

Page 1

AS5172A / AS5172B

High-Resolution On-Axis Magnetic Angular Position Sensor with PSI5 Output

General Description

The AS5172 is a magnetic position sensor with a high resolution 12-bit PSI5 output according PSI5 specification Version 1.3 and 2.1.

Based on a Hall sensor technology, this device measures the orthogonal component of the flux density (Bz) over a full-turn rotation and compensates for external stray magnetic fields with a robust architecture based on a 14-bit sensor array and analog front-end (AFE). A sub-range can programmed to achieve the best resolution for the application. To measure the angle, only a simple two-pole magnet rotating over the center of the package is required. The magnet may be placed above or below the device. The absolute angle measurement provides an instant indication of the magnet's angular position. The AS5172 operates up to a voltage of 16.5V and is protected against overvoltage up to +20V. In addition, the supply pins are protected against reverse polarity up to -18V.

Programmability over the VDD pin reduces the number of pins on the application connector.

The AS5172 is available in a TSSOP14 package and in a SIP package.

The SIP package (System in Package) has integrated the AS5172 sensor die together with the decoupling capacitors necessary to pass system level ESD and EMC requirements. No additional components and PCB on the sensor side are needed.

The product is defined as SEooC (Safety Element out of Context) according ISO26262.

The product is fully system level EMC and ESD tested according OEM standards.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits and Features

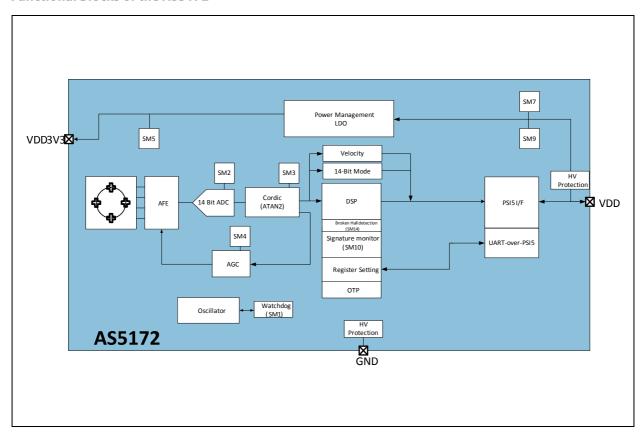
The benefits and features of this device are listed below:

Figure 1: Added Value of Using AS5172

Benefits	Features
Resolve small angular excursion with high accuracy	12-bit resolution @90° minimum arc
Accurate angle measurement	Low output noise, low inherent INL
Higher durability and lower system costs (no shield needed)	Magnetic stray field immunity
Enabler for safety critical applications	Functional safety, diagnostics
Suitable for automotive applications	 AEC-Q100 Grade 0 qualified (AS5172B) AEC-Q100 Grade 1 qualified (AS5172A)
SIP Package	System cost reduction – no PCB and additional components are needed

Applications

The AS5172 is ideal for automotive applications like brake and gas pedals, throttle valve and tumble flaps, steering angle sensors, chassis ride, EGR, fuel-level measurement systems, 2/4WD switch, and contactless potentiometers.


Page 2ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Block Diagram

The functional blocks of this device are shown below:

Figure 2: **Functional Blocks of the AS5172**

Note(s):

1. Detailed safety mechanism information can be found in chapter Diagnostic

ams Datasheet Page 3 **Document Feedback**

Pin Assignments

Pin Diagram

Figure 3: AS5172B Pin Assignment (Top View, TSSOP14)

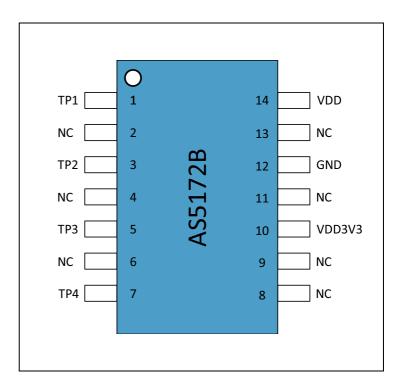


Figure 4: AS5172B Pin Description

Pin Number	Name	Туре	Description
1	TP1	Test pin	Connected to GND in application
2	NC	Not connected	Connected to GND in application
3	TP2	Test Pin	Connected to GND in application
4	NC	Not connected	Connected to GND in application
5	TP3	Test Pin	Connected to GND in application
6	NC	Not connected	Connected to GND in application
7	TP4	Test Pin	Connected to GND in application
8	NC	Not connected	Connected to GND in application
9	NC	Not connected	Connected to GND in application
10	VDD3V3	Supply	Requires a 470nF capacitor to GND

Page 4ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Pin Number	Name	Туре	Description
11	NC	Not connected	Connected to GND in application
12	GND	Supply	Ground
13	NC	Not connected	Connected to GND in application
14	VDD	Supply	Supply/PSI5 interface/UART-over-PSI5 programming Requires a 15nF capacitor to GND

ams Datasheet Page 5
[v1-03] 2017-Sep-06 Document Feedback

Figure 5: AS5172A in SIP Package

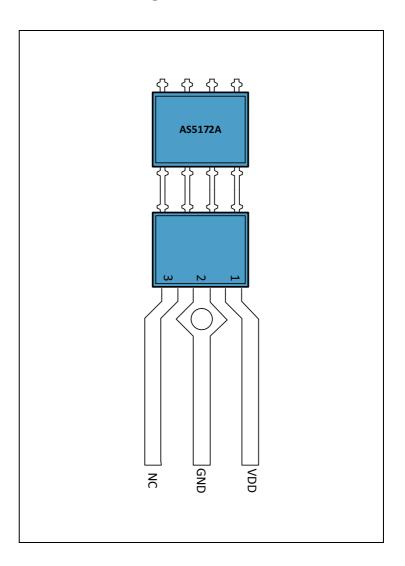


Figure 6: AS5172A Pin Description

Pin Number	Name	Туре	Description
1	VDD	Supply	Supply/PSI5 interface/UART-over-PSI5 programming
2	GND	Supply	Ground
3	NC	Not connected	Left open in application

Page 6ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Operating Conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 7: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units	Comments			
	Eld	ectrical Pa	arameters					
VDD	DC Supply Voltage at VDD pin	-18	20	V	Not operational			
VREGOUT	DC Voltage at the VDD3V3 pin	-0.3	5	V				
ISCR	Input Current (latch-up immunity)	±100		mA	AEC-Q100-004			
	Continuous Power Dissipation (T _{AMB} = 70°C)							
P _{T_Tssop}	Continuous Power Dissipation		377	mW				
P _{T_SIP}	Continuous Power Dissipation		377	mW				
	Ele	ctrostatic	Discharge					
ESD _{HBM} on all	Electrostatic Discharge HBM	=	±2	kV	AEC-Q100-002			
ESD _{HBM on} TSSOP	On VDD and GND	±4		kV	AEC-Q100-002			
ESD _{HBM on SIP}	On VDD and GND	Ξ	±8	kV	AEC-Q100-002			

ams Datasheet Page 7
[v1-03] 2017-Sep-06 Document Feedback

Symbol	Parameter	Min	Max	Units	Comments
	Temperature F	Ranges an	d Storage (Conditions	
T _{AMB}	Operating Temperature Range	-40	125	°C	AS5172A ambient temperature
T _{AMB_LM}	Operating Temperature Range	-40	150	°C	AS5172B ambient temperature
TaProg	Programming Temperature	5	45	°C	Programming@ room temperature (25°C ± 20°C)
T _{STRG}	Storage Temperature Range	-55	125	°C	
T _{BODY}	Package Body Temperature		260	°C	The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices." The lead finish for Pb-free leaded packages is "Matte Tin" (100% Sn)
RH _{NC}	Relative Humidity (non-condensing)	5	85	%	
MSL	Moisture Sensitivity Level		3		Represents a maximum floor life time of 168 hours

System Electrical and Timing Characteristics

All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

All in this datasheet defined tolerances for external components need to be assured over the whole operation conditions range and also over lifetime.

Overall Condition:

 T_{AMB} = -40°C to 125°C for AS5172A;

 T_{AMB} =-40°C to 150°C for AS5172B;

VDD= 4V - 12V (sync pulse voltage not included);

Components spec; unless otherwise noted

Page 8ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Figure 8: Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDD	Positive Supply Voltage	Static condition	4		12	V
VDD_Rx	Positive Supply Voltage	Dynamic condition	4		16.5	V
VDD3	Regulator Voltage		3.3	3.45	3.6	V
IDD	Current Consumption	No programming and no PSI5 communication	11	15	19	mA
IDDProg	Current Consumption	During programming		80		mA
IDDProgUN	Current Consumption of Unprogrammed Device	Unprogrammed device @ T _{AMB} = 25°C ± 10°C			49	mA
IDD max	Current Consumption	IDD + IS_Common			49	mA
IS_Common	Sink Current (common mode)		22	26	30	mA
IS_low power mode		Sink current (low power mode)	11	13	15	mA
IDD_D	Current Drift of IS in Low Power Mode		-4		4	mA
IDD_DRate	Current Drift Rate	Not tested			1	mA/s
TSUP	Start-Up Time, With ±2mA Tolerance in Respect to the Trimmed ILO Value (IL)	Functional mode			5	ms
PSI5_T	Fall/Rise Time of the Current Slope	Programmed in production	300	500	700	ns
PSI5_TBITL	Bit Time 125kbit/s Mode	Not tested - Guaranteed by Design	7.6	8.0	8.4	μs
PSI5_TBITH	Bit Time 189kbit/s Mode	Not tested - Guaranteed by Design	5.0	5.3	5.6	μs
PSI5_MSR	Mark/Space Ratio	(t _{fall,80%} - t _{rise, 20%})/PSI5_TBIT or (t _{fall,20%} - t _{rise, 80%})/PSI5_TBIT Programmed in production	47	50	53	%

ams Datasheet Page 9
[v1-03] 2017-Sep-06 Document Feedback

Electrical System Characteristics

 T_{AMB} = -40°C to 125°C for AS5172A; T_{AMB} =-40°C to 150°C for AS5172B;

VDD = 4V - 12V (sync pulse voltage not included); Magnetic Characterization; unless otherwise noted

Figure 9: Electrical System Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
CRES	Core Resolution			14		bit
OutputRes		≥ 90° slope			12	bit
INLopt	Integral Non-Linearity (optimum)	Best aligned reference magnet (1) at 25°C over full turn 360°	-0.5		0.5	deg
INLtemp	Integral Non-Linearity (optimum)	Best aligned reference magnet (1) over temperature -40°C to 150°C over full turn 360°	-0.9		0.9	deg
INL	Integral Non-Linearity	Reference magnet ⁽¹⁾ over temperature -40°C to 150°C over full turn 360° and displacement	-1.4		1.4	deg
ST	Sampling Time			128		μs
SPDF	System Propagation Delay Fast	Depending on the PSI5 standard	200		500	Us
CoreClk	Core Clock			16		MHz
Coreclk tol	Tolerance of the Core Clock		-3.5		3.5	%
ON	Output Noise Peak to Peak	Related to 12-bit Not tested			4	LSB

Note(s):

1. Reference magnet: NdFeB, 8mm diameter, 2.5mm thickness.

Page 10ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Figure 10: Power Management – Supply Monitor - Timing

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDDUVTH	VDD Undervoltage Upper Threshold		3.6	3.8	4.0	V
VDDUVTL	VDD Undervoltage Lower Threshold		3.4	3.6	3.8	V
VDDUH	VDD Undervoltage Hysteresis	Info parameter	150	200	250	mV
UVDT	VDD Undervoltage Detection Time		10	50	250	μs
UVRT	Undervoltage Recovery Time		10	50	250	μs
VDDOVTH	VDD Overvoltage Upper Threshold	If sensor in overvoltage condition, ECU gets the Error flag> overheating possible in the application	16.7	18	19.1	V
VDDOVTL	VDD Overvoltage Lower Threshold		14.5	15.5	16.5	٧
OVDT	VDD Overvoltage Detection Time	From the time VDD exceeding 16.5V		1000	2000	μs
OVRT	VDD Overvoltage Recovery Time	From the time VDD returning from VDD > 16.5V to normal operating voltage (4V< VDD < 17V)		1000	2000	μs
VDD3V3UVTH	VDD3V3 Reset Upper Threshold		2.5	2.8	2.95	V
VDD3V3UVTL	VDD3V3 Reset Lower Threshold		2.4	2.6	2.72	V
VDD3V3UVHYS	VDD3V3 Reset Hysteresis	Info parameter	105	175	245	mV
TDETWD	WatchDog Error Detection Time				12	ms

ams Datasheet Page 11 [v1-03] 2017-Sep-06 Document Feedback

Magnetic Characteristics

 T_{AMB} = -40°C to 125°C for AS5172A;

 T_{AMB} =-40°C to 150°C for AS5172B;

VDD= 4V – 12V (sync pulse voltage not included); unless otherwise noted.

Two-pole cylindrical diametrically magnetized source:

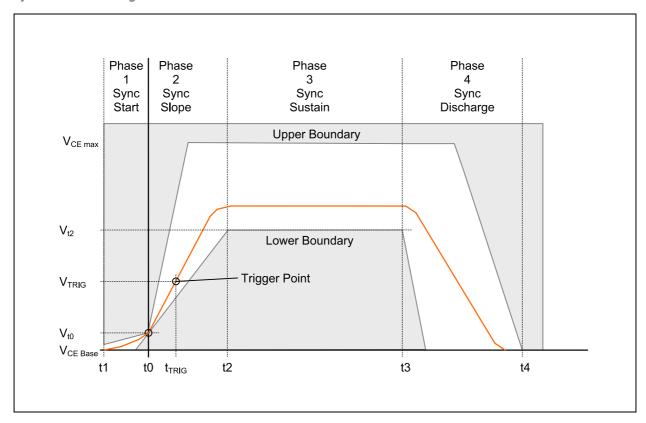
Figure 11: Magnetic Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Bz	Orthogonal Magnetic Field Strength	Required orthogonal component of the magnetic field strength measured at the package surface along a circle of 1.25 mm @= 0	30		70	mT
BzE	Orthogonal Magnetic Field Strength –Extended Mode	Required orthogonal component of the magnetic field strength measured at the package surface along a circle of 1.25mm MFER = 1	10		90	mT
Disp (1)	Displacement Radius	Offset between defined device center and magnet axis. Dependent on the selected magnet.		0.5		mm

Note(s):

1. Reference magnet: NdFeB, 8mm diameter, 2.5mm thickness

Page 12ams DatasheetDocument Feedback[v1-03] 2017-Sep-06



Electrical and Timing Characterization of the PSI5 Interface

This chapter describes the synchronization signal from the ECU according to the PSI5 specification V1.3 and V2.1. The parameters in this chapter are not reflecting the full specification range of the detection circuit for the synchronization signal.

