

July 2009

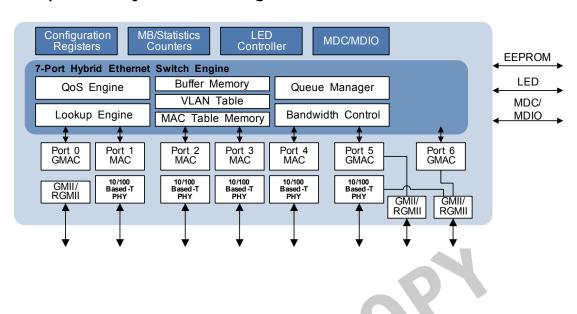
AR8229/AR8228 Seven-Port Fast Ethernet Switch

General Description

The AR8229/AR8228 is a highly integrated three-Giga MAC plus Five-port Fast Ethernet switch with non-blocking switch fabric, a high-performance lookup unit with 1024 MAC address, 4096 VLAN table, 32 ACL rule table and a four-traffic class Quality of Service (QoS) engine. The AR8229/AR8228 has the flexibility to support various networking applications. The AR8229/AR8228 support many offload function to increase the system performance. The AR8229/AR8228 is designed for cost

sensitive switch applications in wireless AP router, home gateway, and xDSL/PON/cable modem platform. The Fast Ethernet in the AR8229/AR8228 complies fully with IEEE 802.3 standards. The AR8229/AR8228 implements power saving techniques to facilitate low power consumption. The AR8229/AR8228 is designed to work in all environments. True Plug-n-Play is supported with Auto-Crossover, Auto Polarity, and Auto-Negotiation in PHYs.

AR8229/AR8228 Features


- Single-chip seven-port Fast Ethernet QoS switch
- Single chip 7 port Fast Ethernet QoS switch controller with:
 - 5 port 10/100 UTP + 2 port GMII/RGMII MAC
 - 4 port 10/100 UTP + 2 port GMII/RGMII MAC + 1 RGMII MAC
 - 4 port 10/100 UTP + 2 port GMII/RGMII MAC + 1 port MII PHY
- QoS support with four traffic classes based on arrival port, IEEE802.1p, IPv4 TOS, IPv6 TC and Destination MAC Address
- Supports strict priority, WRR, and mix mode (1 SP + 3 WRR or 2 SP + 2 WRR)
- Full IEEE 802.1Q VLAN ID processing per port and VLAN tagging for 40% VLAN IDs; and port based VLANs supported
- Support VLAN tag insert or remove function on per-port basis
- Support QinQ double tag, and 16 entry of VLAN translation table
- IGMPv1/v2/v3 and MLDv1/v2 Snooping with hardware join and fast leave function
- Support 32 ACL rules and rule based counters
- Support 16 PPPoE sessions header remove
- Port states & BPDU handling support IEEE802.1D Spanning Tree Protocol
- High performance lookup engine with 1024 MAC Address with automatic learning and aging and support for static addresses
- Support 40 MIB counters per port

- Autocast MIB counters to cpu port
- Support ingress & egress rate limit
- Broadcast storm Suppression
- Supports port mirror
- Support MAC and PHY loopback function for diagnosis
- Fully compliant with IEEE 802.3/802.3u auto-negotiation function
- Flow control fully supported IEEE 802.3x flow control for full duplex and back pressure for half duplex
- Supports port lock function
- Supports hardware looping detection
- Power saving on no link and low traffic rate for 10Base-T

© 2009 by Atheros Communications, Inc. All rights reserved. Atheros®, Atheros Driven®, Atheros XR®, Driving the Wireless Future®, ROCm®, Super A/G®, Super G®, Super N®, Total 802.11®, XSPAN®, Wireless Future. Unleashed Now®, and Wake on Wireless® are registered by Atheros Communications, Inc. Atheros SST™, Signal-Sustain Technology™, the Air is Cleaner at 5-GHz™, and 5-UP™ are trademarks of Atheros Communications, Inc. The Atheros logo is a registered trademark of Atheros Communications, Inc. All other trademarks are the property of their respective holders. Subject to change without notice.

COMPANY CONFIDENTIAL • 1

AR8229/AR8228 System Block Diagram

General Description1	2.8.10 Egress Mode	34
AR8229/AR8228 Features1	2.8.11 VLAN Table	34
AR8229/AR8228 System Block Diagram 2	2.9 IEEE Port Security	34
	2.9.1 Port Locking	35
1 Pin Descriptions5	2.9.2 802.1X	35
	2.10 Class/Quality of Service	36
2 Functional Description19	2.10.3 Priority Scheduling	37
2.1 Appl ications	2.10.4 Rate Limiting	37
2.1.1 AP Router Application19	2.11 Mirroring	37
2.2 Basic Switch Operation20 2.2.2 Lookup Engine20	2.12 Broadcast/Multicast/unknown Unicast St Control 37	torm
2.2.3 Autom atic Address Learning 20	2.13 IGMP/MLD Snooping	37
2.2.4 Automatic Address Aging 20	2.14 Spanning Tree	
2.3 Media Access Controllers (MAC)20	2.15 MIB/Statistics Counters	
2.3.5 Port Status Configuration20	2.16 Atheros Header Configuration	
2.3.1 Ful 1-Duplex Flow Control21	2.17 IEEE 802.3 Reserved Group Addresses File	
2.3.2 Half-Duplex Flow Control21	Control 41	O
2.3.3 Int er-Packet Gap (IPG)21	2.18 Forwarding Unknown	41
2.3.4 Ille gal Frames21	2.19 PPPoE Header Removal	41
2.4 AC L22	2.20 Memory Map	43
2.4.5 Rul e Control22		
2.4.6 ACL Rule Match Result23	3 Register Descriptions	
2.4.7 Rul e Table23	3.1 Global Control Registers 0x0000 —0x00FC	
2.4.8 Rul e Select24	3.2 Port Control Registers 0x0100 —0x0124	
2.4.9 MAC Rule24	3.3 Mask Control Register	
2.4.10 MAC Mask25	3.4 Operational Mode Register 0	
2.4.11 IPv425	3.5 Operational Mode Register 1	
2.4.12 IPv4 Rule25	3.6 Operational Mode Register 2	
2.4.13 IPv4 Mask25	3.7 Power-On Strapping Register	
2.4.14 IPv6 Rule26	3.8 Global Interrupt Register	
2.4.15 IPv6 Mask27	3.9 Global Interrupt Mask Register	
2.4.16 ACL Access28	3.9.6 Loop Check Result	
2.5 Regi ster Access28	•	
2.6 LE D Control	3.10 Flood Mask Register 3.11 Global Control Register	
2.7 EE PROM Description30	3.12 Flow Control Register 0	
2.8 VL ANs30	3.13 Flow Control Register 1	
2.8.1 Port-Based VLAN31	3.13.7 QM Control Register	
2.8.2 802. 1Q VLANs31	3.14 VLAN Table Function Register 0	
2.8.3 Leaky VLAN31	3.15 VLAN Table Function Register 1	
2.8.4 VLAN Translation Architecture 31	3.16 Address Table Function Register 0	
2.8.5 VLAN Translation Table32	3.17 Address Table Function Register 1	
2.8.6 Ingress Key Selection32	3.18 Address Table Function Register 2	
2.8.7 Egress Key Selection33	3.19 Address Table Control Register	
2.8.8 In gress Tagging Translation 33	3.20 IP Priority Mapping Register 2	
2.8.9 Egress Tagging Translation 33	3.21 Tag Priority Mapping Register	
	7 11-00	-

