

# LC DISPLAY DRIVER WITH 18 DIGITS, 6 SYMBOLS AND CLOCK/TIMER

#### **Key Features**

- $\Box\,$  Very low operating current, typ. 30  $\mu A @$  3V
- Low power oscillator using 32.768 kHz Xtal
- □ 2-wire interface compatible to AS2574B
- □ 18 digits by 7 segments
- □ 6 symbols
- □ 24 hour clock showing hours and minutes
- Timer automatically showing elapsed time in minutes and seconds after each telephone conversation
- 33 LCD segment outputs and 4 LCD backplane outputs
- □ 4 times multiplex mode with a cycle time of 128 Hz
- □ Mode select pin for selecting clock function

#### **General Description**

The AS2590 is an integrated CMOS device for driving a liquid crystal display intended for use in telephones. The 2-wire serial interface is compatible to the dialler AS2574B.

The extreme low operating current allows the circuit to be operational also during on-hook which is necessary in order to the use of the clock function. In on-hook condition the circuit can be supplied by a small leakage current from the telephone line or from a small 3V battery.

Whether the oscillator shall continue operating or be stopped during on-hook is determined by the mode pin, MS.

### SPEECH CIRCUIT ₽ Vdd Vdd V23 MS DIALLER 32.768kHz CONTROLLER 590 X1 V13 S AS2574A/B Х2 VLCD **KEYBOARD** BIAS SDA SCL Vss Vss

#### Package

Available in 48 pin DIP and 52 pin PLCC.

### **Pin Description**

| DIL                                                                        | PLCC                                                                       | Symbol                                                                                                | Function                                            |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1<br>2                                                                     | 1<br>2                                                                     | BP1<br>BP0                                                                                            | Blackplanes                                         |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                          | 3<br>4<br>5<br>6<br>8<br>9<br>10<br>11<br>12<br>13                         | S0<br>S1<br>S2<br>S3<br>S4<br>S5<br>S6<br>S7<br>S8<br>S9                                              | Segment outputs                                     |
| 13                                                                         | 14                                                                         | V1/3                                                                                                  | 1/3 of $V_{_{DD}}$ pin for external voltage divider |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23                   | 15<br>16<br>17<br>18<br>19<br>21<br>22<br>23<br>24<br>25                   | S10<br>S11<br>S12<br>S13<br>S14<br>S15<br>S16<br>S17<br>S18<br>S19                                    | Segment outputs                                     |
| 24                                                                         | 26                                                                         | V <sub>SS</sub>                                                                                       | Negative supply pin                                 |
| 25<br>26                                                                   | 27<br>28                                                                   | BP3<br>BP2                                                                                            | Back plane outputs                                  |
| 27                                                                         | 29                                                                         | V2/3                                                                                                  | 2/3 of $V_{_{DD}}$ pin for external voltage divider |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 30<br>31<br>32<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43 | S32<br>S31<br>S30<br>S29<br>S28<br>S27<br>S26<br>S25<br>S24<br>S25<br>S24<br>S23<br>S22<br>S21<br>S20 | Segment outputs                                     |
| 41                                                                         | 44                                                                         | $V_{LCD}$                                                                                             | Negative supply pin for LC display                  |

#### **Pin Description Continued**

| DIL      | PLCC     | Symbol            | Function                                                                                                           |
|----------|----------|-------------------|--------------------------------------------------------------------------------------------------------------------|
| 42<br>43 | 45<br>47 | SDA<br>SCL        | Serial data line input to dialler/controller<br>Clock line input of serial data link                               |
| 44       | 48       | V <sub>BIAS</sub> | Oscillator bias input, recommended bias resistor 2.2 $\mbox{M}\Omega$                                              |
| 45<br>46 | 49<br>50 | XTAL1<br>XTAL2    | Oscillator pins for 32.768 kHz crystal, a resistor and two capacitors                                              |
| 47       | 51       | MS                | Mode select input: $MS = V_{SS} \rightarrow clock/timer disabled$<br>$MS = V_{DD} \rightarrow clock/timer enabled$ |
| 48       | 52       | V <sub>DD</sub>   | Positive supply pin                                                                                                |