Synchronization Signal PSI5 V1.3

Figure 12: Synchronization Signal

The synchronization signal start time t0 is defined as a crossing of the Vt0 value. In the "Sync Start" phase before this point, a "rounding in" of the voltage starting from VCE, Base to Vt0 is allowed for a maximum of t1. During the "Sync Slope" phase, the voltage rises within given slew rates to a value between the minimum sync signal voltage Vt2 and the maximum interface voltage VCE, max. After maintaining the voltage between this limits until a minimum of t3, the voltage decreases in the "Sync Discharge" phase until having reached the initial VCE, base value until latest t4.

ams Datasheet Page 13
[v1-03] 2017-Sep-06 Document Feedback

Figure 13:
Synchronization Signal PSI5 V1.3 (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VBase	Base Supply Voltage	Voltage value at ECU	5.7		11	V
Vto	Sync Slope Reference Voltage	Reference to VBase		0.5		V
Vt2	Sync Signal Sustain Voltage	Reference to VBase	3.5			V
Vce,max	Maximum Interface Voltage				16.5	V
t0	Reference Time	Reference time base; time when the sync signal crosses Vt0		0		μs
t1	Sync Signal Earliest Start	V=V _{CE} Delta current less than 2mA	-3		0	μs
t2	Sync Signal Sustain Start	@ Vt2		7		μs
	Sync Slope Rising Slew Rate	Lower limit is valid for Vt0 to Vt2	0.43	1.0	1.5	V/µs
	Sync Slope Falling Slew Rate		-1.5			V/µs
t3	Sync Signal Sustain Time			16		μs
t4	Discharge Time Limit			35		μs
Tslot1	Start of Time Slot 1		44	51	59	μs
Tslot2	Start of Time Slot 2		181.3	195	210	μs
Tslot3	Start of Time Slot 3		328.9	350	373	μs

Note(s):

Page 14ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

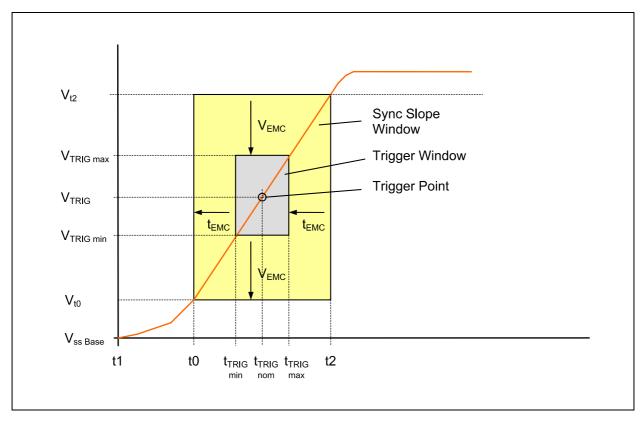
^{1.} The parameters in this table are just info parameters and therefore not production tested. The production related parameters are in the PSI5 Block Parameters table.

Figure 14: Synchronization Signal PSI5 V2.1 (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VBase	Base Supply Voltage	Voltage value at ECU	5.7 (4.4)		11	V
Vto	Sync Slope Reference Voltage	Reference to VBase		0.5		V
Vt2	Sync Signal Sustain Voltage	Reference to VBase	3.5 (2.5)			V
Vce,max	Maximum Interface Voltage				16.5	V
t0	Reference Time	Reference time base; time when they sync signal crosses Vt0		0		μs
t1	Sync Signal Earliest Start	V=VCE Delta current less than 2mA	-3		0	μs
t2	Sync Signal Sustain Start	@ Vt2		7		μs
	Sync Slope Rising Slew Rate	Lower limit is valid for Vt0 to Vt2	0.43		1.5	V/µs
	Sync Slope Falling Slew Rate		-1.5			V/µs
t3	Sync Signal Sustain Time			16		μs
t4	Discharge Time Limit				35	μs
Tslot1	Start of Time Slot 1		44			μs

Note(s):

ams Datasheet Page 15 Document Feedback


^{1.} The parameters in this table are just info parameters and therefore not production tested. The production related parameters are in the PSI5 Block Parameters table.

Synchronization Signal Detection

The AS5172 has to detect the trigger within the "trigger window" during the rising slope of the synchronization signal at the trigger point with the trigger voltage V_{TRIG} and the trigger time t_{TRIG}

Figure 15: Trigger Window

In order to take into account voltage differences at different points of the interface lines, an additional safety margin for the trigger detection is defined by V_{EMC} and t_{EMC} .

The values are based on the PSI5 specification and shows the detection of the synchronization signal from the ECU according the PSI5 specification.

Page 16ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

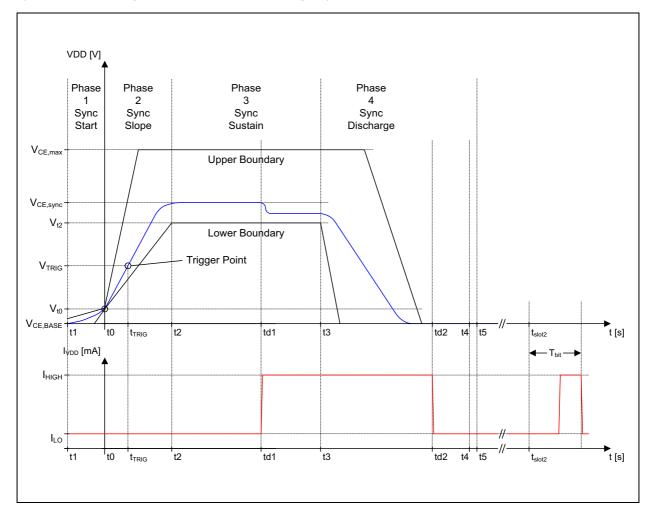
Figure 16: Synchronization Detection (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VEMC_C	Margin for Voltage Variations	Common power mode	-0.9		0.9	V
VEMC_LP	Margin for Voltage Variations	Low power mode	-0.7		0.7	V
VTrig_C	Trigger Voltage Threshold	Common power mode	1.4	2.0	2.6	V
VTrig_LP	Trigger Voltage Threshold	Low power mode	1.2	1.5	1.8	V
tTRIG	Nominal Trigger Detection Time	@ V _{TRIG} , @ AS5172 Pins; Referenced to a straight sync signal slope with nominal slew rate of 0.43 V/μs	2.1	3.5	4.9	μs
VCE,max	Maximum Interface Voltage				16.5	V
tEMC	Margin for Timing Variations of the Signal on the Interface Line	Relative to nominal trigger window time	-2.1		2.1	μs
ttol detect	Tolerance of Internal Trigger Detection Delay				3	μs
TTRIG	Trigger Detection Time	T _{TRIG} = t _{TRIG} + t _{tol detect} + t _{EMC} ; Reference for AS5172 time base	0		10	μs

Note(s):

ams Datasheet Page 17 Document Feedback

^{1.} The parameters in this table are just info parameters and therefore not production tested. The production related parameters are in the PSI5 Block Parameters table.



Synchronization Signal with Discharge by AS5172

This chapter describes the modifications required if the ECU uses a special transreceiver.

The parameters in this chapter are not reflecting the full specification range of the detection circuit for the synchronization signal

Figure 17:
Synchronization Signal from ECU with Discharge by the AS5172

Page 18ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Figure 18: Synchronization Signal from ECU with Discharge Parameter ⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CE, BASE}	Base Supply Voltage	Mean voltage value at ECU	5.0	6.0	7.0	V
V _{CE, BASE_R}	Base Supply Voltage Including Ripple		4.5	6.0	7.0	V
V_{t0}	Sync Slope Reference Voltage	Referenced to V _{CE, BASE}		0.5		V
V _{t2}	Sync Signal Sustain Voltage	Referenced to V _{CE, BASE}	+3.5	+5.0	+6.0	V
V _{CE,max}	Sync Signal Max. Voltage		10	11	14.5	٧
V_{CE,max_R}	Sync Signal Max. Voltage Including Ripple		10	14	16.5	V
t0	Reference Time	Reference time base; time when the synchronization signal crosses V _{t0}		0		μs
t1	Sync Signal Earliest Start	V=V _{CE, BASE}	-3		0	μs
t2	Sync Signal Sustain Start	@ V _{t2}	3	4	5	μs
S _{sync,r}	Sync Slope Rising Slew Rate	10% to 90% of V _{CE,max}	0.7	1.0	1.6	V/µs
S _{sync,f}	Sync Slope Falling Slew Rate	90% down to 10% of V _{CE,max}	-1.6	-1.0	-0.7	V/µs
t3	Sync Signal Sustain Time	V=V _{CE,sync}	27.5	31	35.1	μs
td1	AS5172 Signals Discharge		18.5	22.75	28	μs
td2	Discharge Stop Time		38	43.25	50	μs
t4	Enable Pull Down to V _{CE,BASE} by ECU		62.5	65	65.5	μs
t5	Receiver (ECU) Enable Start Time	Receiver (ECU) read for transmission	63	66.2	65.5	μs
V _{TRIG}	Trigger Voltage Threshold		1.4	2.0	2.6	V
t _{TRIG}	Nominal Trigger Detection Time	@ V _{TRIG} , @ AS5172 Pins; Referenced to a straight sync signal slope with nominal slew rate of 0.7 V/µs	1.25	2.15	3.05	μs
t _{EMC}	Margin for Timing Variations of the Signal on the Interface Line	Relative to nominal trigger window time	-1.25		1.25	μs

ams Datasheet Page 19
[v1-03] 2017-Sep-06 Document Feedback

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{tol detect}	Tolerance of Internal Trigger Detection Delay				3	μs
T _{TRIG}	Trigger Detection Time	T _{TRIG} = t _{TRIG} + t _{tol detect} + t _{EMC} ; Reference for sensor time base	0		7.5	μs
t _{slot 1}	Start of Time Slot 1	Time slot 1 cannot be used in this communication mode	44	51	59	μs
t _{slot2}	Start of Time Slot 2		181.3	195	210	μs
t _{slot3}	Start of Time Slot 3		328.9	350	373	μs

Note(s):

Page 20ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

^{1.} The parameters in this table are just info parameters and therefore not production tested. The production related parameters are in the PSI5 Block Parameters table.

PSI5 Block Parameters

Figure 19: Block Parameters

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CE,BASE ECU}	Base ECU Supply Voltage	Voltage at ECU	4.4		11	V
V _{CE,BASE}	Base Supply Voltage	Voltage at the Sensor	4.0		11	V
V _{SUPPLY}	Low Supply Voltage	Supply voltage for comparator	3.3	3.45	3.6	V
V _{t0}	Sync Slope Reference	Referred to V _{CE,BASE}		0.5		V
V _{t2}	Minimum Sync Signal Sustain Voltage (common mode)	Referred to V _{CE,BASE}	3.5			V
V _{t2_L}	Minimum Sync Signal Sustain Voltage (low power mode)	Referred to V _{CE,BASE}	2.5			V
V _{CE MAX}	Maximum Interface Voltage				16.5	V
t ₂	Sync Signal Sustain Start	Voltage @ V _{t2}			7	μs
SL _{RISE}	Rising Slope		0.43		1.6	V/µs
SL _{FALL}	Falling Slope Depends on voltage and discharge limit, external load has to meet these values -1.		-1.75			V/µs
t ₃	Sync Signal Sustain Time	Info parameter: Recommended ECU timing	16		35.1	μs
t ₄	Discharge Time Limit	Info parameter: Allowed variation of synch pulse width for synch pulse detection circuit	17.67		62	μs
T _{SYNC}	Synchronization Period	Info parameter: To prevent shifts of 250 500 detection threshold			μs	
V _{TRIG}	Trigger Voltage Threshold (common mode)		1.4	2.0	2.6	V
V _{TRIG_L}	Trigger Voltage Threshold (low power mode)		1.2	1.5	1.8	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{TRIG EMC}	Trigger Voltage Threshold Under EMC (common mode)	At SL _{RISE} = 0.43 V/μs; For EMC ≤1V _{PEAK} ≥ 100kHz Not tested - Guaranteed by Design	0.5	2.0	3.5	٧
V _{TRIG EMC}	Trigger Voltage Threshold Under EMC (low power mode)	At SL _{RISE} = 0.43 V/μs; For EMC ≤ 1V _{PEAK} ≥ 100kHz Not tested - Guaranteed by Design	0.5	1.5	2.5	V
t _{tol detect}	Tolerance of Internal Trigger Detection Delay				3	μs
[†] BLANK	Output Signal Blanking Time	Blanking of trigger signal in digital part after first rising edge to avoid multiple trigger signals during EMC events. Not tested - Guaranteed by Design	121		135	μs
V _{COM}	Comparator Input Common Mode Voltage			1.5		V
RES _{div}	Resistor Divider Division Factor	Not tested - Guaranteed by Design 2% mismatch	7.84	8	8.16	V/V
f _{C_LP}	Low Pass Filter Cut-Off Frequency	Not tested - Guaranteed by Design	2.5	5	7.5	kHz

Page 22ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Detailed Description

The AS5172 is a Hall-based rotary magnetic position sensor using a CMOS technology. The lateral Hall sensor array converts the magnetic field component perpendicular to the surface of the chip into a voltage.

The signals coming from the Hall sensors are first amplified and filtered before being converted by the analog-to-digital converter (ADC). The output of the ADC is processed by the CORDIC block (Coordinate-Rotation Digital Computer) to compute the angle and magnitude of the magnetic field vector. The sensor and analog front-end (AFE) section works in a closed loop alongside an AGC to compensate for temperature and magnetic field variations. The calculated magnetic field strength (MAG), the automatic gain control (AGC) and the angle can be read through the UART-over-PSI5 protocol during programming.

The magnetic field coordinates provided by the CORDIC block are fed into a linearization block (DSP) which generates the transfer function.

The output of the AS5172 can be programmed to define a starting position (zero angle) and a stop position (maximum angle).

The AS5172 can be programmed through the VDD Pin with a special UART-over-PSI5 protocol which allows writing an on-chip non-volatile memory (One Time Programmable memory) where the specific settings are stored.

The AS5172 is equipped with a PSI5 Interface current driver and a PSI5 Interface receiver. The current driver drives the additional sink current to reach the I_high level on the VDD. The receiver is comparing the voltage level at the VDD Pin with the internal voltage thresholds.

The Sensor to ECU communication is described in the chapters below and is based upon the PSI5 standard.