3.22 Service Tag Register76	5.4.8 Powe r-on-Reset T
3.23 CPU Port Register77	5.5 AC Timing
3.24 MIB Function Register 077	5.5.9 XTAL/OSC Timin
3.25 MDIO Control Register78	5.5.10 MII Timing
3.26 LED Control Register79	5.5.11 GMII Timing
3.27 Port Control Registers — Summary for all Ports 80	5.5.12 RGMII Timing 5.5.13 SPI Timing
3.28 Port Status Register82	5.5.14 MDIO Timing
3.29 Port Control Register83	5.6 Typical Power Consumption
3.30 Port-based VLAN Register86	3.0 Typical Fower Consumption
3.31 Port-based VLAN Register287	6 Package Dimensions
3.32 Rate Limit Register89	O
3.33 Priority Control Register89	7 Ordering Informatio
3.34 Storm Control Register90	-
3.35 Queue Control Register91	
3.36 Rate Limit Register 193	
3.37 Rate Limit Register 2	
3.38 Rate Limit Register 394	
3.39 Robin Register94	
-	
4 PHY Control Registers96	
4.40 Control Register97	
4.41 Status Register99	
4.42 PHY Identifier101	
4.43 PHY Identifier 2102	
4.44 Auto-negotiation Advertisement Register .103	
4.45 Link Partner Ability Register107	
4.46 Auto-negotiation Expansion Register 109	
4.47 Function Control Register 110	
4.48 PHY Specific Status Register112	
4.49 Interrupt Enable Register 114	
4.50 Interrupt Status Register 116	
4.51 Receive Error Counter Register118	
4.52 Virtual Cable Tester Control Register 119	
4.53 Virtual Cable Tester Status Register120	
4.54 Debug Port (Address Offset)121	
4.55 Debug Port 2 (R/W Port)122	
4.56 Debug Register — Analog Test Control 123	
4.57 Debug Register — System Mode Control 124	
4.58 Debug Register — RGMII Mode Selection $.126$	
F. F. Lander and Change of the Company of the Compa	
5 Electrical Characteristics 127	
5.1 Absolute Maximum Ratings	
5.2 Recommended Operating Conditions 127 5.3 RCMII (CMII Characteristics 127	
5.3 RGMII /GMII Characteristics	
5.4 Power -on Strapping128	

7 C	Ordering Information1	137
6 P	Package Dimensions1	135
5.6	Typical Power Consumption Parameters	134
	5.5.14 MDIO Timing	133
	5.5.13 SPI Timing	132
	5.5.12 RGMII Timing	132
	5.5.11 GMII Timing	131
	5.5.10 MII Timing	130
	5.5.9 XTAL/OSC Timing	
5.5	AC Timing	129
	5.4.8 Powe r-on-keset riming	123

1. Pin Descriptions

This section contains a listing of the pin descriptions (see Table 1-1 on page 10 and Figure 1-1 on page 6 through Figure 1-4 on page 9).

The following nomenclature is used for signal names:

_L	At the end of the signal name,
	indicates active low signals

N_ Near the end of the signal name, indicates active low signals

n_

N At the end of the signal name indicates the negative side of a differential signal

NC No connection is made from this pin to the internal die

P At the end of the signal name, indicates the positive side of a differential signal

The following nomenclature is used for signal types described in Table 1-1 on page 10:

D Open drain for digital pads	D	Open	drain	for	digital	pads
-------------------------------	---	------	-------	-----	---------	------

I Digital input signal

I/O Digital bidirectional signal

IA Analog input signal

IH Digital input with hysteresis

IL Input signals with weak internal pull-down, to prevent signals from floating when left open

O Digital output signal

OA Analog output signal

P A power or ground signal

PD Internal pull-down for digital input

PU Internal pull-up for digital input

Figure 1-1 through Figure 1-4 show the package pinout.

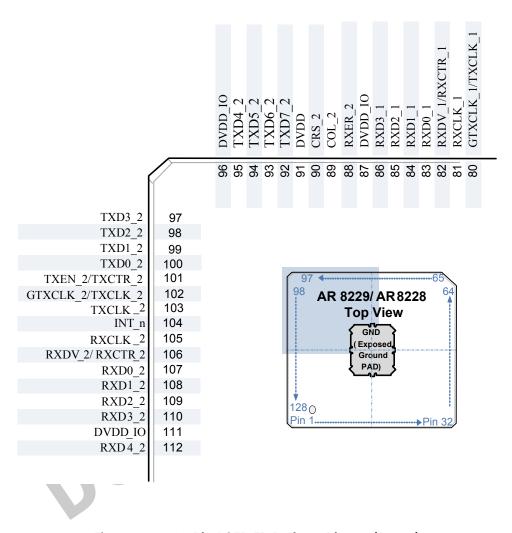


Figure 1-1. 128 Pin LQFP-EP Package Pinout (Part 1)

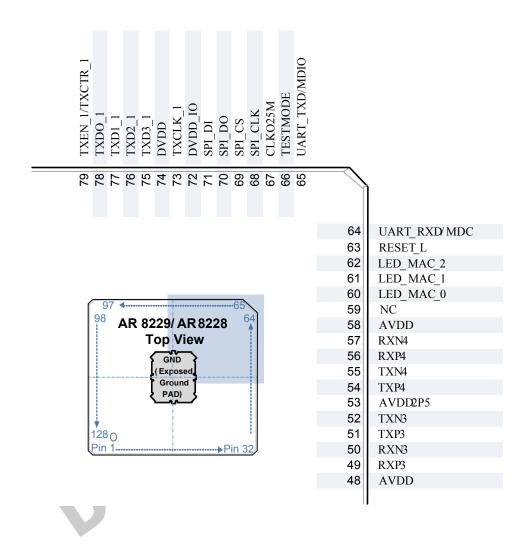


Figure 1-2. 128 Pin LQFP-EP Package Pinout (Part 2)