- SB0 = loudspeaker on (blinking with 1 Hz)
- SB1 = microphone muted (blinking with 1 Hz)
- SB2 = 2nd key function enabled
- SB3 = number stored
- SB4 = number buffered in FIFO, not stored
- SB5 = colon for clock and timer (blinking when clock is shown)



Figure 2

Table 1 Segments Digits

| Digit | Description | I  |    | S  | egm | ent |    |    |
|-------|-------------|----|----|----|-----|-----|----|----|
|       |             | Α  | В  | С  | D   | Е   | F  | G  |
| 0     | numbers     | on | on | on | on  | on  | on |    |
| 1     | 09          |    | on | on |     |     |    |    |
| 2     |             | on | on |    | on  | on  |    | on |
| 3     |             | on | on | on | on  |     |    | on |
| 4     |             |    | on | on |     |     | on | on |
| 5     |             | on |    | on | on  |     | on | on |
| 6     |             | on |    | on | on  | on  | on | on |
| 7     |             | on | on | on |     |     |    |    |
| 8     |             | on | on | on | on  | on  | on | on |
| 9     |             | on | on | on |     |     | on | on |
| а     | letter A    |    |    | on | on  | on  |    | on |
| b     | letter B    |    |    | on | on  | on  | on | on |
| С     | letter C    |    |    |    | on  | on  |    | on |
| d     | Letter D    |    | on | on | on  | on  |    | on |
| _     | underscore  |    |    |    | on  |     |    |    |
| *     | asterisk    |    | on | on |     | on  | on |    |
| #     | hash        | on |    | on | on  | on  |    | on |
| -     | pause       |    |    |    |     |     |    | on |
| P/T   | temp. MF    | on |    |    | on  |     |    | on |
| r     | recall      |    |    |    |     | on  |    | on |

## AS2590

### Description

#### **Operating Modes**

The following two operating modes are pin selectable:

#### Mode 0:

Clock and timer are disabled and the oscillator is stopped when going on-hook (command BLANK ALL).

#### Mode 1:

Clock and timer functions are enabled, clock is displayed both during off- and on-hook (assuming that clock is set). When going from off-hook to on-hook, the timer content (elepsed time) is displayed for 6 seconds (assuming that a start timer command was received).

#### Clock

After a power up reset the clock is disabled. The clock will not be displayed until a valid set clock procedure has been performed (mode 1 only). The format of the clock is hh:mm and the leading zero of the hours is suppressed and symbol 5 (:) is blinking with a frequency of 1 Hz. The timer is running when off-hook and displayed for 6 seconds when going on-hook. The content of the timer (elapsed time) is shown in stead of the clock in the format mm:ss.

If a SET CLOCK command is received the display is blanked, four underscore symbols are displayed where the 4 digits of the clock will be entered (the 4 most right digits) and symbol 5 is turned on (\_\_: \_\_). The next 4 data words are interpreted as the time (hh mm). The fourth digit terminates the SET CLOCK and starts the clock with the seconds set to zero.

If less than 4 data words (digits) are received the first command (normally a BLANK DIGITS or a BLANK ALL) will terminate the SET CLOCK. But as the procedure was incomplete, it is regarded as invalid and further clock display is disabled. The next valid SET CLOCK command will enable the clock again. The SET CLOCK command does not effect the timer.

The time-out condition (approx. 15 seconds) when setting clock is recognized by the dialler/controller (e.g. AS2574). If a time-out condition occours the dialler sends a BLANK ALL command to terminated the SET CLOCK.

#### Timer

The following commands effect the timer:

- START TIMER and START FIFO; they start the timer. If the timer is already running, it cannot be restarted by one of these commands before stopping the timer with the BLANK ALL command.

- Power up; enables subsequent start timer commands.
- BLANK ALL; clears the whole display (including special symbols) and displays the timer contents for 6 seconds (if clock/timer function is enabled) or until a new START TIMER/FIFO command is received. Then it returns to normal display mode.
- if any command or data is received by the serial interface within the time out period after a BLANK ALL command, the timer display will be blanked or replaced by the clock display.

The timer is displayed in the format mm:ss with the leading zero of the minutes suppressed and symbol 5 (:) turned on.