The AS5172 supports, according the PSI5 standard, the synchronous mode or in asynchronous mode.

In PSI5 V1.3 (10-bit mode), the asynchronous modes can only use one time slot per period. For a transmission of one 12/16 bit data word, two periods are necessary

AS5172 supports the bus modes PSI5-U and PSI5-P. The daisy chain mode is not supported.

ams Datasheet Page 23
[v1-03] 2017-Sep-06 Document Feedback

Register Description

OTP (non-volatile memory) Register Description

Figure 20: **OTP** (non-volatile memory) Register Description

Address	Bit Nr.	Symbol	Description
	0	Footowy cottings	ama fa atawa sattings
	1	Factory settings	ams factory settings
	2	Direction	Changes direction in 14-bit mode
	3	PSI5_14bit_angle	Enables 14-bit angle output
0x01	4	PSI5_quad_info	Enables quadrant information
	5	PSI5_16bit_frame	Enables the PSI5 16-bit frame
	6	Velocity_extended_range	0 = 1250 deg/s 1 = 5000 deg/s
	7	Extended_init_phase	0 = 22 datablocks during Init phase 1 = 32 datablocks during Init phase
0x02	0	Factory settings	ams factory settings
0x02	7:1	ams ID	ams ID (F9)
0x03	7:0	ams ID	ams ID (F9)
0x04	5:0	ams ID	ams ID (F9)
0.04	7:6	Factory settings	ams factory settings
0x05	7:0		
0x06	7:0		
0x07	7:0		
0x08	7:0	Factory settings	ams factory settings
0x09	7:0		
0x0A	7:0		
0x0B	7:0		

Page 24 ams Datasheet **Document Feedback** [v1-03] 2017-Sep-06

Address	Bit Nr.	Symbol	Description
	0	Month[3]	
	1	Year[0]	
	2	Year[1]	
0x0C	3	Year[2]	Sensor Production Date (F8)
OXOC	4	Year[3]	Sensor Floudction Date (Fo)
	5	Year[4]	
	6	Year[5]	
	7	Year[6]	
	0	Day[0]	
	1	Day[1]	
	2	Day[2]	
0x0D	3	Day[3]	Sensor Production Date (F8)
OXOD	4	Day[4]	Sensor Floudction Date (10)
	5	Month[0]	
	6	Month[1]	
	7	Month[2]	
	0	Type[0]	
	1	Type[1]	Sensor Type (F4)
	2	Type[2]	School Type (1 4)
0x0E	3	Type[3]	
OXUL	4	Parameter[4]	
	5	Parameter[5]	Sensor Parameter (F5)
	6	Parameter[6]	School Falanietei (1 3)
	7	Parameter[7]	

Page 25 ams Datasheet Document Feedback

Address	Bit Nr.	Symbol	Description
	0	Parameter[0]	
	1	Parameter[1]	Sonsor Davameter (FE)
	2	Parameter[2]	- Sensor Parameter (F5)
005	3	Parameter[3]	
0x0F	4	Sensor_Code_Man[4]	
	5	Sensor_Code_Man[5]	Sansay Cada Manufasturay (FC)
	6	Sensor_Code_Man[6]	- Sensor Code Manufacturer (F6)
	7	Sensor_Code_Man[7]	
	0	Sensor_Code_Man[0]	
	1	Sensor_Code_Man[1]	Sensor Code Manufacturer (F6)
	2	Sensor_Code_Man[2]	- Sensor Code Manufacturer (Fo)
0.410	3	Sensor_Code_Man[3]	
0x10	4	Sensor_Code_Veh[3]	
	5	Sensor_Code_Veh[3]	Canada (Cada (Cada (CZ))
	6	Sensor_Code_Veh[3]	- Sensor Code Vehicle (F7)
	7	Sensor_Code_Veh[3]	
0x11	7:0	PSI5Mode	PSI5 mode selection
	0	Sync_discharge	Enables sync pulse discharging
	1	Init_phase_repetition[0]	DCIE initialization phase repetition factor (k times)
	2	Init_phase_repetition[1]	PSI5 initialization phase repetition factor (k-times)
0x12	3	PSI5_timeslot[0]	PSI5 timeslot for bus mode
UX12	4	PSI5_timeslot[1]	- PSIS timeslot for bus mode
	5	Init_phase_disable	Disables the PSI5 initialization phase
	6	Velocity_info	Enables PSI5 velocity output
	7	-	Not used

Page 26ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Address	Bit Nr.	Symbol	Description
	0	-	Not used
	1	-	Not used
	2	-	Not used
0x13	3	Quadrant[0]	- Quadrant selection
UX13	4	Quadrant[1]	- Quadrant selection
	5	Velocity_filter[0]	
	6	Velocity_filter[1]	Filter configuration for velocity measurement
	7	Velocity_filter[2]	
0x14	7:0	CLH[7:0]	Clamping level high
	0	CLH[8]	
	1	CLH[9]	Clamping lovel high
	2	CLH[10]	- Clamping level high
0x15	3	CLH[11]	
UXIS	4	CLL[0]	
	5	CLL[1]	Clamping level low
	6	CLL[2]	- Clamping level low
	7	CLL[3]	
0x16	7:0	CLL[11:4]	Clamping level low
0x17	7:0	Offset[7:0]	Offset
0x18	7:0	Offset[15:8]	Offset
	0	Offset[16]	
	1	Offset[17]	Offset
	2	Offset[18]	Oliset
0x19	3	Offset[19]	
UX19	4	Gain[0]	
	5	Gain[1]	Gain
	6	Gain[2]	- Jani
	7	Gain[3]	
0x1A	7:0	Gain[11:4]	Gain

ams DatasheetPage 27[v1-03] 2017-Sep-06Document Feedback

Address	Bit Nr.	Symbol	Description
	0	Gain[12]	
	1	Gain[13]	
	2	Gain[14]	Gain
0x1B	3	Gain[15]	
OXID	4	Gain[16]	
	5	BP[0]	
	6	BP[1]	Breakpoint / 14-Bit Mode zero offset
	7	BP[2]	
0x1C	7:0	BP[10:3]	Breakpoint / 14-Bit Mode zero offset
	0	BP[11]	
	1	BP[12]	Breakpoint / 14-Bit Mode zero point offset
	2	BP[13]	
0x1D	3	Extended_range_disable	Disables the extended range for magnetic input field
OXID	4	Reduced_angle_range	Enables the reduced angle range for segments smaller 23 degree
	5	-	Not used
	6	-	Not used
	7	Customer_lock	Customer lock
0x1E	7:0	VendorlD[7:0]	Vendor ID (F3)
0x1F	7:0	Signature[7:0]	Signature calculated across the full OTP

Page 28ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Volatile Memory Register Description

Figure 21: Volatile Memory Register Description

Address	Bit Nr.	Symbol	R/W	Description
	4:0	-		Not used
0x23	5	DSP_reset	R/W	Reset of the DSP (Digital Signal Processing)
	6	GLoad	R/W	Enables GLoad
	7	-		Not used
0x32	7:0	Angle_CORDIC[7:0]	R	14-Bit Angle information (raw value without
0x33	5:0	Angle_CORDIC[13:8]	R	zero offset)
0x55	7:6	-		Not used
0x34	7:0	Magnitude	R	Magnitude at the CORDIC output
0x35	7:0	AGC	R	AGC (Automatic Gain Control)
0x36	7:0	Angle_DSP[7:0]	R	12-Bit Angle information (with zero offset, and
0x37	3:0	Angle_DSP[11:8]	R	customer settings)
0.37	7:4	-		Not used
0x38	7:0	Velocity[7:0]	R	Valacity output
0x39	3:0	Velocity[11:8]	R	Velocity output
0x39	7:4	-		Not used
0x3A	7:0	FUSA[7:0]	R	FLICA output
0x3B	5:0	FUSA[13:8]	R	- FUSA output

SFR Description

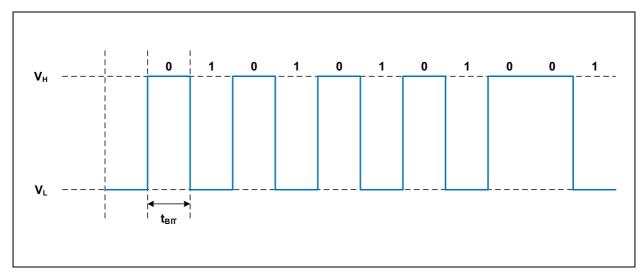
Figure 22: SFR Description

Address	Bit Nr.	Symbol	Description	
0x60	7:0	Pass2Function	Pass-to-function, see Programming chapter	
0x61	7:0	Tussel unction	russ to function, see Programming Chapter	
0x62	7:0	BurnOTP	BurnOTP, see Programming chapter	
0x63	7:0	bumon	bullion, see Frogramming chapter	

ams DatasheetPage 29[v1-03] 2017-Sep-06Document Feedback

Programming

UART-Over-PSI5

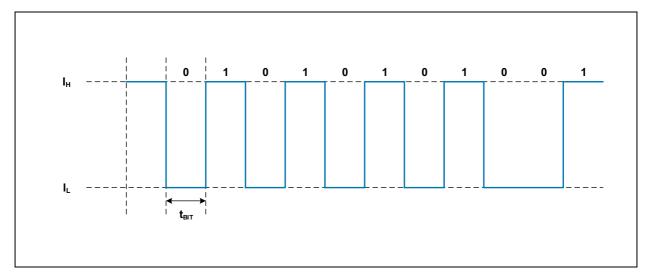

The AS5172 is equipped with a one wire UART-over-PSI5 interface based on a "Tooth Gap" similar method according PSI5 specification, which allows reading and writing the registers as well as permanent programming of the non-volatile OTP memory (One Time Programmable).

By default the AS5172 is in the so-called *Communication Mode*. In this mode, it is possible to configure the register settings.

A voltage modulation on the supply lines (VDD and GND) is used to realize a Programmer-to-Sensor communication. The Sensor-to-Programmer communication is done with current modulation.

The physical layer of the two communication modes is shown in Figure 23 and Figure 24 below.

Figure 23:
Bit Encoding of Programmer-to-Sensor Communication



A logical "0" is represented by a sync pulse (V_H) on the VDD line for a duration of $t_{BIT.}$ A logical "1" by the absence of the sync pulse (V_L) for a duration of $t_{BIT.}$

Page 30ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Figure 24:
Bit Encoding of Sensor-to-Programmer Communication

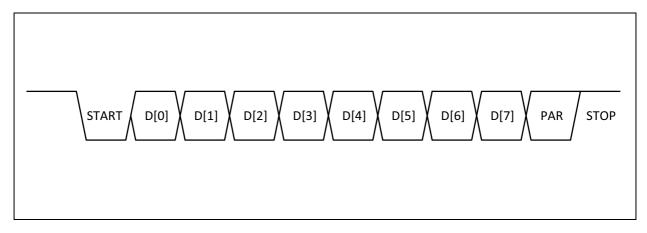
A logical "0" is represented by an increased sink current (I_H) on the VDD line for a duration of $t_{BIT.}$ A logical "1" by normal sink current (I_H) for a duration of $t_{BIT.}$

Figure 25: UART-Over-PSI5 Protocol

Symbol	Parameter	Conditions	Value	Unit
V _H	High Level Voltage		10	V
V_{L}	Low Level Voltage		7	V
I _H	High Level Sink Current	Typical value	49	mA
Ι _L	Low Level Sink Current	Typical value	19	mA
t _{BIT}		±5%	26	μs
Baudrate		±5%	38400	Baud

For further information please refer to application note AN_AS5172_Programming_Procedure_V1-00

ams also provides a programmer which supports the above-mentioned protocol. Please get in contact with the application engineering team.

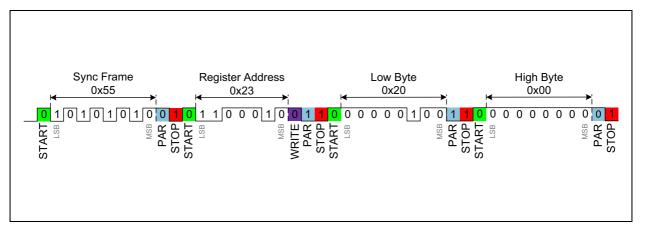

ams Datasheet Page 31
[v1-03] 2017-Sep-06 Document Feedback

UART Protocol

The UART interface allows reading and writing two consecutive addresses. The standard UART sequence consists of four frames. Each frame begins with a start bit (START), which is followed by 8 data bits (D[0:7]), one parity bit (PAR), and a stop bit (STOP), as shown in Figure 26.

Figure 26: UART Protocol Frame

The PAR bit is even parity calculated over the data bits (D[7:0]). Each frame is transferred from LSB to MSB.

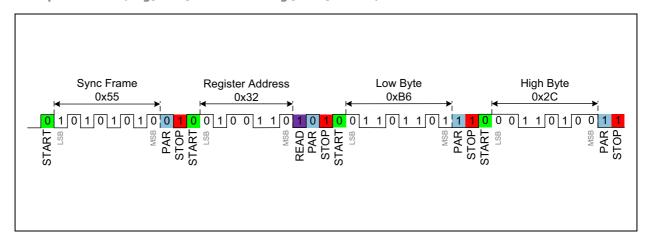

The first frame is the synchronization frame and consists D[7:0] = 0x55. This frame synchronizes the baud rate between the AS5172 and the programmer.

The second frame contains the register address (D[6:0] = ADDRESS) and the write/read command (WRITE: D[7]=0; READ: D[7]=1).

The third and fourth frame will be written/read to/from the location specified by ADDRESS and ADDRESS+1, respectively.

Figure 27 and Figure 28 show examples of a WRITE and READ sequence.

Figure 27: Example of WRITE (Reg[0x23] = 0x20 and Reg [0x24] = 0x00)


Page 32

Document Feedback

[v1-03] 2017-Sep-06

Figure 28: Example of READ (Reg[0x32] = 0xB6 and Reg[0x24] = 0x2C)

Reading of the 14-Bit Angle Information

To read the current position of the magnet (Angle) the following procedure is necessary:

- 1. Set the DSP_reset bit in Reg(0x23) to 1. (WRITE Reg(0x23) = 0x20
- 2. Read Angle_CORDIC register (READ Reg(0x32) and Reg(0x33)
- 3. Set the DSP_reset bit in Reg(0x23) to 0. (WRITE Reg(0x23) = 0x00)

The DSP_reset bit resets the internal DSP. After a reset, the Angle_CORDIC register is updated.

