	voltage of the c	urrent m	neasurem	ent unit	at calibration temperature V _{meas_offset} is < 1.5 mV
(typical: 0.	5 mV), the maxi	mal offs	et tempe	rature d	rift is + 20 μV / K.

Battery Voltage Monitor and Over / Under Voltage Detection

The Battery voltage monitor has to deliver an analog voltage Vbat_mon in the 5V range which is proportional to the high voltage supply Vbat (normally VDDH = Vbat). The measurement range of the supply voltage Vbat is programmable via the register R11<2:0> to adapt the AS8446 to different application supply voltages.

Programming of the MEASUREMENT RANGE of Vbat (programmed by register R11<2:0> \rightarrow VBAT_RANGE)

			-			
PARAMETER	Programming Register R11	SYMBOL	MIN	MAX	UNIT	NOTE
Programmable	R11= 0 \rightarrow VBAT_RANGE = 5	Vbat _{max1}		20	V	(1)
Measurement	R11= 1 \rightarrow VBAT_RANGE = 8	Vbat _{max2}		32	V	
Voltage Ranges	R11= 2 \rightarrow VBAT_RANGE = 10	Vbat _{max3}		40	V	
of Vbat	R11= 3 → VBAT_RANGE = 15	Vbat _{max4}		60	V	
	R11= 4 \rightarrow VBAT_RANGE = 20	Vbat _{max5}		80	V	
Nists (4). The sec	A MARKEN AND A MARKEN A	and a set the second second			h h a h	sealth and

Note (1): The programmable value of VBAT_RANGE determines the max. value of Vbat measurable by the voltage monitor (condition: Vbat / VBAT_RANGE < 4 V).

Note (2): VBAT must not exceed the specified abs. Max. ratings (see Table 3)

PARAMETER	SYMBOL	MIN	MAX	UNIT	NOTE
Tolerance of the division factor	$\Delta VBAT_RANGE$	- 6	+ 6	%	
Tolerance of the programmed over voltage threshold	Δ Vovervolt	-10	+10	%	
Tolerance of the programmed ounder voltage threshold	Δ Vundervolt	-10	+10	%	

a) Programming of the OVER VOLTAGE detection level of Vbat (programmed by register R12<2:0> → OVER_VOLT and R11<2:0> → VBAT_RANGE)

Remark: The maximum over voltage limit of Vbat for safe functionality of AS8446 is limited to Vbat < 30 V and must be respected by appropriate programming.

Programmable steps of OVER_VOLT = 0.25 V * VBAT_RANGE = (1.25 or 2.0 or 2.5 or 3.75 or 5.0) V OVER_VOLT = 0.25 V * VBAT_RANGE * (R12 + 9) = 11.25 V ... 80 V

During an over voltage situation the write access to the Three Wire Interface is blocked and the driver is switched off.

b) Programming of the UNDER VOLTAGE detection level of Vbat (programmed by register R13<2:0> → UNDER_VOLT and R11<2:0> → VBAT_RANGE)

Remark:The minimium Vbat for full functionality of AS8446 is limited to Vbat \geq 6.5 V (except for Low-battery-
mode reduced functionality is still given between 6V and 6.5V, see Table 4Operating Conditions).

Programmable steps of UNDER_VOLT = 0.25 V * VBAT_RANGE = (1.25 or 2.0 or 2.5 or 3.75 or 5.0) V

UNDER_VOLT = 0.25 V * VBAT_RANGE * (R13 + 1) = 1.25 V ... 40 V

Over Temperature Detection

On Chip Over Temperature Detection

The on chip temperature detection sets the signal PTover_in high if the chip temperature climbs above the specified level. This over temperature detection has a hysteresis of about 20 °C.

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE
Recovery Temperature	Trecovery	+130	+140	+150	°C	Information Parameter
Shutdown Temperature	Tshutdpwn	+150	+160	+170	°C	Information Parameter
On chip temperature voltage	VTEMP	1		1.4	V	Ton_chip = 27 °C
threshold voltage of the on chip	VOTI	0.8		1	V	Information Parameter
over temperature comparator						
Hysteresis of the over temperature	VOTIHYST	30		50	mV	Information Parameter
comparator						

External Over Temperature Detection

The over temperature detection is realized with an external temperature sensor (e.g. NTC). The threshold value of the voltage at pin TP is defined to V_{th_TP} = 0.5* VDD (typical 2.5 V) and has a hysteresis.

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE
Over Temperature threshold value	$V_{th_{TP}}$	VDD/2 –		VDD/2 +	V	
		0.05		0.05		
Negative Hysteresis	$V_{th_TP_HYS_N}$	30		70	mV	
The over temperature signal PTover	_ex is defined	l in the follow	ing way:			
PTover_ex = high if V _{IN} < V _{th_TP} (over temperature)						
$PTover_ex = Iow if V_{IN} > V_{th_TP}$ (no o	ver temperatu	ıre)				

Analog MUX and Analog Output Buffer

The following analog measurement channels and digital signals are output via an analog MUX and an analog buffer to the pin ADC, the MUX is controlled by register R15<3:0>