#### **LCD Outputs**

The 33 segment outputs and 4 backplane outputs can drive a customized liquid crystal display in 1:4 multiplex mode. Two reference voltages V1/3 and V2/3 are provided by an external voltage divider.

#### **Digits and Special Symbols**

The display consists of 18 seven segment digits and 6 special symbols (see figure 1):

- D0...D17; D0 is the most left seven segment digit, the possible numbers displayed by one digit are shown in figure 2. The symbol (\_) is only displayed at D13, D14, D16 and D17 when setting the clock.
- SB0...SB5; 6 special symbols (one segment for each symbol only), see figure 1 for reference. If SB0 (loudspeaker on) or SB1 (microphone muted) are turned on, they blink with a frequency of 1 Hz.

#### **Multiplex Mode**

A total of 132 segments are addressable. One output drives 4 segments in a time multiplex mode. The 4 backplane outputs determine the currently addressed segment (see figure 3).

Figure 3 gives the correlation between segment outputs and addressed segments.

#### **Data and Commands**

32 different words may be received via the serial interface. 19 words are interpreted as display data for one of the 18 seven segment digits. Table 2 gives the translation from received code to displayed symbol.

13 words are valid commands codes. The function of each command is described in table 2, and table 4 lists the 5 bit codes for all possible commands.

AS2590

#### Table 2 Command Summary

| NO | MNEMONIC    | FUNCTION                                                                         |
|----|-------------|----------------------------------------------------------------------------------|
| 1  | SET LS      | Turns on special symbol SB0 (loudspeaker on, blinking)                           |
| 2  | CLEAR LS    | Turns off special symbol SB0                                                     |
| 3  | SET MUTE    | Turns on special symbol SB1 (microphone muted, blinking)                         |
| 4  | CLEAR MUTE  | Turns off special symbol SB1                                                     |
| 5  | SET 2ND     | Turns on special symbol SB2 (2nd function on keyboard)                           |
| 6  | CLEAR 2ND   | Turns off special symbol SB2                                                     |
| 7  | SET CLOCK   | Initiates clock setting; SB5 is turned on                                        |
| 8  | START       | Blanks all digits, SB3 and SB4; accepts data, timer not started                  |
| 9  | START COPY  | Blanks all digits and SB4; turns on SB3, accepts data, timer not started (if not |
|    |             | already running)                                                                 |
| 10 | START FIFO  | Blanks all digits and SB3; turns on SB4, accepts data, timer started (if not     |
|    |             | already running)                                                                 |
| 11 | START TIMER | Blanks all digits, turns off SB3 and SB4, accepts data, timer started (if not    |
|    |             | already running)                                                                 |
| 12 | BLANK ALL   | Blanks all digits and all special symbols (except D13, D14, D16, D17 and SB5     |
|    |             | when clock is running)                                                           |
| 13 | TEST MODE   | Turns circuit into test mode                                                     |