Reading the Magnitude and AGC

To read the current Magnitude and AGC value following procedure is necessary:

- 1. Set the DSP_reset bit in Reg(0x23) to 1. (WRITE Reg(0x23) = 0x20)
- 2. Read Magnitude and AGC register (READ Reg(0x34) and Reg(0x35))
- 3. Set the DSP reset bit in Reg(0x23) to 0. (WRITE Reg(0x23) = 0x00

The DSP_reset bit resets the internal DSP. After a reset, the Magnitude and AGC registers are updated.

Exiting the Communication Mode

To exit the Communication Mode and enter Functional Mode a special Pass-to-function command is necessary. Therefore a specific value has to be written into registers 0x60 and 0x61.

Pass2Function: WRITE Reg(0x60) = 0x70 and Reg(0x61) = 0x51

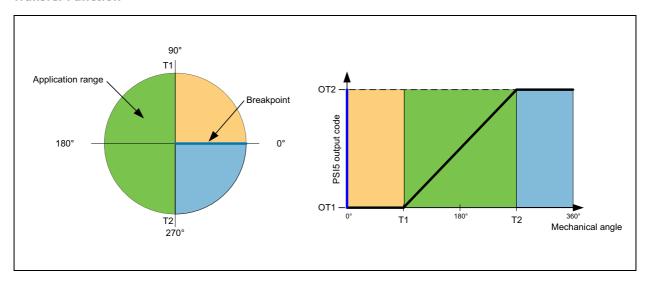
The device is temporarily set to operational mode until a sensor reset happens.

ams Datasheet Page 33

Burn the OTP Registers

To permanently program the device a special BurnOTP command is necessary. Therefore a specific value has to be written into registers 0x62 and 0x63.

BurnOTP: WRITE Reg(0x62) = 0x70 and Reg(0x63) = 0x51


This commands permanently burns the OTP memory based on poly silicon fuses. After fusing a verification of the burn quality is mandatory to avoid bit-flips over temperature and lifetime. This can be done with the GLoad operation. For further information please refer to application note *AN_AS5172_Programming_Procedure_V1-00*.

AS5172 Transfer Function

After programming the Customer_lock in the OTP or by using the Pass-to-function command the AS5172 is working in the selected PSI5 mode over the VDD pin.

The DSP block generates a linear transfer function proportional to the angle of the rotating magnet which is fed into the PSI5 interface. The PSI5 interface works with 10-bit resolution in PSI5 V1.3 and 12-bit resolution in PSI5 V2.1. Figure 29 shows the transfer function in detail.

Figure 29: Transfer Function

Page 34

Document Feedback

[v1-03] 2017-Sep-06

Figure 30: **PSI5 Protocol Output Resolution**

Symbol	Parameter	Conditions	Value	Unit
OTR_V1.3	Output Resolution PSI5 V1.3	PSI5 V1.3	10	Bit
OT1			-480	LSB
OT2			+480	LSB
OTR_V2.1	Output Resolution PSI5 V2.1	PSI5 V2.1	12	Bit
OT1			-2048	LSB
OT2			+2048	LSB

The PSI5 output characteristic is programmable in the OTP memory. The parameters T1, T2 and BP define the linear transfer function. Figure 29 shows a simple example of a typical output

The mechanical starting point T1 and the mechanical end point T2 define the mechanical range. The BP (Breakpoint) defines the transition point between OT1 and OT2.

These parameters are input parameters. Using a DLL provided by ams, these parameters are converted into the final OTP parameters: CLH, CLL, Offset, Gain and BP.

For detailed information regarding the calculation DLL please get in contact with the application engineering team at ams.

ams Datasheet Page 35 Document Feedback

Multiple Quadrants

The multiple quadrant option allows repeating the same output slope up to four times over a full 360° rotation as shown in Figure 32, Figure 33, Figure 34 and Figure 35. The Quadrant bits in register (0x13) set the number of quadrant as shown in Figure 31. Additionally a built-in quadrant detection can indicate the currently active quadrant in a special PSI5 data frame. For more information please refer to chapter PSI5 Modes.

Figure 31: Quadrant Selection

Quadrant	Number of Quadrants	Max. Mechanical Range
00	Single	360°
01	Dual	180°
10	Triple	120°
11	Quadruple	90°

Figure 32: Single Quadrant

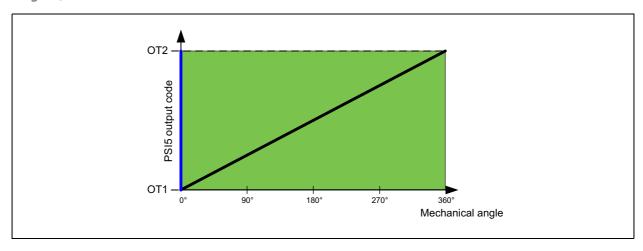
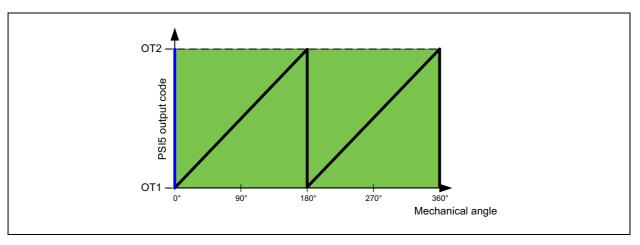



Figure 33: Dual Quadrant

Page 36ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Figure 34: Triple Quadrant

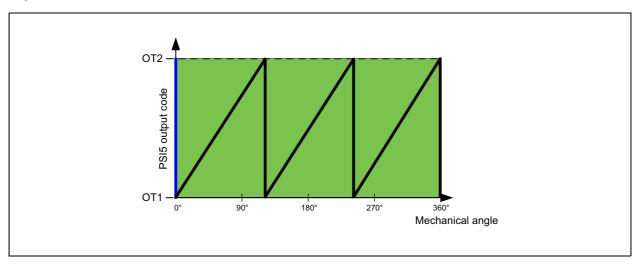
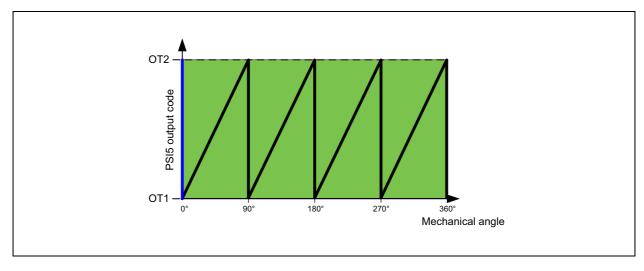



Figure 35: Quadruple Quadrant

Extended Magnetic Input Range

By default the AS5172A and AS5172B operates in Extended Mode. This mode extends the magnetic input field range and allows increasing of the air gap between sensor and magnet. The extended range can be disabled with Extended_range_ disable bit. For further information about the Extended Mode please refer to application note "AN_AS5172_ExtendedMode_ V1-00.pdf".

Rolling Counter

The frame control bits in the PSI5 frame can be used as a rolling counter. This setting can be enabled in the OTP. If this setting is enabled the rolling counter starts incrementing from value 0x0 once the initialization is finished. When reaching a value of 0x7 the counter is reset at starts with 0x0 again.

In PSI5 16-bit frame mode, the rolling count enables a toggle bit in A14 of the frame.

ams Datasheet Page 37
[v1-03] 2017-Sep-06 Document Feedback

Angular Velocity Measurement

The AS5172 features an average angular velocity calculation algorithm with 12-bit resolution. This angular velocity information can be used without further averaging in the ECU. The sensor calculates the velocity for each CORDIC cycle (typ. 128 μ s). Due to the PSI5 interface limitation the information can only be send every 500 μ s.

To optimize the signal-to-noise performance the cut off frequency is programmable via Velocity_filter[2:0] bits in register 0x13. The velocity information is available in all P20CRC-500 and P16CRC-500 modes. Additionally the range of the velocity can be programmed by Velocity_extended_range bit in register 0x01.

Figure 36:
Angular Velocity Measurement Parameter

Symbol	Parameter	Min	Тур	Max	Unit	Comments
VRes	Velocity Signal Resolution		12		Bit	
VRange	Measurement Range (default)		1250	1374	°/s	Only typical value is guaranteed
VRangeE	Measurement Range (extended)		5000	5496	°/s	Only typical value is guaranteed
VSens	Velocity Sensitivity (default)		0.671		°/s/Bit	12-bit resolution
VSensE	Velocity Sensitivity (extended)		2.684		°/s/Bit	12-bit resolution, only in Extended Mode
FCutOff	Cut Off Frequency	19	77	260	Hz	Programmable with Velocity_ filter[2:0]
VNoise	Velocity Noise	4.9		70.5	°/s	RMS noise depending on Velocity_filter[2:0]
VError	Velocity Total Error			±3.5	%	Clock frequency accuracy

Page 38ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Figure 37:
Angular Velocity Measurement Filter Parameters

Velocity_filter[2:0]	FCutOff [Hz]	VNoise [°/s]	VDelay [ms]	VStepResponse [ms]
000	260	70.5	0.61	0.9
001	152	37.3	1.05	1.8
010	77	19.2	2.07	3.7
011	39	9.7	4.08	6.7
100	19	4.9	8.38	13.9

Special Functions

The AS5172 features special functions which can be activated in the OTP. This settings are not according the PSI5 V2.1 standard.

14-Bit Mode

The 14-bit mode is only available for AS5172A and AS5172B. In this mode the 14-bit angle information is provided on the PSI5 interface. The 14-bit mode can be activated by PSI5_14bit_ angle bit. (Quadrant setting must be 00)

This special setting works different to the typical AS5172 transfer function.

If this mode is activated, the sensor uses registers 0x1B to 0x1D as zero offset registers. Additionally the bit Direction in register 0x01 changes the direction of the output function.

Figure 38: PSI5 Protocol Output Resolution

Symbol	Parameter	Conditions	Value	Unit
OTR_14	Output Resolution 14-Bit Mode	PSI5 V2.1	14	Bit
OT1			-8192	LSB
OT2			+8192	LSB

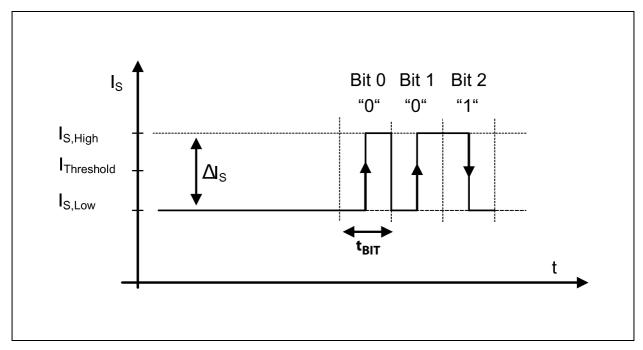
Quadrant Detection

The PSI5 protocol includes an information of the used quadrant. Detection necessary for safety relevant application to detect a movement from one quadrant to the next. See detailed Protocol Information.

Extended PSI5 Initialization Phase

Extending to 32 datablock during Init phase. D1 to D22 according Figure 67. D23 to D32 = 0000. Extension necessary for systems with 32 Datablocks during Init Phase.

ams Datasheet Page 39
[v1-03] 2017-Sep-06 Document Feedback



PSI5 Interface

Bit Encoding - AS5172 to ECU Communication

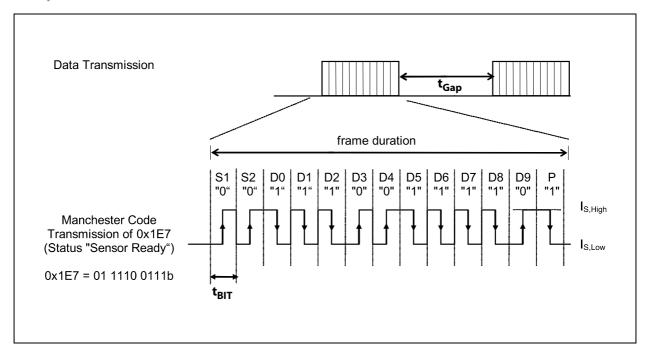
A "low" level (Is,Low) is represented by the normal (quiescent) current consumption of the Sensor(s). A "high" level (Is,High) is generated by an increased current sink of the Sensor (Is,Low + Δ Is). The current modulation is detected within the receiver Sensor.

Figure 39:
Bit Encoding Using Supply Current Modulation

Manchester coding is used for data transmission. A logic "0" is represented by a rising slope and a logic "1" by a falling slope of the current in the middle of $t_{\rm Bit}$.

Figure 40: Bit Encoding Timing

Symbol	Parameter	Min	Тур	Max	Unit	Comments
t _{Bit_L}	Bit Time (125 kbit/s mode)		8		μs	16 CLK cycles of the internal 2 MHz clock
t _{Bit_H}	Bit Time (189 kbit/s mode)		5.3		μs	14 CLK cycles of the internal 2.67 MHz clock


Page 40ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Data Frames - AS5172 to ECU Communication

Each PSI5 data frame consists of N bits containing two start bits and one parity bit with even parity (or 3 CRC bits) and N-3 (N-5) data bits. Data bits are transmitted LSB first. The data frames are sent periodically from the sensor to the ECU. A minimum gap time t_{Gap} larger than one maximum bit duration t_{Bit} is required between two data frames.

Figure 41: **Example of a 10-Bit Data Frame**

Data Ranges

The AS5172 supports the data range according PSI5 standard V2.1 and V1.3.

PSI5 data messages are divided into three separate ranges: A data range for the sensor output signal, a range for status and error messages and a range for initialization data.

Data Range According PSI5 V1.3

If AS5172 is used in the 10-bit mode, the decimal values –480 to +480 are used for the sensor output signal. The range -512 to -481 is reserved block and data IDs which are used for transmitting initialization data during startup of the AS5172. The range from +481 to +511 is used for status and error messages.