Analog MUX function

PARAMETER	SYMBOL	ТҮР	NOTE
A_current	Normal motor current measurement	R15 = 0	Used in
	channel		normal
A_overc	Motor over current measurement	R15 = 1	application
	channel		to control /
Vbat_mon	Battery voltage monitoring	R15 = 2	regulate the
TP	Temperature sensor analog value	R15 = 3	system
Vtemp	Temperature voltage	R15 = 4	Used for test
PVover	Over voltage signal	R15 = 5	purposes
PVunder	Under voltage signal	R15 = 6	only
PTover_ex	Over temperature signal, extern	R15 = 7	
PTover_in	Over temperature signal, intern	R15 = 8	

Analog buffer characterization

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE		
Input/Output voltage range	Vio	0.0		4.0	V			
Offset voltage	V _{offset}			80	mV			
Slew rate	SR _{buffer}	1.0			V/µs	(1)		
Note (1): CLoad = 20 pF								

Failure Feedback Signal

There are two different ways to detect failures in the whole regulator system:

- System failures detected directly on chip (e.g. over current, under voltage, ...) and indicated by the appropriate failure signal (e.g. Poverc, PVunder, ..., respectively FAIL)
- System failures detected by software of the controlling µP via the monitoring of the motor current, motor speed, battery
 voltage, temperature and duty cycle of the PWM signal (e.g. motor failures like blocked motor, open wires, ...). This part of
 system failures must be defined by the motor and system know how of the customer.

The following system failures are detected directly on the AS8446 chip:

- 1. Over current of the motor (signal: Poverc)
- 2. Under voltage of the battery voltage Vbat (signal: PVunder)
- 3. Over voltage of the battery voltage Vbat (signal: PVover)
- 4. Over temperature of external temperature (signal: PTover_ex)
- 5. Over temperature of on chip temperature (signal: PTover_in)
- 6. Under voltage of VDD (5 V) (signal: VDDunder)
- 7. Over voltage of VDD (5 V) (signal: VDDover)

All these seven failures are stored in register R18 and can be read by the controlling μ P via the Three Wire Interface.

A failure signal FAIL is created by OR conjunction of these failures and put to the pin FAIL (can be used as an interrupt signal for the μP to start a read access via the Three Wire Interface to the failure register R18):

FAIL = Poverc or PVunder or PVover or PTover_ex or PTover_in or VDDunder or VDDover or TEMP_TEST

The first three failures (over current, over and under voltage) are used to switch off the driver output OUT immediately by on chip hardware, the two temperature failure and the VDD over / under voltage failure are only detected and can be treated by software of the μ P.

The signal TEMP_TEST is only used for test purposes and must be set low in the normal application. If there is a wrong value (high) of TEMP_TEST during the normal application the FAIL signal is set and must be reset via the Three Wire Interface.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	NOTE	
DC Characteristics	-	-					
Low Level Input Voltage	VIL	-8		0.4 Vbat	V		
High Level Input Voltage	Vih	0.6 Vbat		VBAT	V		
Input Hysteresis	VHYS	0.05 Vbat		0.1 Vbat	V	Vih - Vil	
Pull- up Current on Input	IPU	-400		5	μA	> 30 k Ω internal pull- up	
						@ V _{IH} = 0.7 V _{BAT}	

Wake-up System (Pin Wake-up)

Watch Dog and RESET

The watch dog can be used to supervise the function of the controlling μ P. In cases where this supervising is not necessary, the watch dog is switched off via the Three Wire Interface by sending a zero to R16<0:0>.

The default value after the start up of the system is R16<0:0> = 0 (watch dog is not active).

The trigger of the watch dog is done by the high / low edge of the external signal WD (start of the counter). The output signal of the watch dog WDout goes high if the watch dog time is over.

The output signal of the watch dog WDout or the nPOR are generate the low active signal RESET (used for external μ P only): if nPOR = low **or (**WDout = high) and R16<0> = high) \rightarrow RESET = low

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTE
time out of the watch dog	Twatch	110	160	190	ms	
RESET pulse duration	T _{watch_d}	14	20	25	μs	

Package Drawing and Marking

Figure 14 Physical Dimensions (SOIC28) of AS 8446

	D	E	Н	Α	A1	е	b	L	α
MIN.	17.81	7.42	10.16	2.46	0.127	1.27 BSC	0.35	0.61	0 °
NOM.	17.93	7.52	10.31	2.56	0.22		0.41	0.81	5°
MAX.	18.06	7.59	10.41	2.64	0.29		0.48	1.02	8 °

Physical Dimensions SOIC28 (millimeters)

Physical Dimensions SOIC28 (inches)

	D	E	Н	Α	A1	е	b	L	α
MIN.	.701	.292	.400	.097	.0050	.050 BSC	.014	.024	0 °
NOM.	.706	.296	.406	.101	.0090		.016	.032	5°
MAX.	.711	.299	.410	.104	.0115		.019	.040	8 °

Table 15 Physical Dimensions of AS 8446

Contact

austriamicrosystems AG A 8141 Schloss Premstätten, Austria T. +43 (0) 3136 500 0 F. +43 (0) 3136 525 01 info@austriamicrosystems.com

Copyright

Copyright © 2003 austriamicrosystems. Trademarks registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. To the best of its knowledge, austriamicrosystems asserts that the information contained in this publication is accurate and correct.