#### Table 3 Segment Mapping

| SEGMENT | I    | BACKF | PLANE |      | SEGMENT |       | BACKF | PLANE |       |
|---------|------|-------|-------|------|---------|-------|-------|-------|-------|
| OUTPUT  | BP0  | BP1   | BP2   | BP3  | OUTPUT  | BP0   | BP1   | BP2   | BP3   |
| S0      | SB0  | SB1   | SB4   | SB2  | S17     | D9/F  | D9/G  | D9/E  | D9/C  |
| S1      | D0/F | D0/G  | D0/E  | D0/D | S18     | D9/A  | D9/B  | D10/G | D10/E |
| S2      | D0/A | D0/B  | D0/C  | D1/D | S19     | D10/A | D10/F | D10/B | D10/C |
| S3      | D1/F | D1/G  | D1/E  | D1/C | S20     | D11/A | D11/F | D11/E | D10/D |
| S4      | D1/A | D1/B  | D2/G  | D2/E | S21     | D11/B | D11/G | D11/C | D11/D |
| S5      | D2/A | D2/F  | D2/B  | D2/C | S22     | D12/F | D12/G | D12/E | D12/D |
| S6      | D3/A | D3/F  | D2/E  | D2/D | S23     | D12/A | D12/B | D12/C | D13/D |
| S7      | D3/B | D3/G  | D3/C  | D3/D | S24     | D13/F | D13/G | D13/E | D13/C |
| S8      | D4/F | D4/G  | D4/E  | D4/D | S25     | D13/A | D13/B | D14/G | D14/E |
| S9      | D4/A | D4/B  | D4/C  | D5/D | S26     | D14/A | D14/F | D14/B | D14/C |
| S10     | D5/F | D5/G  | D5/E  | D5/C | S27     | D15/A | D15/F | D15/E | D14/D |
| S11     | D5/A | D5/B  | D6/G  | D6/E | S28     | D15/B | D15/G | SB5   | D15/D |
| S12     | D6/A | D6/F  | D6/B  | D6/C | S29     | D16/F | D16/G | D16/E | D16/D |
| S13     | D7/A | D7/F  | D7/E  | D6/D | S30     | D16/A | D16/B | D16/C | D17/D |
| S14     | D7/B | D7/G  | D7/C  | D7/D | S31     | D17/F | D17/G | D17/E | D17/C |
| S15     | D8/F | D8/G  | D8/E  | D8/D | S32     | D17/A | D17/B | D15/C | SB3   |
| S16     | D8/A | D8/B  | D8/C  | D9/D |         |       |       |       |       |

Dn/m = segment m of digit n SBn = special symbol n



#### **Serial Interface**

The serial interface is a one way, two line link between the dialler (AS2574) and the display driver. The two lines are the serial data line (SDA) and the serial clock line (SCL). The display driver can only receive data.

#### Word Transfer:

Data are transferred as 5 bit words with start and stop bit. the least significant bit is sent first after the start bit. As long as there is no data transfer, both data and clock lines have to remain high. Also between two words both lines have to stay high for a specified time. Figure 4 shows the timing of the serial interface.

#### Start and Stop Conditions:

A start condition is detected when the data line goes from high to low while the clock line is held high. A low

#### to high transition of the data line while the clock line is high followed by a negative clock pulse indicates a stop condition (see figure 4).

#### Table 4 Codes for Serial Interface

| NO | SYMBOL    | MSB | B3 | B2 | B1 | LSB | HEX |
|----|-----------|-----|----|----|----|-----|-----|
| 1  | SB0-on    | 0   | 0  | 1  | 0  | 1   | 05  |
| 2  | SB0-off   | 0   | 0  | 0  | 1  | 1   | 03  |
| 3  | SB1-on    | 1   | 0  | 0  | 0  | 1   | 11  |
| 4  | SB1-off   | 0   | 1  | 0  | 0  | 1   | 09  |
| 5  | SB2-on    | 0   | 0  | 1  | 1  | 1   | 07  |
| 6  | SB2-off   | 1   | 1  | 1  | 1  | 1   | 1F  |
| 7  | SET CLOCK | 0   | 1  | 0  | 1  | 1   | 0B  |
| 8  | START     | 0   | 1  | 1  | 0  | 1   | 0D  |
| 9  | COPY      | 0   | 1  | 1  | 1  | 1   | 0F  |
| 10 | FIFO      | 1   | 0  | 0  | 1  | 1   | 13  |
| 11 | TIMER     | 1   | 0  | 1  | 0  | 1   | 15  |
| 12 | BLANK     | 1   | 1  | 1  | 0  | 1   | 1D  |
| 13 | TEST      | 1   | 0  | 1  | 1  | 1   | 17  |
| 14 | 0         | 1   | 1  | 1  | 0  | 0   | 1C  |
| 15 | 1         | 0   | 0  | 0  | 0  | 0   | 00  |
| 16 | 2         | 0   | 0  | 1  | 0  | 0   | 04  |
| 17 | 3         | 0   | 0  | 0  | 1  | 0   | 02  |
| 18 | 4         | 1   | 0  | 0  | 0  | 0   | 10  |
| 19 | 5         | 1   | 0  | 1  | 0  | 0   | 14  |
| 20 | 6         | 1   | 0  | 0  | 1  | 0   | 12  |
| 21 | 7         | 0   | 1  | 0  | 0  | 0   | 08  |
| 22 | 8         | 0   | 1  | 1  | 0  | 0   | 0C  |
| 23 | 9         | 0   | 1  | 0  | 1  | 0   | 0A  |
| 24 | а         | 0   | 0  | 1  | 1  | 0   | 06  |
| 25 | b         | 1   | 0  | 1  | 1  | 0   | 16  |
| 26 | С         | 0   | 1  | 1  | 1  | 0   | 0E  |
| 27 | d         | 1   | 1  | 1  | 1  | 0   | 1E  |
| 28 | *         | 1   | 1  | 0  | 0  | 0   | 18  |
| 29 | #         | 1   | 1  | 0  | 1  | 0   | 1A  |
| 30 | -         | 1   | 1  | 0  | 1  | 1   | 1B  |
| 31 | P/T       | 1   | 1  | 0  | 0  | 1   | 19  |
| 32 | r         | 0   | 0  | 0  | 0  | 1   | 01  |