The 10 bit data range is used only in the LowRes mode of the sensor. The 12 bit output value from the DSP has to be mapped to the data range of -480 to +480 (10 bit, signed) by taking only the 10 higher order bits, subtracting the mid-code, and apply clamping to the data range of -480 to +480.

ams Datasheet Page 41 **Document Feedback**

Figure 42: Data Range for 10-Bit Mode

Dec	Hex	Signification	Range	
+511	0x1FF	Reserved (ECU internal use) *1		
:	:	Reserved (ECU internal use) *1		
+504	0x1F8	Reserved (ECU internal use) *1		
+503	0x1F7	Reserved (Sensor use) *2		
+502	0x1F6	Reserved (Sensor use) *2		
+501	0x1F5	Reserved (Sensor use) *2		
+500	0x1F4	"Sensor Defect"		
+499	0x1F3	Reserved (ECU internal use) *1		
:	:	Reserved (ECU internal use) *1		
+496	0x1F0	Reserved (ECU internal use) *1		
+495	0x1EF	Reserved (Sensor use) *2	Status and Error Messages	2
:	:	Reserved (Sensor use) *2		
+489	0x1E9	"Sensor in Diagnostic Mode"		
+488	0x1E8	"Sensor Busy"		
+487	0x1E7	"Sensor Ready"		
+486	0x1E6	"Sensor Ready but Unlocked"		
+485	0x1E5	Reserved (Sensor use) *2		
+484	0x1E4	Reserved (Sensor use) *2		
+483	0x1E3	Reserved (Sensor use) *2		
+482	0x1E2	Bidirectional Communication: RC "Error"		
+481	0x1E1	Bidirectional Communication: RC "OK"		
+480	0x1E0	Highest Positive Sensor Signal		
:	:	:		
0	0x000	Signal Amplitude "0"	Sensor Output Signal	1
:	:	:		
-480	0x220	Highest Negative Sensor Signal		

Page 42ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Dec	Hex	Signification	Range	
-481	0x21F	Status Data 1111		
:	:	:		
-496	0x210	Status Data 0000	Block ID's and Data for Initialization	3
-497	0x20F	Block ID 16	block ib 3 and bata for initialization	3
:	:	:		
-512	0x200	Block ID 1		

When using the AS5172 in 10-bit mode the data frame consists of 2 start bits (S1, S2), 10 data bits (D0-D9) which represent the angle and an even parity bit (P).

Figure 43: **Data Frame for 10-Bit Mode**

Start	Bits			10	-Bit Se	ensor I	Data (L	.SB fir	st)			Parity
S1	S2	A0	A1	A2	А3	A4	A5	A6	A7	A8	A9	Р
0	0	D0 D1 D2		D3	D4	D5	D6	D7	D8	D9	Р	

The AS5172 has also the possibility to provide the 12-bit angle value in the PSI5 V1.3 specification.

The substandard vehicle describes this method to map a 12-bit word into a 16 bit data frame and splitting of this into two 10-bit frames.

ams Datasheet Page 43 **Document Feedback**

Data Range According PSI5 V2.1

If AS5172 is used in the 20-bit mode, the decimal values -30720 to +30720 are used for the sensor output signal. The range -32768 to -30784 is reserved block and data IDs which are used for transmitting initialization data during startup of the AS5172. The range from +31168 to +32767 is used for status and error messages.

Figure 44: Data Range for 20-Bit Mode

Dec	Hex	Signification	Range	
32767	0x7FFF	Reserved (ECU internal use)		
			Status and Error Messages	2
+31168	0x79FF	"Sensor Ready"		
:	:			
+30720	0x7800	Highest Positive Sensor Signal		
:		:		
0	0x0000	Signal Amplitude "0"	Sensor Output Signal	1
:		:		
-30720	0x8800	Highest Negative Sensor Signal		
-30784	0x87FF	Status Data 1111		
:	:	:		
-31744	0x8400	Status Data 0000	Block ID's and Data for Initialization	3
-31808	0x83FF	Block ID 16	Sister S and Bata for middledion	
:	:	:		
-32768	0x8000	Block ID 1		

Page 44ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

PSI5 Data Frame 20-Bit Mode with 12-Bit Sensor Data

In 20-bit mode the PSI5 frame consists of 2 start bits (S1, S2), 3 frame control bits (F0, F1, F2), an error status bit (E0), 16 data bits (A0 to A15), and 3 CRC bits (C2, C1, C0).

As described in chapter Rolling Counter the 3 frame control bits can be used as rolling counter. The error status bit is used to indicate a failure of the sensor to ECU (E0 = 1). If no failure is present this bit is always set to 0. The 12-bit angle information is transmitted on A0 - A11. The upper fields A12 - A15 are set to 0.

Figure 45:
PSI5 Data Frame 20-Bit Mode with 12-Bit Sensor Data

	art its		Framo		Error Status		12-Bit Sensor Data (LSB first)											CRC						
S1	S2	F0	F1	F2	E0	A0	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	C2	C1	C0
0	0	C0	C1	C2	E0	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	0	0	0	0	C2	C1	C0

PSI5 Data Frame 20-Bit Mode with 12-Bit Sensor Data and Quadrant Detection

For safety relevant applications, where multiple quadrant mode is used, additionally to the 12-bit angle information a quadrant information can be transmitted in A12 and A13. For more information refer to chapter Multiple Quadrants.

Figure 46:
PSI5 Data Frame 20-Bit Mode with 12-Bit Sensor Data and Quadrant Detection

	art its		Framo		Error Status		12-Bit Sensor Data (LSB first)						Quadrant Info						CRC					
S1	S2	F0	F1	F2	E0	A0	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	C2	C1	C0
0	0	C0	C1	C2	E0	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	Q0	Q1	0	0	C2	C1	C0

Figure 47: Quadrant Information

Quadrant	Quadrant Mode	Quadrant Info on PSI5
00	Single	Q1 = 00 Q2 = 01
01	Dual	Q1 = 00 Q2 = 01
10	Triple	Q1 = 00 Q2 = 01 Q3 = 10
11	Quadruple	Q1 = 00 Q2 = 01 Q3 = 10 Q4 = 11

Page 46ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

PSI5 Data Frame 20-Bit Mode with 14-Bit Sensor Data

For special applications where the full sensor resolution is necessary over a 360° rotation the AS5172 features a special 14-bit mode. In this mode the 14-bit angle information is transmitted from A0 – A13. A14 and A15 are filled with 0. For more information refer to chapter 14-Bit Mode.

Figure 48:
PSI5 Data Frame 20-Bit Mode with 14-Bit Sensor Data

	art its		ramo ontro		Error Status		14-Bit Sensor Data (LSB first)												CRC	
S1	S2	F0	F1	F2	EO	A0	0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A1										A15	C2	C1	C0
0	0	C0	C1	C2	EO	D0	D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 O 0									0	C2	C1	C0	

PSI5 Data Frame 16-Bit Mode

In 16-bit mode the PSI5 frame consists of 2 start bits (S1, S2), an error status bit (E0), 15 data bits (A0 to A14), and 3 CRC bits (C2, C1, C0).

The error status bit is used to indicate a failure of the sensor to ECU (E0 = 1). If no failure is present this bit is always set to 0. The 16-bit frame can transmit the 12-bit angle information (A0 – A11) but also the 14-bit angle by activating the 14-bit mode in the OTP. (A0 – A13). The field A14 is by default set to 0 but can also be used as a toggle bit by activating the Rolling Counter.

Figure 49: PSI5 Data Frame 16-Bit Mode with 12-Bit Sensor Data

	art its	Error Status		14-Bit Sensor Data (LSB first)												CRC				
S1	S2	EO	A0	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	C2	C1	C0
0	0	EO	D0	D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 0										C2	C1	C0				

PSI5 Modes

The AS5172 can be configured in several PSI5 modes according standard V1.3 and V2.1. This modes can be selected via registers 0x01, 0x11 and 0x12. The tables in Figure 45 and Figure 46 show the different modes.

Independent from the specific mode also other options can be activated in this registers:

- Low Power Mode
- Initialization phase repetition factor
- Extended Initialization phase (32 blocks)
- Rolling Counter
- 14-Bit Mode
- Velocity Extended Range

Figure 50: PSI5 Modes V1.3

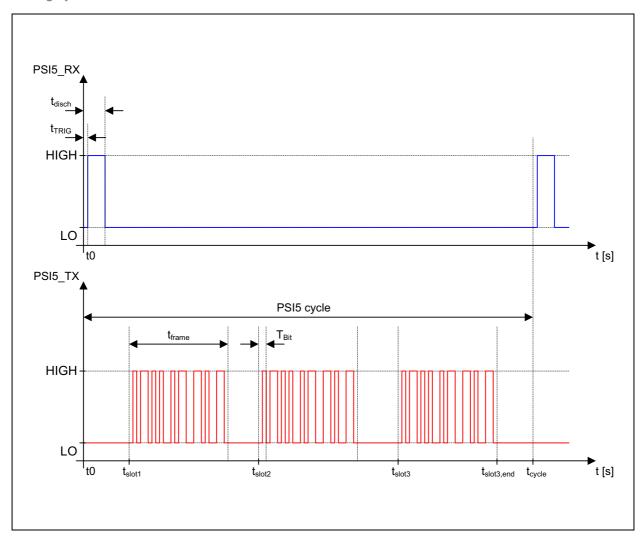
PSI5 Mode	Timeslot	Discharge	High Resolution	Register			
F3I3 Mode	Timesiot	Discharge	riigii Nesolution	0x11	0x12		
P10P-500/3L	Timeslot 1	-	-	0x00	0x00		
P10P-500/3L	Timeslot 2	-	-	0x00	0x08		
P10P-500/3L	Timeslot 3	-	-	0x00	0x10		
P10P-500/3L	Timeslot 2	Х	-	0x00	0x09		
P10P-500/3L	Timeslot 3	Х	-	0x00	0x11		
P10P-500/3L	Timeslot 1 and 2	-	Х	0x40	0x00		
P10P-500/3L	Timeslot 2 and 3	-	Х	0x40	0x08		
P10P-500/3L	Timeslot 2 and 3	Х	Х	0x40	0x09		
A10P-500/1L	-	-	-	0x10	0x00		
A10P-250/1L	-	-	-	0x30	0x00		
A10P-500/1L	-	-	Х	0x50	0x00		
A10P-250/1L	-	-	Х	0x70	0x00		

Page 48ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Figure 51: PSI5 Modes V2.1

DOLE Mada	Time elet Augle	Timeslet Valacity		Register			
PSI5 Mode	Timeslot Angle	Timeslot Velocity	0x01	0x11	0x12		
P20CRC-500/1L	Timeslot 1	-	0x00	0x02	0x00		
P20CRC-500/2L	Timeslot 2	-	0x00	0x02	0x08		
P20CRC-500/2L	Timeslot 1	Timeslot 2	0x00	0x02	0x40		
P20CRC-500/2H	Timeslot 1	-	0x00	0x03	0x00		
P20CRC-500/2H	Timeslot 2	-	0x00	0x03	0x08		
P20CRC-500/2H	Timeslot 1	Timeslot 2	0x00	0x30	0x48		
P20CRC-500/3H	Timeslot 1	-	0x00	0x0B	0x00		
P20CRC-500/3H	Timeslot 2	-	0x00	0x0B	0x08		
P20CRC-500/3H	Timeslot 3	-	0x00	0x0B	0x10		
P20CRC-500/3H	Timeslot 1	Timeslot 2	0x00	0x0B	0x48		
P20CRC-500/3H	Timeslot 2	Timeslot 3	0x00	0x0B	0x50		
P20CRC-500/3H	Timeslot 1	Timeslot 3	0x00	0x0B	0x58		
P16CRC-500/3H	Timeslot 1	-	0x20	0x01	0x00		
P16CRC-500/3H	Timeslot 2	-	0x20	0x01	0x08		
P16CRC-500/3H	Timeslot 3	-	0x20	0x01	0x10		
P16CRC-500/3H	Timeslot 1	Timeslot 2	0x20	0x01	0x48		
P16CRC-500/3H	Timeslot 2	Timeslot 3	0x20	0x01	0x50		
P16CRC-500/3H	Timeslot 1	Timeslot 3	0x20	0x01	0x58		
A20CRC-200/1H	-	-	0x00	0x33	0x00		
A20CRC-500/1H	-	-	0x00	0x13	0x00		
A20CRC-500/2H	-	-	0x00	0x1B	0x00		
A20CRC-300/1L		-	0x00	0x12	0x00		

ams Datasheet Page 49
[v1-03] 2017-Sep-06 Document Feedback


PSI5 Timing

The following chapter describes the timings for the different PSI5 modes.

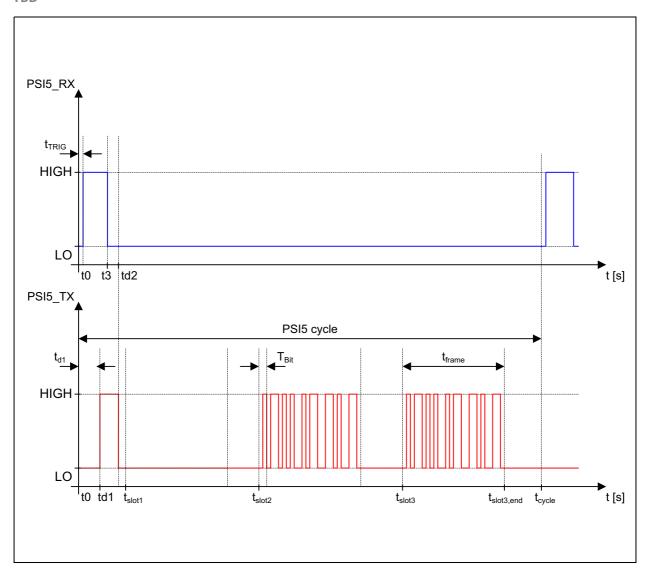
The timing is according the internal clock rate of 2 MHz or 2.67 MHz respectively. This clock rates are derived from the main clock of 16 MHz with a ± 3.5 % variation.