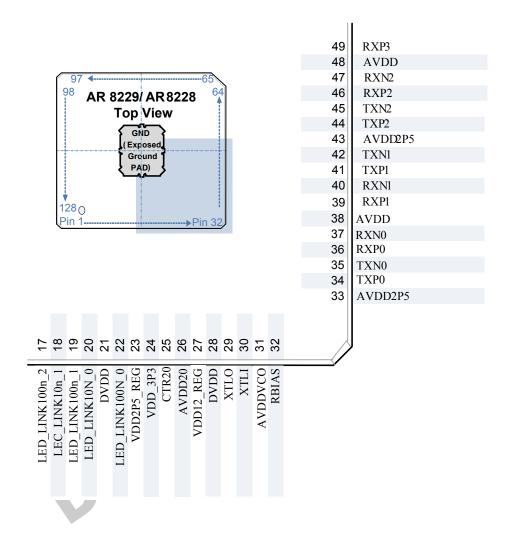


Figure 1-3. 128 Pin LQFP-EP Package Pinout (Part 3)

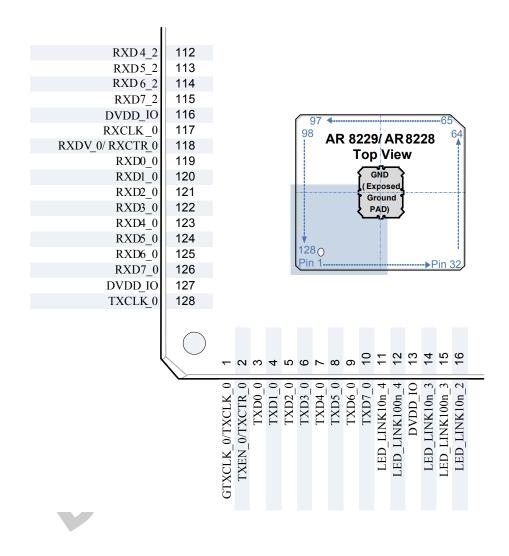


Figure 1-4. 128 Pin LQFP-EP Package Pinout (Part 4)

Table 1-1. Signal to Pin Relationships and Descriptions

Symbol	Pin	Туре	Description
Media Connection	l.	-	
TXP0	34	IA, OA	Media-dependent interface, MDI[4:0]: Transmitter output
TXN0	35	-	positive/negative.
TXP1	41	IA, OA	
TXN1	42		
TXP2	44	IA, OA	
TXN2	45		
TXP3	51	IA, OA	
TXN3	52		
TXP4	54	IA, OA	
TXN4	55		
RXP0	36	IA, OA	Media-dependent interface, MDI[4:0]: Receive input positive/
RXN0	37		negative.
RXP1	39	IA, OA	
RXN1	40		
RXP2	46	IA, OA	
RXN2	47		
RXP3	49	IA, OA	
RXN3	50		
RXP4	56	IA, OA	
RXN4	57		
MAC O/CPU port GMII/R	GMII int	erface	
GTXCLK_0/TXCLK_0	1	I/O, PD	GMII/RGMII transmit clock, 125 MHz/25 MHz, or configuration, recommend to add a 22Ω damping resistor. This is the reference clock input for GMII/RGMII mode PHY type interface or MII mode MAC type interface. It also supports 50MHz clock input(Turbo-MII) when operating in MII mode MAC type interface.
RXCLK_0	117	I/O, PD	GMII/RGMII receive clock. This is output clock from MAC0 when AR8229/AR8228 operates at PHY type interface or GMII mode MAC type interface. It can be 125MHz/25MHz/2.5MHz depending on the operating speed.

Table 1-1. Signal to Pin Relationships and Descriptions (continued)

Symbol	Pin	Туре	Description
RXD0_0	119	I/O, PD	GMII/RGMII/MII receive data or configuration; recommend
RXD1_0	120	I/O, PD	adding a 22 W damping resistor. these are output signals from
RXD2_0	121	I/O, PD	MAC 0. All the data bits RXD[7:0]_0 are used in GMII mode.
RXD3_0	122	I/O, PD	The RXD[3:0]_0 are used as data input when operating at RGMII or MII mode. The reference clock for these output
RXD4_0	123	I/O, PD	signals will be:
RXD5_0	124	I/O, PD	
RXD6_0	125	I/O, PD	1. RXCLK_0 (pin 117): GMII/RGMII/MII PHY type interface
RXD7_0	126	I/O, PU	and MII MAC type interface. 2. TXCLK_0 (pin 128): GMII MAC type interface.
RXDV_0/RXCTR_0	119	I/O, PD	GMII/RGMII/MII receive data valid. This is output signal for MAC0.
TXCLK_0	128	I/O, PD	This pin is the reference clock for TXD[7:0]_0 when operating at MII interface or GMII MAC type interface. The clock will be output signal at PHY type interface and will be input signal at MAC type interface It also supports 50MHz clock input(Turbo-MII) when operating in MII mode MAC type interface.
TXEN/TXCTR_0	2	I, PD	GMII/RGMII/MII transmit enable, this is input signal for the MAC0.
TXD0_0	3	I, PD	GMII/RGMII/MII transmit data, these are input signals for
TXD1_0	4	I, PD	MAC0. All the data bits TXD[7:0]_0 are used in GMII mode.
TXD2_0	5	I, PD	The TXD[3:0]_0 are used as data input when operating on
TXD3_0	6	I, PD	RGMII or MII mode. The reference clock for these input signals will be:
TXD4_0	7	I, PD	
TXD5_0	8	I, PD	1. GTXCLK_0 (pin 1): GMII or RGMII PHY type interface or
TXD6_0	9	I, PD	GMII MAC type 2. TXCLK_0 (pin 128): MII mode PHY type interface
TXD7_0	10	I, PD	2. INCER_0 (pit 120). Will mode I III type interface
MAC 5 RGMII interface			
GTXCLK_1/TXCLK_1	80	I/O, PD	GMII/RGMII transmit clock, 125 MHz/25 MHz, or configuration, recommend to add a 22 Ω damping resistor. This is the reference clock input for GMII/RGMII mode PHY type interface or MII mode MAC type interface. It also supports 50MHz clock input(turbo MII) when operating in MII mode MAC type interface.
RXCLK_1	81	I/O, PD	GMII/RGMII receive clock. This is output clock from MAC5 or PHY4 when AR8229/AR8228 operates at PHY type interface or GMII mode MAC type interface. It can be 125MHz/25MHz/2.5MHz depending on the operating speed.