AS2590

### **Electrical Characteristics**

#### **Absolute Maximum Ratings**

| Positive Supply Voltage       | $\dots -0.3V \le V_{\text{DD}} \le 7V$       |
|-------------------------------|----------------------------------------------|
| Input Current                 | ± 25 mA                                      |
| Digital Input Voltage         | $V_{ss} - 0.3V \le V_{IN} \le V_{DD} + 0.3V$ |
| Electrostatic Discharge (HBM) | ±500V                                        |
| Storage Temperature           | 65°C to +125°C                               |

#### **Recommended Operating Conditions**

| Supply Voltage        | 2.5V $\leq V_{DD} \leq 5.5V$ |
|-----------------------|------------------------------|
| Oscillator Frequency  | 32.768 kHz                   |
| Operating Temperature | 25°C to +70°C                |

#### **DC Characteristics** (Default conditions: recommended operating conditions; outputs unloaded; $V_{DD} = 3.0V$ )

| Symbol            | Parameter                | Conditions                                    | Min               | Тур | Мах                 | Units |
|-------------------|--------------------------|-----------------------------------------------|-------------------|-----|---------------------|-------|
|                   |                          | Test circuit fig. 5                           |                   |     |                     |       |
| I <sub>DD0</sub>  | Standby Current          | no clock running                              |                   |     | 1.5                 | μA    |
| I <sub>DD</sub>   | Operating Current        | $T_{AMB} = 5 \text{ to } 55 ^{\circ}\text{C}$ |                   | 30  | 50                  | μA    |
|                   |                          | Note 1, note 2                                |                   |     |                     |       |
| V <sub>IL</sub>   | Input Voltage, Low       |                                               | V <sub>ss</sub>   |     | 0.2 V <sub>DD</sub> | V     |
| V <sub>IH</sub>   | Line Voltage, High       |                                               | $0.8 \ V_{_{DD}}$ |     | V <sub>DD</sub>     | V     |
| V                 | Output Voltage, Sink     | I <sub>LCD</sub> = 4.8 mA                     |                   |     | 0.4                 | V     |
|                   |                          |                                               |                   |     |                     |       |
| R <sub>BIAS</sub> | Oscillator Bias Resistor |                                               |                   | 2.2 |                     | MΩ    |
|                   |                          |                                               |                   |     |                     |       |

Note 1: Segment and backplane outputs loaded with maximum 30 pF, power consumption of external voltage divider not included,  $R_{_{BIAS}} = 2.2 M\Omega \pm 10\%$ .

Note 2: Xtal parameters: Rimax =  $60 \text{ k}\Omega$  (Rityp =  $30 \text{ k}\Omega$ ) Qmin = 35 000Co = 1.5 pF (capacitance across Xtal terminals) fxtal = 32.768 kHz