Timing Synchronous Mode P10P-500/3L

Figure 52: Timing Synchronous Mode P10P-500/3L

Page 50ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Figure 53: Timings


Symbol	Parameter	Min	Тур	Max	Unit	Comments
t _{Bit_L}	Bit Time	7.7	8	8.3	μs	16 CLK cycles of the internal 2 MHz clock
t _{frame_10L}	Frame Duration	100.4	104	107.6	μs	208 CLK cycles of the internal 2 MHz clock
t _{TRIG}	Trigger Detection Time	0	4.5	10	μs	From start of synch. pulse
t _{slot1}	Start of Time Slot 1	44	51	59	μs	88 CLK cycles of the internal 2 MHz clock
t _{slot2}	Start of Time Slot 2	181.3	195	210	μs	376 CLK cycles of the internal 2 MHz clock
t _{slot3}	Start of Time Slot 3	328.9	350	372.8	μs	686 CLK cycles of the internal 2 MHz clock
t _{slot3,end}	End of Time Slot 3	427.7	454	482	μs	
t _{cycle,P500}	Cycle Time P10P-500/3L	250	500	-	μs	

ams Datasheet Page 51
[v1-03] 2017-Sep-06 Document Feedback

Timing Synchronous Mode P10P-500/3L with Discharge Pulse

Figure 54: TBD

Page 52ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Figure 55: TBD

Symbol	Parameter	Min	Тур	Max	Unit	Comments
t _{Bit_L}	Bit Time	7.7	8	8.3	μs	16 CLK cycles of the internal 2 MHz clock
t _{frame_10L}	Frame Duration	100.4	104	107.6	μs	208 CLK cycles of the internal 2MHz clock
t _{TRIG}	Trigger Detection Time	0	3.25	7.5	μs	From start of synch. pulse
td1	Signal Discharge	18.5	22.75	1 /× 1 116 1		39 CLK cycles of the internal 2 MHz clock
td2	Discharge Stop Time	38	43.25	50	μs	80 CLK cycles of the internal 2 MHz clock
t _{slot1}	Start of Time Slot 1	44	51	59	μs	88 CLK cycles of the internal 2 MHz clock
t _{slot2}	Start of Time Slot 2	181.3	195	210	μs	376 CLK cycles of the internal 2 MHz clock
t _{slot3}	Start of Time Slot 3	328.9	350	372.8	μs	686 CLK cycles of the internal 2 MHz clock
t _{slot3,end}	End of Time Slot 3	427.7	454	482	μs	
t _{cycle,P500}	Cycle Time P10P-500/3L	250	500	-	μs	

Timing Asynchronous Modes A10P-250/1L and A10P-500/1L

Figure 56: Timing Asynchronous Modes A10P-50/1L and A10P-500/1L

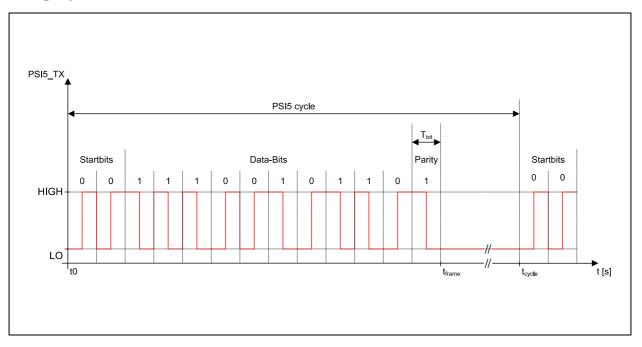


Figure 57: Timings

Symbol	Parameter	Min	Тур	Max	Unit	Comments
t _{Bit_L}	Bit Time	7.7	8	8.3	μs	16 CLK cycles of the internal 2 MHz clock
t _{frame_10L}	Frame Duration	100.4	104	107.6	μs	208 CLK cycles of the internal 2 MHz clock
t _{cycle,250L}	Cycle Time A10P-250/1L	241.2	250	258.8	μs	500 CLK cycles of the internal 2 MHz clock
t _{cycle,500L}	Cycle Time A10P-500/1L	482.5	500	517.5	μs	1000 CLK cycles of the internal 2 MHz clock

Page 54 ams Datasheet **Document Feedback** [v1-03] 2017-Sep-06

Timing Synchronous Modes P20CRC-500/1L, P20CRC-500/2L, P20CRC-500/2H, P20CRC-500/3H, P16CRC-500/3H

The supported protocol modes for synchronous transmission with 20bit format are P20CRC-500/1L, P20CRC-500/2L, P20CRC-500/2H and P20CRC-500/3H. For all these modalities except P20CRC-500/1L it is possible to select also the velocity output. In this case two consecutive timeslots will be used.

The protocol P20CRC-500/3H is specifically studied for sensors that must transmit more data on two consecutive timeslots (e.g. angle and velocity). Usually there should be on the bus one sensor transmitting data on timeslot 1 & 2 and another sensor transmitting on timeslot 3, or a sensor transmitting on timeslot 1 and another transmitting on timeslot 2 & 3. Because of the relative tolerances due to the different clocks on the different sensors, the timing of the second timeslot is different when the sensor is transmitting only on one timeslot (not legacy situation for timeslot 2 only but allowed) and when is transmitting also the velocity using 2 consecutive timeslots, differentiating from the case of timeslot 1 & 2 or timeslot 2 & 3.

When there is a new synchronization pulse from the ECU before the current transmission of the AS5172 is finished the current transmission must be stopped and a new transmission has to be started in the programmed time slots.

Figure 58: Timings

Symbol	Parameter	Min	Тур	Max	Unit	Comments
t _{Bit_L}	Bit Time P20CRC-500/1L/2L	7.7	8	8.3	μs	16 CLK cycles of the internal 2 MHz clock
t _{frame_20L}	Frame Duration P20CRC-500/1L/2L	193	200	207	μs	400 CLK cycles of the internal 2 MHz clock
T _{Bit_H}	Bit Time P20CRC-500/2H/3H	5.06	5.25	5.44	μs	14 CLK cycles of the internal 2.67 MHz clock
t _{frame_20H}	Frame Duration P20CRC-500/2H/3H	126.66	131.25	135.84	μs	350 CLK cycles of the internal 2.67 MHz clock
t _{TRIG}	Trigger Detection Time	0	4.5	10	μs	From start of synch. pulse
t _{slot1_20L}	Start of Time Slot 1 P20CRC-500/1L/2L	44	48.5	56	μs	88 CLK cycles of the internal 2 MHz clock

ams Datasheet Page 55
[v1-03] 2017-Sep-06 Document Feedback

Symbol	Parameter	Min	Тур	Max	Unit	Comments
t _{slot1_20L} ,end	End of Time Slot 1 P20CRC-500/1L/2L	234	251	269	μs	400 CLK cycles of the internal 2 MHz clock
t _{slot1_20H}	Start of Time Slot 1 P20CRC-500/2H	44	51	59	μs	119 CLK cycles of the internal 2.67 MHz clock
t _{slot1_20H} ,end	End of Time Slot 1 P20CRC-500/2H	169	182.25	198	μs	
t _{slot1_20H}	Start of Time Slot 1 P20CRC-500/3H	44	45	56	μs	112 CLK cycles of the internal 2.67 MHz clock
t _{slot1_20H} ,end	End of Time Slot 1 P20CRC-500/3H	175.4	177.5	190.5	μs	
t _{slot2_20L}	Start of Time Slot 2 P20CRC-500/2L	267.5	273	288	μs	540 CLK cycles of the internal 2 MHz clock
t _{slot2_20L} ,end	End of Time Slot 2 P20CRC-500/2L	464	473	492	μs	
t _{slot2_20H}	Start of Time Slot 2 P20CRC-500/2H	203.5	218.25	235.5	μs	570 CLK cycles of the internal 2.67 MHz clock
t _{slot2_20H} ,end	End of Time Slot 2 P20CRC-500/2H	328.5	349.5	374.5	μs	
t _{slot2_20H}	Start of Time Slot 2 P20CRC-500/3H	183	186.5	199.5	μs	490 CLK cycles of the internal 2.67 MHz clock
t _{slot2_20H} ,end	End of Time Slot 2 P20CRC-500/3H	313.5	319	334	μs	
t _{slot2_20H}	Start of Time Slot 2 P20CRC-500/3H with Velocity on Time Slot 1 & 2	180	183.5	196.5	μs	482 CLK cycles of the internal 2.67 MHz clock
t _{slot2_20H} ,end	End of Time Slot 2 P20CRC-500/3H with Velocity on Time Slot 1 & 2	310.5	316	331	μs	
t _{slot2_20H}	Start of Time Slot 2 P20CRC-500/3H with Velocity on Time Slot 2 & 3	195.5	199	212	μs	524 CLK cycles of the internal 2.67 MHz clock
t _{slot2_20H} ,end	End of Time Slot 2 P20CRC-500/3H with Velocity on Time Slot 2 & 3	326	331.5	346.5	μs	

Page 56ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Symbol	Parameter	Min	Тур	Max	Unit	Comments
t _{slot3_20H}	Start of Time Slot 3 P20CRC-500/3H	336	341.5	357	μs	905 CLK cycles of the internal 2.67 MHz clock
t _{slot3_20H} ,end	End of Time Slot 3 P20CRC-500/3H	466.5	474	491.5	μs	
t _{cycle,P500}	Cycle Time P20CRC-500/1L/2L	270	500	-	μs	
t _{cycle,P500}	Cycle Time P20CRC-500/2H/3H	250	500	-	μs	

For P16CRC-500/3H mode, bit timings and the frame start timings are the same as of the P20CRC-500/3H mode. All other timings are reported in table below:

Figure 59: Timings

Symbol	Parameter	Min	Тур	Max	Unit	Comments
t _{frame_16H}	Frame Duration P16CRC-500/3H	106.4	110.25	114.1	μs	294 CLK cycles of the internal 2.67 MHz clock
t _{slot1_16H} ,end	End of Time Slot 1 P16CRC-500/3H	153.5	156.5	169.5	μs	
t _{slot2_16H} ,end	End of Time Slot 2 P16CRC-500/3H	292.5	298	313	μs	
t _{slot3_16H} ,end	End of Time Slot 3 P16CRC-500/3H	445.5	453	470.5	μs	

ams Datasheet Page 57
[v1-03] 2017-Sep-06 Document Feedback

Timing Asynchronous Modes A20CRC-200/1H and A20CRC-300/1L

Figure 60: Timing Asynchronous Modes A20CRC-200/1H and A20CRC-300/1L

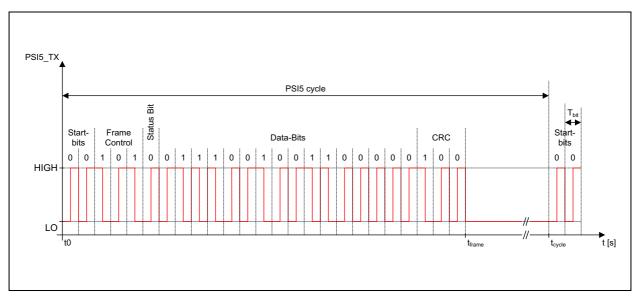
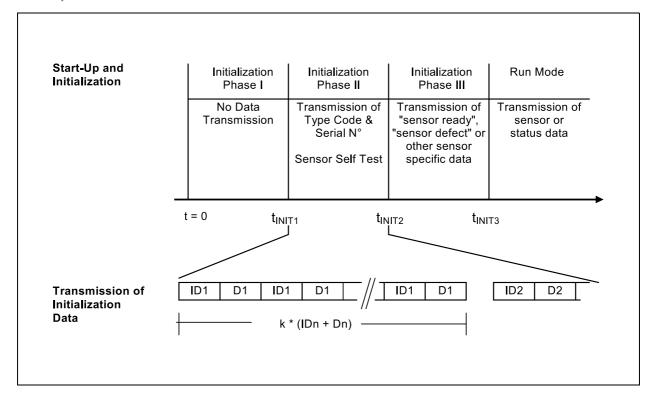


Figure 61: Timings

Symbol	Parameter	Min	Тур	Max	Unit	Comments
t _{Bit_L}	Bit Time A20CRC-300/1L	7.7	8	8.3	μs	16 CLK cycles of the internal 2 MHz clock
t _{frame_20L}	Frame Duration A20CRC-300/1L	193	200	207	μs	400 CLK cycles of the internal 2 MHz clock
t _{cycle,300L}	Cycle Time A20CRC-300/1L	298.5	300	310.5	μs	600 CLK cycles of the internal 2 MHz clock
t _{Bit_H}	Bit Time A20CRC-200/1H	5.06	5.25	5.44	μs	14 CLK cycles of the internal 2.67 MHz clock
t _{frame_20H}	Frame Duration A20CRC-200/1H	126.66	131.25	135.84	μs	350 CLK cycles of the internal 2.67 MHz clock
t _{cycle,200H}	Cycle Time A20CRC-200/1H	193	200	207	μs	533 CLK cycles of the internal 2.67 MHz clock

Page 58ams DatasheetDocument Feedback[v1-03] 2017-Sep-06



PSI5 Initialization

The Startup and Initialization is working according the PSI5 standard.

After each power on or undervoltage reset, the AS5172 performs an internal initialization which is divided into three phases:

Figure 62: Start-Up and Initialization

Initialization Phase I

During the first initialization phase, no data is transmitted and the ECU can perform a connectivity test. Duration 50 – 150ms; typical 100ms. If using synchronous transmission mode the ECU can terminate the initialization phase I by sending the sync pulse at least 4ms after AS5172 power on.

Initialization Phase II

During the second initialization phase, the AS5172 transmits sensor and application specific information to the ECU.

In High Resolution mode the AS5172 transmits the same PSI5 frame on both programmed time slots. The same is valid if the velocity output is activated.

For the 20-bit mode the 10-bit values are extended to 20 bits. This is done by shifting the data bits [9:0] to bits A15 to A6. The remaining 6 LSBs are filled with "0". The frame control bits (F0 to F2) and the status bit (E0) are at "0".

ams Datasheet Page 59
[v1-03] 2017-Sep-06 Document Feedback

Figure 63: Initialization Phase in 20-Bit Mode

	art its		Framo Contro		Error Status		16-Bit Sensor Data (LSB first)										CRC							
S1	S2	F0	F1	F2	E0	Α0	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	C2	C1	C0
0	0	0	0	0	0	0	0 0 0 0 0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9								C2	C1	C0							

Figure 64: Initialization Phase in 16-Bit Mode

Start	Bits	Error Status	15-Bit Sensor Data (LSB first)									CRC								
S 1	S2	EO	A0	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	C2	C1	C0
0	0	0	0	0	0	0	0	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	C2	C1	C0

Initialization Phase III

During the third initialization phase, the sensor transmits "Sensor Ready", "Sensor Defect" or other status data. If the sensor is defective, it will continue to send the "Sensor Defect" messages and other optional status data until it is powered off.

In High Resolution mode the AS5172 transmits the same PSI5 frame on both programmed time slots. The same is valid if the velocity output is activated.

In overvoltage, undervoltage case and AGC High, Low the AS5172 is not reporting this errors in initialization phase III but it will send the error code in the run mode

[&]quot;Sensor Ready" Code 0x1E7 at A15 to A6 – if the sensor is OK

[&]quot;Sensor Defect" Code 0x1F4 at A15 to A6 – if there is an diagnostic error

Initialization Phase Data Format

ID blocks and data blocks are sent in an alternating sequence, "k" times each. The block identifiers are used for a numbering of the following data nibbles. After any power-on or undervoltage reset, the internal logic starts up with an initialization program. The factor "k" can vary between 1 and 4 and can be configured with "Init_phase_repetition" in register 0x12.