Table 1-1. Signal to Pin Relationships and Descriptions (continued)

Symbol	Pin	Type	Description
RXD0_1	83	I/O, PD	GMII/RGMII/MII receive data or configuration; recommend
RXD1_1	84	I/O, PD	adding a 22 Ω damping resistor. these are output signals source from either MAC 5 or PHY 4. All the data bits RXD[7:0]_1 are
RXD2_1	85	I/O, PD	used in GMII mode. The RXD[3:0]_1 are used as data input
RXD3_1	86	I/O, PU	when operating at RGMII or MII mode. The reference clock for these output signals will be:
RXDV_1/RXCTR_1	82	I/O, PD	 RXCLK_1 (pin 104): GMII/RGMII/MII PHY type interface and GMII MAC type interface. GTXCLK_1 (pin 119): MII MAC type interface. GMII/RGMII/MII receive data valid. This is output signal for either MAC5 or PHY4.
TXCLK_1	73	I/O, PD	This pin is the reference clock for TXD[7:0]_1 when operating at MII interface or GMII MAC type interface. The clock will be output signal at PHY type interface and will be input signal at MAC type interface It also supports 50MHz clock input(turbo MII) when operating in MII mode MAC type interface.
TXEN/TXCTR_1	79	I, PD	GMII/RGMII/MII transmit enable, this is input signal for either MAC5 or PHY4.
TXD0_1	78	I, PD	GMII/RGMII/MII transmit data, these are input signals for
TXD1_1	77	I, PD	either MAC5 or PHY4. All the data bits TXD[7:0]_1 are used in GMII mode. The TXD[3:0]_1 are used as data input when
TXD2_1	76	I, PD	operating on RGMII or MII mode. The reference clock for these
TXD3_1	75	I, PD	input signals will be:
			1. GTXCLK_1 (pin 119): GMII or RGMII PHY type interface 2. TXCLK_1 (pin 117): MII mode or GMII MAC type interface
MAC6 GMII/RGMII Inter	face	13	
GTXCLK_2/TXCLK_2 10	2	I/O, PD	GMII/RGMII transmit clock, 125 MHz/25 MHz, or configuration, recommend to add a 22 Ω damping resistor. This is the reference clock input for GMII/RGMII mode PHY type interface or MII mode MAC type interface. It also supports 50MHz clock input(turbo MII) when operating in MII mode MAC type interface.
RXCLK_2	105	I/O, PD	GMII/RGMII receive clock. This is output clock from MAC6 or PHY4 when AR8229/AR8228 operates at PHY type interface or GMII mode MAC type interface. It can be 125MHz/25MHz/2.5MHz depending on the operating speed
RXD0_2 10	7	I/O, PD	GMII/RGMII/MII receive data or configuration; recommend
RXD1_2 10	8	I/O, PD	adding a 22W damping resistor. these are output signals source
RXD2_2 10	9	I/O, PD	from either MAC 6 or PHY 4. All the data bits RXD[7:0]_2 are
RXD3_2 1	10	I/O, PD	used in GMII mode. The RXD[3:0]_2 are used as data input when operating at RGMII or MII mode. The reference clock for
RXD4_2 1	12	I/O, PD	these output signals will be:
RXD5_2 1	13	I/O, PD	
RXD6_2 1	14	I/O, PD	1. RXCLK_2 (pin 105): GMII/RGMII/MII PHY type interface
RXD7_2 1	15	I/O, PD	and MII MAC type interface. 2. TXCLK_2 (pin 103): GMII MAC type interface

Table 1-1. Signal to Pin Relationships and Descriptions (continued)

Symbol	Pin	Type	Description		
RXDV_2/RXCTR_2	106	I/O, PD	GMII/RGMII/MII receive data valid. This is output signal for either MAC6 or PHY4		
TXCLK_2	103	О	This pin is the reference clock for TXD[7:0]_2 when operating at MII interface or GMII MAC type interface. The clock will loutput signal.		
TXEN_2/TXCTR_2	101	I, PD	GMII/RGMII/MII transmit enable, this is input signal for either MAC6 or PHY4.		
TXD0_2 10	0	I, PD	GMII/RGMII/MII transmit data, these are input signals for		
TXD1_2	99	I, PD	either MAC6 or PHY4. All the data bits TXD[7:0]_2 are used in		
TXD2_2 98		I, PD	GMII mode. The TXD[3:0]_2 are used as data input when		
TXD3_2 97		I, PD	operating on RGMII or MII mode. The reference clock for these input signals will be:		
TXD4_2 95		I, PD	input signals win be.		
TXD5_2 94		I, PD	1. GTXCLK_2 (pin 102): GMII or RGMII PHY type interface or		
TXD6_2 93		I, PD	GMII MAC type 2. TXCLK_2 (pin 103): MII mode PHY type interface		
TXD7_2 92		I, PD	2. TACLK_2 (piit 103). Will mode 1111 type interface		
RXER_2	88	О	PHY4 receive error output		
CRS_2	90	О	PHY4 carrier sense output at MII mode or configuration; recommend adding a 22 ? damping resistor		
COL_2	89	О	PHY 4 collision output at MII mode		
LED	•				
LED_LINK10n_0	20	O, D	PHY0 LED output. LED behavior can be configurable, see the		
LED_LINK100n_0	22	O, D	LED Control Registers 0x00B0 ~ 0x00BC.		
LED_LINK10n_1	18	O, D	PHY1 LED output. LED behavior can be configurable, see the		
LED_LINK100n_1	19	O, D	LED Control Registers 0x00B0 ~ 0x00BC.		
LED_LINK10n_2	16	O, D	PHY2 LED output. LED behavior can be configurable, see the		
LED_LINK100n_2	17	O, D	LED Control Registers 0x00B0 ~ 0x00BC.		
LED_LINK10n_3	14	O, D	PHY3 LED output. LED behavior can be configurable, see the		
LED_LINK100n_3	15	O, D	LED Control Registers 0x00B0 ~ 0x00BC.		
LED_LINK10n_4	11	O, D	WAN port LED output. The LED behavior can be		
LED_LINK100n_4	12	O, D	configurable, see the LED Control Registers 0x00B0 ~ 0x00BC		
LED_MAC_0	60	O, D	MAC0/5/6 LED output. The LED behaviour can be		
LED_MAC_1	61	O, D	configurable, see the LED Control Registers 0x00B8 ~ 0x00BC.		
LED_MAC_2	62	O, D			
UART/MDIO and SPI EEP	ROM	+			
SPI_CLK	68	I/O, PD	SPI Clock or configuration		
SPI_CS	69	I/O, PD	SPI Chip select configuration		
SPI_DI	71	I, PD	SPI Data input		
SPI_DO	70	I/O, PU	SPI Data out or configuration		
UART_RXD/MDC	64	I, PU	Management data clock reference		

Table 1-1. Signal to Pin Relationships and Descriptions (continued)