| Symbol             | Parameter                 | Conditions               | Min | Тур | Max              | Units |
|--------------------|---------------------------|--------------------------|-----|-----|------------------|-------|
| SDA/SCL            | Serial Interface          | Fig. 5                   |     |     |                  |       |
| f <sub>cL</sub>    | Clock Frequency           |                          |     | 10  |                  | kHz   |
| f <sub>clH</sub>   | Clock High Time           |                          |     | 50  |                  | μs    |
| f <sub>CLL</sub>   | Clock Low Time            |                          |     | 50  |                  | μs    |
| f <sub>CD</sub>    | Clock Low to Data Change  |                          | 20  |     | t <sub>CLL</sub> | ns    |
| f <sub>soн</sub>   | Stop Bit High Time        |                          |     | 50  |                  | μs    |
| f <sub>sol</sub>   | Stop Bit Low Time         |                          |     | 50  |                  | μs    |
| f <sub>HD</sub>    | Data Hold Time            |                          | 200 |     |                  | ns    |
| f <sub>suso</sub>  | Clock Setup for Stop      |                          | 200 |     |                  | ns    |
| f <sub>HSA</sub>   | Clock Hold for Start      |                          | 200 |     |                  | ns    |
| $f_{GAP}$          | Data High between 2 Words |                          |     | 100 |                  | μs    |
| BP03               | Back Plane Outputs        | Figure 6, note 1         |     |     |                  |       |
| t <sub>BRON</sub>  | Rise Time, on             |                          |     |     | 20               | μs    |
| t <sub>BFON</sub>  | Fall Time, on             |                          |     |     | 20               | μs    |
| t <sub>BROF</sub>  | Rise Time, off            |                          |     |     | 20               | μs    |
| t <sub>BFOF</sub>  | Fall Time, off            |                          |     |     | 20               | μs    |
| t <sub>BC</sub>    | Cycle Frequency           |                          |     | 128 |                  | Hz    |
| S032               | Segment Outputs           | Figure 7, note 2         |     |     |                  |       |
| t <sub>sron</sub>  | Rise Time, on             |                          |     |     | 20               | μs    |
| t <sub>sfon</sub>  | Fall Time, on             |                          |     |     | 20               | μs    |
| t <sub>srof</sub>  | Rise Time, off            |                          |     |     | 20               | μs    |
| t <sub>sfof</sub>  | Fall Time, off            |                          |     |     | 20               | μs    |
| t <sub>sc</sub>    | Cycle Frequency           |                          |     | 128 |                  | Hz    |
| t <sub>TIMER</sub> | Timer Display Time        | Note 3                   | 5   |     | 6                | sec   |
| t <sub>xup</sub>   | Oscillator Startup Time   | $R_{BIAS} = 2.2 M\Omega$ |     | 300 |                  | ms    |

AC Characteristics (V\_{\_{DD}} = 3.0V; T\_{\_{AMB}} = -25 to 70 °C, unless otherwise specified)

Note 1: Loads on backplanes = 3 000 pF//10  $M\Omega$ 

Note 2: Loads on segments = 360 pF//1  $M\Omega$ 

Note 3: After BLANK ALL command and timer has been started with a valid start command, timer content is displayed.

### **Timing Diagrammes**





### **Output Waveforms**









V<sup>BIAS</sup> SCL  $\triangleleft$ 

S4 □ S5 □ NC 1 SDA S6 ⊏ VLCD S7 🗆 S20 S8 S21 S9 Г S22 V1/3 S10 S11 S12 S13 AS2590 14 S23 S24 S25 S26 S27 S14 🗅 S28 27 NC S29 Π  $\square$ 

### **Ordering Information:**

| 48 pin DIP:  | AS2590 P |
|--------------|----------|
| 52 pin PLCC: | AS2590 N |

#### **Applications:**

52 pin PLCC

For application support contact your local AMS sales offices.

# **Pin Configurations**

**Data Sheet** 

48 Pin DIP



Sales Representative

Devices sold by Austria Mikro Systeme are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Austria Mikro Systeme makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Austria Mikro Systeme reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Austria Mikro Systeme for current information. This product is intended for use in normal commercial applications. Applications equiving extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Austria Mikro Systeme for each application.

Copyright © 1993, Austria Mikro Systeme International AG, Schloss Premstätten, 8141 Unterpremstätten, Austria. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

The information furnished here by Austria Mikro Systeme is believed to be correct and accurate. However, Austria Mikro Systeme shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Austria Mikro Systeme rendering of technical or other services.