Figure 65: Block ID and Data Nibbles

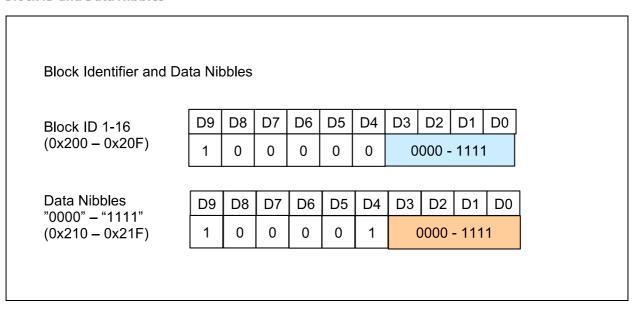
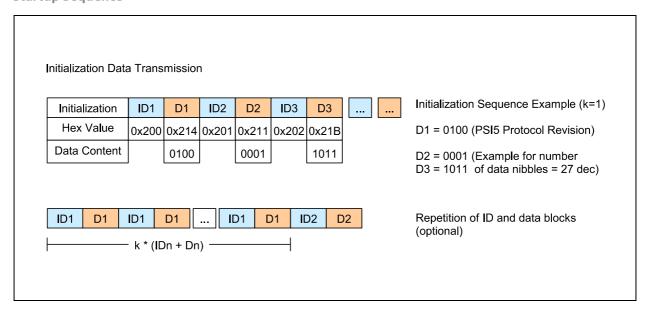



Figure 66: Startup Sequence

ams Datasheet Page 61
[v1-03] 2017-Sep-06 Document Feedback

Initialization Data Content

TBD

Figure 67: Initialization Content

Field ID#	Nibble ID#	Name	Description	Register Address	Value
F1	D1	Protocol revision	PSI5 V1.3	Hard-coded	0100
''	Di	Trotocorrevision	PSI5 V2.1	Hard-coded	0110
F2	D2, D3	Number of data blocks	Number of data blocks = 22	Hard-coded	0001 0000
12	D2, D3	Number of data blocks	Number of data blocks = 32	Hard-coded	0010 0110
F3	D4, D5	Manufacturer code	Vendor ID	0x1E	Customer
F4	D6, D7	Sensor type	Sensor type	0x0E	Customer
F5	D8, D9	Sensor parameter	Sensor parameter	0x0E, 0x0F	Customer
F6	D10, D11	Sensor code (sensor)	Sensor code (sensor)	0x0F, 0x10	Customer
F7	D12	Sensor code (vehicle)	Sensor code (vehicle)	0x10	Customer
F8	D13 – D16	Production date	Production date	0x0C, 0x0D	Customer
F9	D17 – D22	Lot and serial number	ams ID	0x02, 0x03, 0x04	Factory

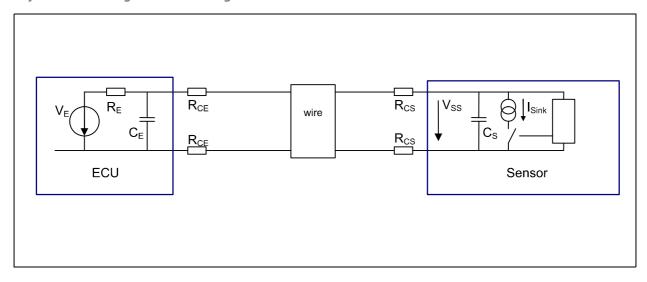
Run Mode

After finishing Initialization Phase III the AS5172 enters Run Mode. If the sensor is configured in asynchronous mode it will start transmitting data continuously according PSI5 standard. Using the synchronous mode, the transmission is triggered by a sync pulse of the ECU.

If the AS5172 is configured in asynchronous mode, it will transmit the data continuously according the PSI5 Specification.

In case of an application or sensor error, AS5172 is performing in run mode according the description in chapter Diagnostic

Page 62ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

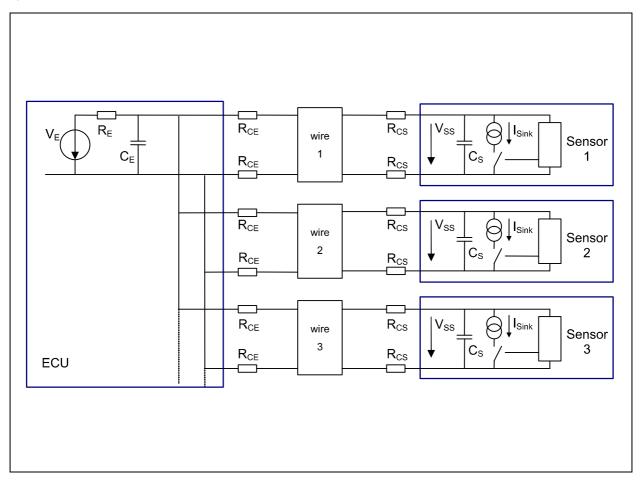

Communication Modes

Asynchronous Mode (PSI5-A)

PSI5-A describes a point-to-point connection for unidirectional, asynchronous data transmission.

Each sensor is connected to the ECU by two wires. After switching on the power supply, the sensor starts transmitting data to the ECU periodically. Timing and repetition rate of the data transmission are controlled by the sensor.

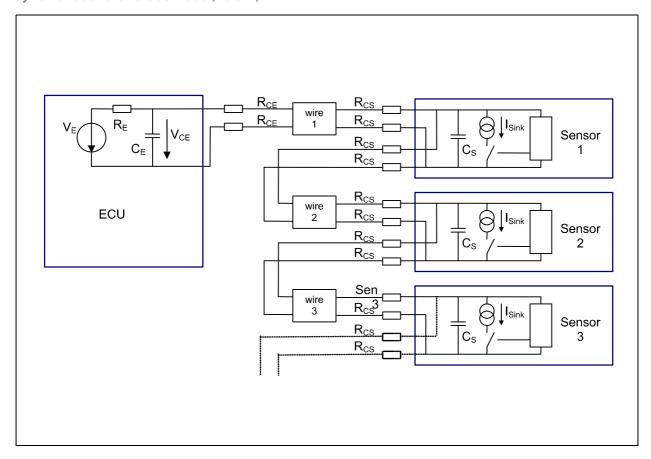
Figure 68: Asynchronous Single Sensor Configuration


ams Datasheet Page 63
[v1-03] 2017-Sep-06 Document Feedback

Synchronous Parallel Bus Mode (PSI5-P)

PSI5-P describes a bus configuration for synchronous data transmission of one or more sensors. Each sensor is connected to the ECU by a separate pair of wires (star topology). Each data transmission period is initiated by a voltage synchronization signal from the ECU to the sensors. Having received the synchronization signal, each sensor starts transmitting its data with the corresponding time shift in the assigned time slot.

Figure 69: Synchronous Parallel Bus Mode (PSI5-P)


Page 64ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Synchronous Universal Bus Mode (PSI5-U)

PSI5-U describes a bus configuration for synchronous data transmission of one or more sensors. The sensors are connected to the ECU in different wiring topologies including splices or pass-through configurations. Each data transmission period is initiated by a voltage synchronization signal from the ECU to the sensors. Having received the synchronization signal, each sensor starts transmitting its data with the corresponding time shift in the assigned time slot.

Figure 70: Synchronous Parallel Bus Mode (PSI5-P)

ams Datasheet Page 65 **Document Feedback**

Diagnostic

The AS5172 allows a high ASIL level in the application through a robust embedded self-diagnostic. (e.g. ASIL A)

In general, AS5172 sensor is developed as SEooC according the ISO26262. For more information refer to the AS5172 Safety Manual which is available on request to the application engineering team.

Figure 71: Diagnostic Table

SM	Failure Mode	Recoverable	10-Bit Mode Error Info	16-Bit Mode Error Info	20-Bit Mode Error Info	
SM1	Watchdog fail	-	Permanent low level	Permanent low level	Permanent low level	
SM2	Offset compensation	Х	0x1ED	0x1ED at A9 to A0 E0 = 1	0x1ED at A15 to A6 E0 = 1	
SM3	CORDIC overflow	-	0x1F4	0x1F4 at A9 to A0 E0 = 1	0x1F4 at A15 to A6 E0 = 1 A0 = 1	
SM4	Magnetic field out of range	Х	0x1EB	0x1EB at A9 to A0 E0 = 1	0x1EB at A15 to A6 E0 = 1	
SM5	VDD3V3 undervoltage	3V3 undervoltage X		Permanent low level	Permanent low level	
SM6	Reverse polarity	Х	Permanent low level	Permanent low level	Permanent low level	
SM7	VDD overvoltage	Х	0x1EA	0x1EA at A9 to A0 E0 = 1	0x1EA at A15 to A6 E0 = 1	
SM8	VDD undervoltage under POR level	-	Permanent low level	Permanent low level	Permanent low level	
SM9	VDD undervoltage	VDD undervoltage X 0x1EC		0x1EC at A9 to A0 E0 = 1	0x1EC at A15 to A6 E0 = 1	
SM10	OTP checksum error	-	0x1F4	0x1F4 at A9 to A0 E0 = 1	0x1F4 at A15 to A6 E0 = 1 A2 = 1	
SM11	Broken Hall element	-	0x1F4	0x1F4 at A9 to A0 E0 = 1	0x1F4 at A15 to A6 E0 = 1 A3 = 1	

Note(s):

Page 66ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

 $^{{\}bf 1.}\ Recoverable; Sensor\ is\ working\ if\ the\ error\ condition\ is\ solved$

Diagnostic Procedure in PSI5

If a OTP checksum error (SM10) occurs after the first OTP download the PSI5 interface shows a "Sensor Defect" Code - 0x1F4 in initialization phase III. This error code will be sent until the device is powered off.

If any other diagnostic error condition occurs during initialization phase I or II the error will be masked. It will then be reported in initialization phase III by transmitting "Sensor Defect" Code - 0x1F4.

When a diagnostic error condition appears during PSI5 run mode the specific error code will be transmitted on the PSI5 interface.

During Run Mode:

When a diagnostic error condition appears during the PSI5 run mode the error code "Sensor Defect" (0x1F4) has to be transmitted on the PSI5 interface until the AS5172 is reset by the ECU.

The internal diagnostic error conditions are:

- CORDIC Overflow
- · OTP Check fail
- · Broken Hall element
- · Broken channel
- Watchdog

When an watchdog error is present the PSI5_out signal from the digital part is forced to "0". Therefore the PSI5 interface shows a permanent low level current as long as the watchdog error is present.

When an VDD3 undervoltage is present the PSI5_out signal from the digital part is forced to "0". Therefore the PSI5 interface shows a permanent low level current as long as the VDD3 undervoltage is present.

In magnet field strength out of spec, the AS5172 is transmitting the error code 0x1EB during the PSI5 run mode and keeps transmitting this error code until the flag goes to low or the AS5172 is powered off by ECU.

In overvoltage, the AS5172 is transmitting the error code 0x1EA during the PSI5 run mode and keeps transmitting this error code until the flag from the analog part goes to low or AS5172 is powered off by ECU.

In undervoltage (between threshold and min VDD), the AS5172 is transmitting the error code 0x1EC during the PSI5 run mode and keeps transmitting this error code until the flag from the analog part goes to low or AS5172 is powered off by ECU.

ams Datasheet Page 67
[v1-03] 2017-Sep-06 Document Feedback

When an undervoltage below the POR threshold is present the PSI5_out signal from the digital part is forced to "0". Therefore the PSI5 interface shows a permanent low level current as long as the undervoltage is present.

When using the 20bit or 16Bit mode the status message "Sensor Defect" (code 0x1F4) is transmitted at the bits A15 to A6 and also the bit E0 is set to "1" when there is a diagnostic error condition. The frame control bits (F2 to F0) keep the functionality of the frame counter. On the bits A5 to A0 a detailed failure code is transmitted with the following bit assignment

System Level EMC/ESD

AS5172A in the (SiP Package) is built to fulfill system level EMC and ESD standards.

A full certified test report is available upon request. Please get in contact with the application engineering team.

Page 68ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Application Information

Signature Calculation

The OTP of AS5172 uses a BIST technique with Multiple Input Signature Register circuits. To activate this BIST a calculation of the Signature Byte is necessary which has to be stored in the OTP during programming. For calculating the signature byte the content of the whole memory (0x01 to 0x1F) has to be read out. Out of this information the following calculation has to be done.

```
Byte: 0x01 = data1
Byte: 0x02 = data2
Byte: 0x1F = data31
```

```
unsigned int misr, misr_shift, misr_xor, misr_msb;
      misr = 0;
      for (int i = 0; i < 30; i++) {
           misr_shift = (misr << 1);
           misr_xor = (misr_shift ^ content[i]) % 256;
           misr_msb = misr / (128);
           if (misr_msb == 0)
              misr = misr_xor;
           else
              misr = (misr_xor ^ 29) % 256;
content= { data1,data2,data3,data4,data5,data6,
data7,data8,data9,data10,data11,
data12,data13,data14,data15,data16,
data17,data18,data19,data20,data21,data22,
data23,data24,data25,data26,data27,data28,
data29,data30,data31};
```

ams Datasheet Page 69 **Document Feedback**

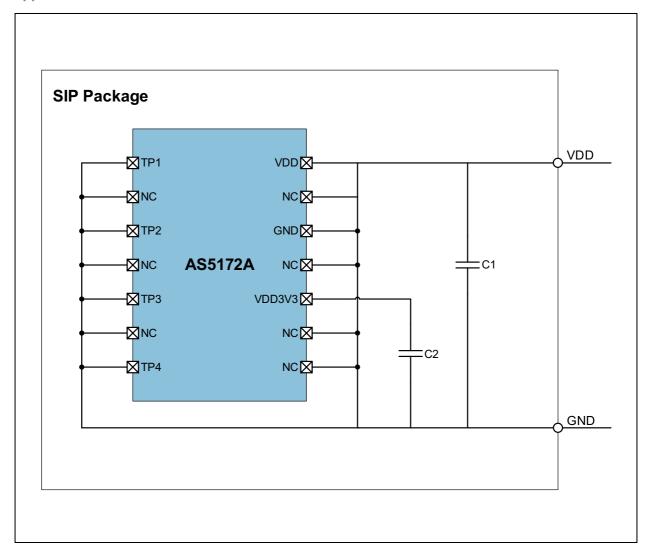

Programming Procedure

For further information about the programming please refer to application note AN_AS5172_Programming_Procedure_V1-00. Please get in contact with the application engineering team.