Symbol	Pin	Туре	Description	
UART_TXD/MDIO	65	I/O	Management data	
Miscellaneous				
RBIAS	32	OA	Connect 2.37 K W resistor to GND. The resistor value is adjustable depending on the PCB.	
RESET_L	30	IH	Chip reset, active low. The active low duration must be greathan 10ms.	
TESTMODE	66	I	Test Mode	
XTLI	30	IA	Crystal oscillator input, connect a 27 pF capacitor to GND. An external 25 MHz clock with swing from 0–1 V can be injected to this pin. When external clock source is used, the 27 pF capacitor should be removed from this pin and the 27 pF capacitor at XTLO should be maintained.	
XTLO	29	OA	Crystal oscillator output, connect a 27 pF capacitor to GND	
INT_n	104	I/O, PD	Interrupt, active low. see the global interrupt register for detail	
CLKO25M	67	I/O, PD	Reference voltage, put a 1 nF cap to GND	

Symbol	Pin	Туре	Description
Power			
AVDD	28, 48, 58	P	Analog 1.2 V
AVDD2P5	33, 43, 53	P	Analog 2.5 V
DVDD	21, 28, 74, 91	P	Digital 1.2 V
DVDD_IO	13, 72, 87, 96, 111, 116, 127	P	Digital I/O V
VDD3P3	24	P	3.3 V power supply. The 3.3 V power input is used to generate the 2.5 V regulator output. If 2.5 V is generated by an external circuit, the this pin must be connected to the external 2.5 V source.
VDD25_REG	23	AO	2.5 V regulator output. A 1 uF and several 0.1 uF capacitors are needed to stabilize this voltage.
VDD12_REG	27	OA	1.2 V regulator output. A 1 uF and several 0.1 uF capacitors are needed to stabilize this voltage
AVDD20	26	P	2.0 V power input.
AVDDVCO	31	OA	Analog 1.2 V for PLL.
CTR20	25	OA	Signal used to control external PNP transistor to generate 2.0V power
GND		P	Exposed Ground Pad at the bottom of the chip

The following table shows the interface summary relative to the AR8229/AR8228's different modes.

Table 1-2. MACO GMII/RGMII/RMII Pin Multiplex Table

PAD name	Pin	GMII PHY Mode	GMII MAC Mode	RGMII Mode	RMII Mode
GTXCLK_0	1	GTXCLK_0	RXCLK_0	GTXCLK_0	
TXCLK_0	128	TXCLK_0	GTXCLK_0		REF_CLK_0
TXEN_0	2	TXEN_0	RXDV_0	TXEN_0	TXEN_0
TXD[1:0]_0	4, 3	TXD[1:0]_0	RXD[1:0]_0	TXD[1:0]_0	TXD[1:0]_0
TXD[3:2]_0	6, 5	TXD[3:2]_0	RXD[3:2]_0	TXD[3:2]_0	
TXD[7:4]_0	10-7	TXD[7:4]_0	RXD[7:4]_0		
RXCLK_0	117	RXCLK_0 (O)	TXCLK_0 (I)	RXCLK_0 (O)	
RXDV_0	118	RXDV_0	TXEN_0	RXDV_0	RXDV_0
RXD[1:0}_0	120, 119	RXD[1:0]_0	TXD[1:0]_0	RXD[1:0]_0	RXD[1:0]_0
RXD[3:2]_0	122, 121	RXD[3:2]_0	TXD[3:2]_0	RXD[3:2]_0	
RXD[7:4]_0	126-123	RXD[7:4]_0	TXD[7:4]_0		

The following table shows the interface summary relative to the AR8229/AR8228's different modes.

Table 1-3. MAC 5 GMII/RGMII/RMII Pin Multiplex Table

Pin Name	Pin	I/ 0	MAC5 GMII PHY Mode	MAC 5 GMII MAC Mode	MAC5 RGMII Mode	MAC5 RMII Mode
GTXCLK_1	80	I	GTXCLK_5	RXCLK_5	GTXCLK_5	_
TXCLK_1	73	0	TXCLK_5	GTXCLK_5		REF_CLK_5
TXEN_1	79	I	TXEN_5	RXDV_5	TXEN_5	TXEN_5
TXD[1:0]_1	77,78	I	TXD[1:0]_5	RXD[1:0]_5	TXD[1:0]_5	TXD[1:0]_5
TXD[3:2]_1	75, 76	I	TXD[3:2]_5	RXD[3:2]_5	TXD[3:2]_5	
RXCLK_1	81	I/O	RXCLK_5 (O)	TXCLK_5 (I)	RXCLK_5 (O)	
RXDV_1	82	О	RXDV_5	TXEN_5	RXDV_5	RXDV_5
RXD[1:0]_1	84, 83	О	RXD[1:0]_5	TXD[1:0]_5	RXD[1:0]_5	RXD[1:0]_5
RXD[3:2]_1	86, 85	О	RXD[3:2]_5	TXD[3:2]_5	RXD[3:2]_5	
TXD[7:4]_2	92-95	I			TXD[7:4]_6	RXD[7:4]_6
RXD[7:4]_2	115-112	0			RXD[7:4]_6	TXD[7:4]_6

NOTE: The MAC5 GMII Mode and MAC 6 GMII share the high nibble bits. So they can't enable at the same time. Others can be enable independently. For example, MAC5

RGMII mode and MAC 6 RGMII mode are supported at the same time.

The following table shows the interface summary relative to the AR8229/AR8228's different modes.

Table 1-4. MAC 6 GMII/RGMII/RMII Pin Multiplex Table

Pin Name	Pin	I/0	MAC6 RGMII Mode	MAC 6 RMII Mode	MAC 6 GMII PHY Mode	MAC 6 GMII MAC Mode
TXD[7:4]_2	92-95	I			TXD[7:4]_6	RXD[7:4]_6
RXD[7:4]_2	115-112	О			RXD[7:4]_6	TXD[7:4]_6
GTXCLK_2	102	I	GTXCLK_6		GTXCLK_6	RXCLK_6
TXCLK_2	103	О		REF_CLK_6	TXCLK_6	GTXCLK_6
TXEN_2	101	I	TXEN_6	TXEN_6	TXEN_6	RXDV_6
TXD[1:0]_2	99, 100	I	TXD[1:0]_6	TXD[1:0]_6	TXD[1:0]_6	RXD[1:0]_6
TXD[3:2]_2	97, 98	I	TXD[3:2]_6		TXD[3:2]_6	RXD[3:2]_6
RXCLK_2	105	I/O	RXCLK_6 (O)		RXCLK_6 (O)	TXCLK_6 (I)
RXDV_2	106	О	RXDV_6	RXDV_6	RXDV_6	TXEN_6
RXD[1:0]_2	108, 107	О	RXD[1:0]_6	RXD[1:0]_6	RXD[1:0]_6	TXD[1:0]_6
RXD[3:2]_2	110, 109	О	RXD[3:2]_6		RXD[3:2]_6	TXD[3:2]_6

NOTE: The MAC5 GMII Mode and MAC 6 GMII share the high nibble bits. So they can't enable at the same time. Others can be enable independently. For example, MAC5 RGMII mode and MAC 6 RGMII mode are supported at the same time.

The following table shows the interface summary relative to the AR8229/AR8228's different modes.

Table 1-5. PHY 4 MII/RMII Pin Multiplex Table

PAD name	Pin	I/O	PHY 4 MII Mode	PHY 4 RMII Mode
TXCLK_2	103	0	PHY_TXCLK_4	REF_CLK_4 PHY_TXEN_4 PHY_TXD[1:0]_4
TXEN_2	101	I	PHY_TXEN_4	PHY_TXEN_4
TXD[1:0]_2	99, 100	I	PHY_TXD[1:0]_4	PHY_TXD[1:0]_4
TXD[3:2]_2	97, 98	I	PHY_TXD[3:2]_4	
RXCLK_2	105	I/O	PHY_RXCLK_4 (O)	
RXDV_2	106	O	PHY_RXDV_4	PHY_RXDv_4

Table 1-5. PHY 4 MII/RMII Pin Multiplex Table

PAD name	Pin	I/O	PHY 4 MII Mode	PHY 4 RMII Mode
RXD[1:0]_2	108, 107	О	PHY_RXD[1:0]_4	PHY_RXDI1.11- TNAGEL
RXD[3:2]_2	110, 109	О	PHY_RXD[3:2]_4	
RXER_2	88	0	PHY_RXER_4	
COL_2	89	0	PHY_COL_4	
CRS_2	90	О	PHY_CRS_4	

NOTE: PHY 4 and MAC 6 share the same pins and can't be enable at the same time.

2. Functional Description

The AR8229/AR8228 supports many operating modes that can be configured using a low-cost serial EEPROM and/or the MDC/MDIO interface.

The AR8229/AR8228 also supports a CPU header mode that appends two bytes to each frame. The CPU can use headers to configure the switch register, the address lookup table, VLAN and receive auto-cast MIB frames. The seventh port (PHY4) supports a PHY interface as a WAN port. The first port (port0) supports a MAC interface and can be configured in GMII-PHY or RGMII-PHY mode to connect to an external management CPU or an integrated CPU in a routing or xDSL/lln/PON engine.

The AR8229/AR8228 contains a 2 K-entry address lookup table that employs two entries per bucket to avoid hash collision and maintain non-blocking forwarding performance. The address table provides read/write accesses from the serial and CPU interfaces; each entry can be configured as a static entry. The AR8229/AR8228 supports 4096 VLAN entries configurable as port-based VLANs or 802.1Q tag-based VLANs. The AR8229/AR8228 also supports a QinQ function and VLAN translation.

To provide non-blocking switching performance in all traffic environments, the AR8229/AR8228 supports several types of QoS function with four-level priority queues based on port, IEEE 802.1p, IPv4 DSCP, IPv6 TC, 802.1Q VID, MAC address, or ACL layer 1 to

layer 4 rule result. Back pressure and pause frame-based flow control schemes are included to support zero packet loss under temporary traffic congestion. Meeting today's service provider requirements, the AR8229/AR8228 switch uses the latest Atheros QoS switch architecture that supports ingress policing and egress rate limiting.

The AR8229/AR8228 device supports IPv4 IGMP snooping and Ipv6 MLD snooping to significantly improve the performance of streaming media and other bandwidth-intensive IP multicast applications. The AR8229/AR8228 also supports PPPoE header remove for multicast stream within 16 PPPoE session. That can offload the CPU loading and improve the system performance.

IEEE 802.3x full duplex flow control and back-pressure half duplex flow control schemes are supported to ensure zero packet loss during temporary traffic congestion. A broadcast storm control mechanism prevents the packets from flooding into other parts of the network. The AR8229/AR8228 device has an intelligent switch engine to prevent Head-of- Line blocking problems on a per-CoS basis for each port.

2.1 Applications

2.1.1 AP Router Application

Figure 2-1 shows the block diagram for an AP

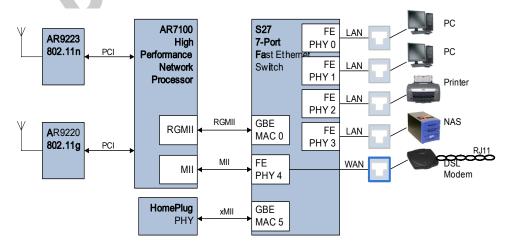


Figure 2-1. AP Router Application

AR8229/AR8228 router application. This solution is a complete end-to-end 802.AP RJ-45-to-air router 802.11n wireless network processing solution. The AR8229/AR8228 eliminates the external PHY for the WAN interface. Note that the AR8229/AR8228 can also work as a one-arm router.

2.2 Basic Switch Operation

The AR8229/AR8228 automatically learns the port number of an attached end station by looking at the source MAC address of all incoming packets at wire speed. If the source address is not found in the address table, the AR8229/AR8228 device adds it to the table. Once the MAC address/port number mapping is learned, all packets directed to that end station's MAC address are forwarded to the learned port number only. When the AR8229/AR8228 device receives incoming packets from one of its ports, it searches in its address table for the destination MAC address, then forwards the packet to the appropriate port within the VLAN group. If the destination MAC address is not found (i.e. A new, unlearned MAC address), the AR8229/AR8228 handles the packet as a broadcast packet and transmits it to all ports within the VLAN group except to the port where it came in.

2.2.2 Lookup Engine

The AR8229/AR8228 lookup engine or address resolution logic (ARL) retrieves the DA and SA from each frame received from each port. The ARL performs all address searching, learning, and aging functions at wire speed. The ARL engine uses a hashing algorithm for fast storage and retrieval of address entries. To avoid hash collision, the AR8229/AR8228 uses a two entry bin per hash location that stores up to two MAC addresses at each hash location. The address database is stored in the embedded SRAM and has a size of 1024 entries.

2.2.3 Automatic Address Learning

Up to 1024 MAC address/port number mappings can be stored in the address table. A two-way hash algorithm allows a maximum of four different addresses with the same hash key to be stored simultaneously. The AR8229/AR8228 searches for the SA of an incoming packet in the address table. If the SA is not found, the address is hashed and stored in the first empty bin found at the hashed location. If all two address bins are full, each entry's age time is examined to select the least recently used bin. If the SA is found, the aging value of the corresponding entry is reset to 0. If the DA is PAUSE, the AR8229/AR8228 automatically disables the learning process.