Recommended Application Diagrams and Built-In Capacitors

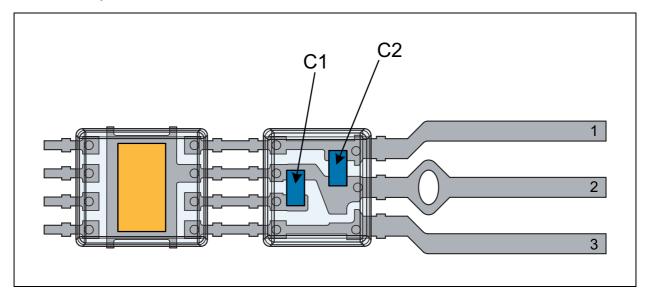
AS5172B

Figure 72:
Application Schematic for AS5172B



Page 70ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

AS5172A


Figure 73:
Application Schematic for AS5172A

ams Datasheet Page 71
[v1-03] 2017-Sep-06 Document Feedback

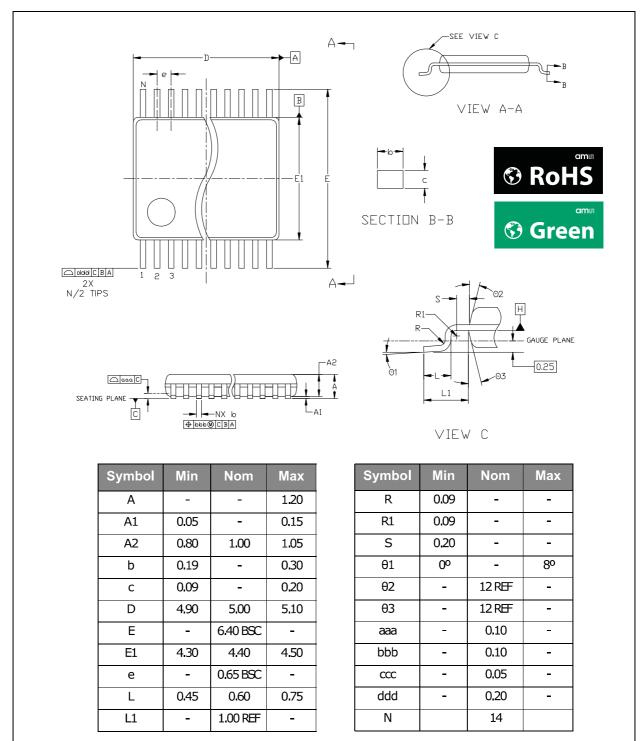
Figure 74: AS5172A Components

The built-in capacitors are ceramic multilayer type X8R. The capacitors are built for high temperature applications up to 150°C .

Figure 75:
AS5172 Component Specification (AS5172A)

Symbol	AS5172A Components	Min	Тур	Max	Unit	Notes
C1	VDD buffer capacitor	13.5	15	16.5	nF	Included in the SIP package TDK CGA3E2X8R1H153K080AA
C2	VDD3V3 regulator capacitor		470		nF	Included in the SIP package TDK CGA3E3X8R1C474K080AB
C2_ESR	VDD3V3 regulator capacitor ESR			300	ΜΩ	

Figure 76: AS5172 Component Specification (AS5172B)


Symbol	AS5172B Components	Min	Тур	Max	Unit	Notes
C1	VDD buffer capacitor	13.5	15	16.5	nF	
C2	VDD3V3 regulator capacitor		470		nF	
C2_ESR	VDD3V3 regulator capacitor ESR			300	ΜΩ	

Page 72ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Package Drawings & Markings

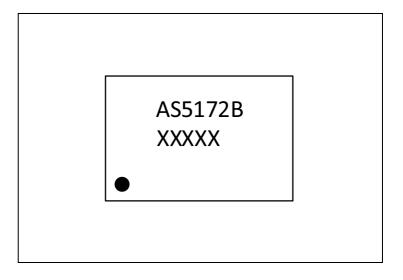
Figure 77: TSSOP14 Packaging Outline Drawing

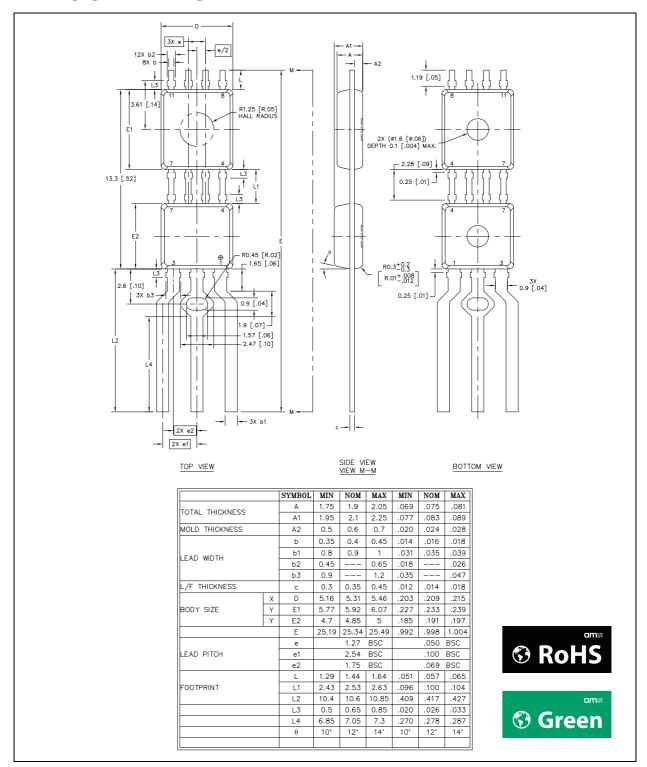
Note(s):

- 1. Dimensioning and tolerancing conform to ASME Y14.5M 1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. N is the total number of terminals.

ams Datasheet Page 73
[v1-03] 2017-Sep-06 Document Feedback

Figure 78: TSSOP14 Marking Drawings




Figure 79: TSSOP14 Packaging Code

XXXXX	
Tracecode	

Page 74ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Figure 80: SIP Packaging Outline Drawing

Note(s):

- 1. All linear dimensions are in millimeters, inches are indicated in brackets [in]. Angles are in degrees.
- $2.\,Dimension\,D\,does\,not\,include\,mold\,flash,\,protrusions\,or\,gate\,burrs.\,Mold\,flash,\,protrusions\,or\,gate\,burrs\,shall\,not\,exceed\,0.3mm\,(0.012in)$ per side.
- 3. Dimension b and b1 does not include dam bar protrusion and matte tin plating. Allowable dam bar protrusion shall be 0.3mm (0.012in) total in excess of the b, b1, b2 and b3 dimension at maximum material condition.
- $4.\,Dimension\,E1\,and\,E2\,does\,not\,include\,interlead\,flash\,or\,protrusion.\,Interlead\,flash\,or\,protrusion\,shall\,not\,exceed\,0.3\,mm\,(0.012in)\,per\,side.$
- 5. Dimension tolerance: ±0.15mm unless otherwise specified.

ams Datasheet Page 75 Document Feedback

[v1-03] 2017-Sep-06

Figure 81: SIP Marking Drawings

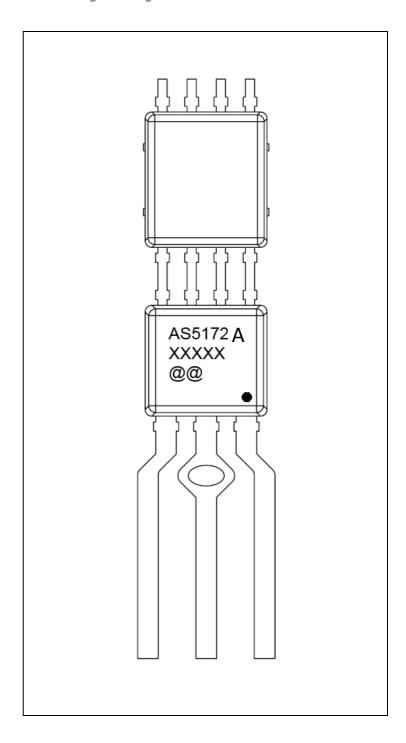
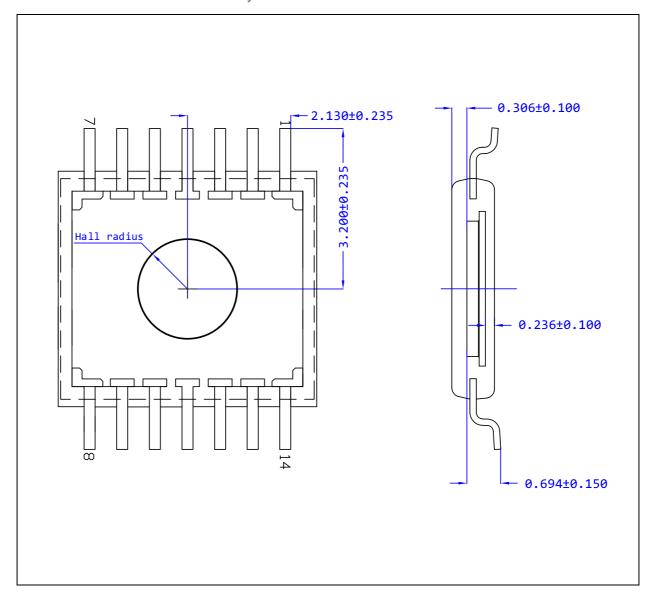


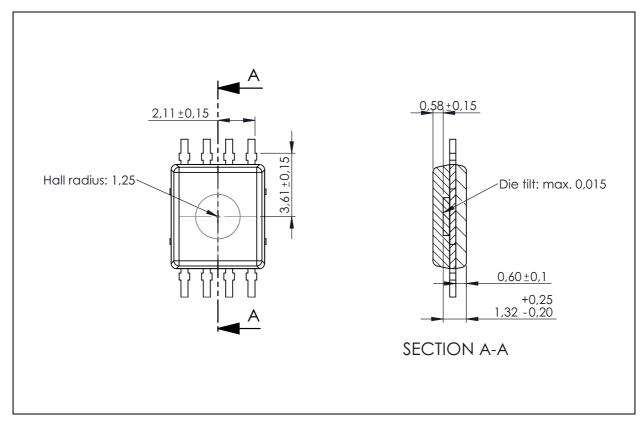
Figure 82: SIP Packaging Code


XXXXX	@@
Tracecode	Sublot identifier

Page 76
Document Feedback

Mechanical Data

Figure 83: **TSSOP14** Die Placement and Hall Array Position


Note(s):

- 1. Dimensions are in mm.
- $2. \ The \ Hall \ array \ center \ is \ located \ in \ the \ center \ of \ the \ IC \ package. \ Hall \ array \ radius \ is \ 1.25mm.$
- 3. Die thickness is 203 μm nominal.

ams Datasheet Page 77 Document Feedback

Figure 84: SIP Die Placement and Hall Array Position

Note(s):

- 1. All dimensions in mm.
- 2. Tolerances shown represent expected values and are to be verified. Tolerances will be guaranteed prior to product release.

Mechanical Information

For information in terms of manufacturability with different processes, please refer to the following document, which is available upon request: AN_ams_SIP Handling_V1.01.pdf

Page 78ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Ordering & Contact Information

Figure 85: **Ordering Information**

Ordering Code	Package	Marking	Delivery Form	Delivery Quantity
AS5172B-HTST	TSSOP-14	AS5172B	13" Tape & Reel in dry pack	4500 pcs/reel
AS5172B-HTSM	TSSOP-14	AS5172B	7" Tape & Reel in dry pack	500 pcs/reel
AS5172A-ASIT	SIP	AS5172A	13" Tape & Reel in dry pack	2000 pcs/reel

Buy our products or get free samples online at:

www.ams.com/ICdirect

Technical Support is available at:

www.ams.com/Technical-Support

Provide feedback about this document at:

www.ams.com/Document-Feedback

For further information and requests, e-mail us at:

ams_sales@ams.com

For sales offices, distributors and representatives, please visit:

www.ams.com/contact

Headquarters

ams AG **Tobelbader Strasse 30** 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website: www.ams.com

ams Datasheet Page 79 **Document Feedback**

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Page 80

Document Feedback

[v1-03] 2017-Sep-06

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

ams Datasheet Page 81
[v1-03] 2017-Sep-06 Document Feedback

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Page 82ams DatasheetDocument Feedback[v1-03] 2017-Sep-06

Revision Information

Changes from 1-01 (2017-Jul-24) to current revision 1-03 (2017-Sep-06)	Page			
1-01 (2017-Jul-24) to 1-02 (2017-Sep-04)				
Updated Figure 7	7			
Updated Figure 8	8			
Updated Figure 19	21			
1-02 (2017-Sep-04) to 1-03 (2017-Sep-06)				
Updated Figure 8	9			
Updated Figure 20	24			

Note(s):

- 1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- 2. Correction of typographical errors is not explicitly mentioned.

ams Datasheet Page 83 Document Feedback

Content Guide

1 General Description

- 2 Key Benefits and Features
- 2 Applications
- 3 Block Diagram

4 Pin Assignments

4 Pin Diagram

7 Absolute Maximum Ratings

- 8 System Electrical and Timing Characteristics
- 10 Electrical System Characteristics
- 12 Magnetic Characteristics
- 13 Electrical and Timing Characterization of the PSI5 Interface
- 13 Synchronization Signal PSI5 V1.3
- 16 Synchronization Signal Detection
- 18 Synchronization Signal with Discharge by AS5172
- 21 PSI5 Block Parameters

23 Detailed Description

24 Register Description

- 24 OTP (non-volatile memory) Register Description
- 29 Volatile Memory Register Description
- 29 SFR Description
- 30 Programming
- 30 UART-Over-PSI5
- 32 UART Protocol
- 33 Reading of the 14-Bit Angle Information
- 33 Reading the Magnitude and AGC
- 33 Exiting the Communication Mode
- 34 Burn the OTP Registers

34 AS5172 Transfer Function

36 Multiple Quadrants

- 37 Extended Magnetic Input Range
- 37 Rolling Counter
- 38 Angular Velocity Measurement

39 Special Functions

- 39 14-Bit Mode
- 39 Quadrant Detection
- 39 Extended PSI5 Initialization Phase

40 PSI5 Interface

- 40 Bit Encoding AS5172 to ECU Communication
- 41 Data Frames AS5172 to ECU Communication
- 41 Data Ranges
- 48 PSI5 Modes
- 50 PSI5 Timing
- 59 PSI5 Initialization
- 63 Communication Modes
- 66 Diagnostic
- 68 System Level EMC/ESD

Page 84

Document Feedback

[v1-03] 2017-Sep-06

- **69 Application Information**
- 69 Signature Calculation
- 70 Programming Procedure
- 70 Recommended Application Diagrams and Built-In Capacitors
- 70 AS5172B
- 71 AS5172A
- 73 Package Drawings & Markings
- 77 Mechanical Data
- 78 Mechanical Information
- 79 Ordering & Contact Information
- 80 RoHS Compliant & ams Green Statement
- 81 Copyrights & Disclaimer
- **82 Document Status**
- 83 Revision Information

ams Datasheet Page 85
[v1-03] 2017-Sep-06 Document Feedback