2.2.4 Automatic Address Aging

Address aging supports network topology changes such as an end station disconnecting from the network or an address moving from one port to another. An address is removed (aged-out) from the address database after a specified amount of time since the last time it appeared in an incoming frame source address. The AR8229/AR8228 has a default aging time of 5 minutes, but can be set in 17-second increments to a maximum of 20,000 minutes.

2.3 Media Access Controllers (MAC)

The AR8229/AR8228 integrates six independent Fast Ethernet MACs that perform all functions in the IEEE 802.3 specifications, e.g., frame formatting, frame stripping, CRC checking, CSMA/CD, collision handling, and backpressure flow control. Each MAC supports 10 Mbps, or 100 Mbps operation in either fullduplex or half-duplex mode. 1000 Mbps is supported in full-duplex mode.

2.3.5 Port Status Configuration

The AR8229/AR8228 supports flexible port status configuration on a group or per-

port basis. Each port has status registers that provide information about the port interface. The first port (port 0) MAC behaves as a PHY to allow a direct connection to an external MAC (e.g. A management CPU or a MAC inside a router). In this mode, the AR8229/AR8228 drives interface clocks from a RXCLK_0 pin at the desired frequency. Only full-duplex modes are supported and need to match the mode of the link partner's MAC. The seventh port (port6) supports a PHY interface as a WAN port.

2.3.1 Full-Duplex Flow Control

The AR8229/AR8228 device supports IEEE 802.3x fullduplex flow control, force-mode full-duplex flow control, and half-duplex backpressure. If the link partner supports auto-negotiation, the 802.3x full-duplex flow control is autonegotiated between the remote node and the AR8229/AR8228. If the full-duplex flow control is enabled, when the free buffer space is almost empty, the AR8229/AR8228 sends out an IEEE 802.3x compliant PAUSE to stop the remote device from sending more frames.

2.3.2 Half-Duplex Flow Control

Half-duplex flow control regulates the remote station to avoid dropping packets in network congestion. Back pressure is supported for half duplex operations. When the free buffer space is almost empty, the AR8229/AR8228 device transmits a jam pattern on the port and forces a collision. If the half-duplex flow control mode is not set, the incoming packet is dropped if there is no buffer space available.

2.3.3 Inter-Packet Gap (IPG)

The IPG is the idle time between any to successive packets from the same port. The typical IPG is $9.6 \mu s$ for 10 Mbps Ethernet and 960 ns for 100 Mbps Ethernet and 96 ns for 1000 Mbps Ethernet.

2.3.4 Illegal Frames

The AR8229/AR8228 discards all illegal frames such as CRC error, oversized packets (length greater than maximum length), and runt packets (length less than 64 bytes).

2.4 ACL

The AR8229/AR8228 supports up to 32 ACL rule table entries. Each rule can support filtering or dr-direstion of the incoming packets based on the following field in the packet.

- 1. Source MAC address
- 2. Destination MAC address
- 3. VID
- 4. Ethertype
- 5. Source IP address
- 6. Destination IP address
- 7. Protocol
- 8. Source TCP/UDP port number
- 9. Destination TCP/UDP port number
- 10. Physical Port number

When the incoming packets match an entry in the rules table, the following action can be taken defined in the result field.

- 1. Change VID field
- 2. Drop the packet

Figure 2-4 shows the ACL rule architecture. Each ACL rule is defined by Rule control and Rule result. The Rule control is 4 bytes wide, and there are four indexes in each control field. Each index points to one rule entry in the Rule table. Each rule entry in the Rule table can be on of the following rules:

- 1. MAC Rule
- 2. IPv4 Rule
- 3. IPv6 rule

Figure 2-2 shows the block diagram for a home gateway application.

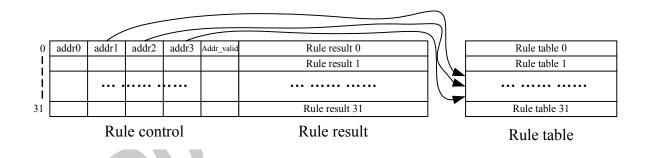


Figure 2-2. ACL Rule Architecture

2.4.5 Rule Control

The AR8229/AR8228 ACL rule control can support up to four entries to the rule table. The tabe below shows the detailed format of the rule control entries. The rule table will define the rule set that an incoming packet will be compared with. If the required rule is only

concerned about the IPv4 layer, then it will require two indexes - one for the MAC rule and the other for the IPv4 rule. When the required rule is concerned with the IPv6 layer, it will require all four indexes - the MAC rule, the IPv6 rule 1, IPv6 rule2, and IPv6 rule 3.

Table 2-1. ACL Rule Control

Bits	Name	Description
38:32	SOURCE_PORT	The physical source ports are applied with this rule

31:24	RULE LENGTH	Rule length without VLAN, SNAP, or PPPoE.
		0:256 bytes
		1:1 byte
		2:2 byte
		FF: 255 bytes
23:20	[23] ADDR3_VALID	Valid indication for ADDR3, ADDR2, ADDR1, and ADDR0
	[22] ADDR2_VALID	1: valid
	[21] ADDR1_VALID	0: invalid
	[20] ADDR0_VALID	
19:15	ADDR3	Index 3 to the Rule table
14:10	ADDR2	Index 2 to the Rule table
9:5	ADDR1	Index 1 to the Rule table
4:0	ADDR0	Index 0 to the Rule table

2.4.6 ACL Rule Match Result

The table below shows the actions when the incoming packets meet an ACL rule. The

available action are copy, mirror, redirect, priority remapping, or change VID.

Table 2-2. ACL Rule Control Result

Bits	Name	Description
65	REDIRECT_TO_CPU	1'b1: packet will be redirected to CPU port.
64	COPY_TO_CPU	1'b1: packet will be copied to the CPU port
63	MIRROR_EN	1'b1: packet will be forwarded to the mirror port
62	SERVICE_TAG_	1'b1: change to double VLAN
	CHANGE_EN	1'b0: change to single VLAN
61	VID_MEM_EN	Enable replace VLAN lookup table
60	DES_PORT_EN	Enable redirect Destination port
58:52	DES_PORT/VID_MEM	If DES_PORT_EN is set to 1'b1, these bits will be used by Qm to determine the destination port but mask the sorce port from DES_PORT.
		If VID_MEM_EN is set to 1'b1, these bits will be used as the VLAN lookup table result
51	PRIORITY_QUEUE_EN	Priority queue enable
50:48	PRIORITY_REMAP	Remap VLAN priority. Used to replace VLAN priority field in the frame.
47:46	PRIORITY_QUEUE	En-queue priority
45	PRIORITY_REMAP_EN	Enable remap VLAN priority. When active the 3 bits of PRIORIY_REMAP will be used to fill in the priority field in the VLAN tag
44	VID_REMAP_EN	Enable VID remap. When active, the VID will be used for the VLAN
		tag
43:32	VID	The VID used for the remap
31:0	RULE_MATCH_CNT	The number of packets that matched this rule

2.4.7 Rule Table

The rule table defines which fields in the incoming packet that should be compared to the ACL rule list. Each entry has 17 bytes for the rule, 16 bytes for the mask, and 3-bits to

select. The select bits indicate whether the rule is a MAC rule, and IPv4 rule, or an IPv6 rule. The table below show the definitions in detail.

Table 2-3. ACL Rule Table

RULE (17 byte)	Mask (16 byte)	RULE_SELECT (3 bits)
MAC_RULE	MAC_MASK	1
IPV4_RULE	IPV4_MASK	2
IPV6_RULE_1	IPV6_MASK_1	3
IPV6_RULE_2	IPV6_MASK_2	4
IPV6_RULE_3	IPV6_MASK_3	5

2.4.8 Rule Select

Table 2-4. ACL Rule Table

Value	Description	Notes
1	MAC_RULE	
2	IPV4_RULE	
3	IPV6_RULE_1	
4	IPV6_RULE_2	
5	IPV6_RULE_3	
6	WINDOW_RULE	
0,7	Reserved	

2.4.9 MAC Rule

the MAC rule support mask field. for the VID, there is another option called range. If it is set to range, ther there are two values, VID_HIGH

and VID_LOW. The incoming packets with VID between VID_LOW and VID_HIGH will meet the rule.

Table 2-5. MAC Rule

Byte	Description	Notes
5:0	DA	Destination Address
11:6	SA	Source Address
13:12	[15:13] VLAN_PRIORITY	
	[12] CFI	
	[11:0] VID/VID_LOW	This field can be VID or VID_LOW depending upon
		the VID_MASK_option
15:14	TYPE	Ethertype Field
16	[7] FRAME_WITH_TAG_MASK	1'b1: consider FRAME_WITH_TAG
		1'b0: ignore FRAME_WITH_TAG
	[6] FRAME_WITH_TAG	1'b1: tagged frame
	[5:1] Reserved	
	[0] VID_MASK_OPTION	1'b1: use VID mask
		1'b0: range, use VID_LOW and VID_HIGH

2.4.10 MAC Mask

Table 2-6. MAC Mask

Byte	Description	Notes
5:0	DA_MASK	1'b1: compare
		1'b0: do not compare
11:6	SA_MASK	
13:12	[15:13] VLAN_PRIORITY_MASK	
	[12] CFI	
	[11:0] VID_MASK/VID_HIGH	VID_MASK or VID_HIGH
15:14	TYPE_MASK	

2.4.11 IPv4

The IPv4 packets support the following formats:

- 1. DA, SA, IPv4. Ethertype 0x0800
- 2. DA, SA, PPPoE, IPv4. PPPPID 0x0021
- 3. DA, SA, SNAP, IPv4. Ethertype 0x0800
- 4. DA, SA, VLAN, IPv4. Ethertype 0x0800

- 5. DA, SA, VLAN, PPPoE,IPv4. Ethertype 0x0021
- 6. DA, SA, VLAN, SNAP, IPv4. Ethertype 0x0800
- 7. DA, SA, double VLAN, IPv4. Ehtertype 0x0800
- 8. DA, SA, double VLAN, IPv4. PPPPID 0x0021
- 9. DA, SA, double VLAN, SNAP, IPv4. Ethertype 0x0800

2.4.12 IPv4 Rule

Table 2-7. IPv4 Rule

Byte	Description	Notes
3:0	DIP	Destination Address
7:4	SIP	Source Address
8	IP PROTOCOL	IP protocol
9	DSCP	DSCP
11:10	TCP/UDP_DESTINATION_PORT/TCP/ UDP_DESTINATION_PORT_LOW	TCP/UDP destination port number or low bound port number. See mask byte 14 bit 1.
13:12	TCP/UDP_SOURCE_PORT/TCP/ UDP_SOURCE_PORT_LOW	TCP/UDP source port number or low bound port number. See mask byte 14 bit 0.
15:14	Reserved	
16	Reserved	

2.4.13 IPv4 Mask

Table 2-8. IPv4 Mask

Byte	Name	Description
3:0	DIP_MASK	

7:4	SIP_MASK	
8	IP_PROTOCOL_MASK	
9D	SCP_MASK	
11:10	TCP/	This can be mask or high definition. See byte 14, bit
	UDP_DESTINATION_PORT_MASK/	1.
	TCP/UDP_DESTINATION_PORT_HIGH	
13:12	TCP/UDP_SOURCE_PORT_MASK/ TCP/	This can be mask or high definition. See byte 14, bit
	UDP_SOURCE_PORT_HIGH	0.
14	[7:2] Reserved	
	[1] TCP/UDP_DESTINATION_MASK	Indicates the definition of bytes 11 and 10.
		1'b1: mask
		1'b0: range
	[0] TCP/UDP_SOURCE_MASK	Indicates the definition of bytes 13 and 12
		1'b1: mask
		1'b0: range
15	Reserved	

2.4.14 IPv6 Rule

Table 2-9. IPv6 Rule 1

Byte	Name	Description
15:0	DIP	Destination IP address
16	Reserved	

Table 2-10. IPv6 Rule 2

Byte		Name	Description
15:0	SIP		Source IP address
16	Reserved		

Table 2-11. IPv6 Rule 3

Byte	Name	Description
0	IP_PROTOCOL	
1	TRAFFIC_CLASS	
5:2	Reserved	
8:6	[23:20] Reserved	
	[19:0] IPV6_FLOW_LABEL	Flow Label
9	Reserved	
11:10	TCP/UDP_DESTINATION_PORT/TCP/ UDP_DESTINATION_PORT_LOW	The TCP/UDP destination port number or the low bound port number. See mask byte 15 bit 1.
13:12	TCP/UDP_SOURCE_PORT/TCP/ UDP_SOURCE_PORT_LOW	The TCP/UDP source port number or the low bound port number. See mask byte 15 bit 0.
16:14	Reserved	

2.4.15 IPv6 Mask

Table 2-12. **IPv6 Mask 1**

Byte	Name	Description
15:0	DIP_MASK	

Table 2-13. **IPv6 Mask 2**

Byte	Name	Description
15:0	SIP_MASK	

Table 2-14. IPv6 Mask 3

Byte	Name	Description
0	TCP/UDP_DESTINATION _MASK	This indicates the definition of bytes 3 and 2
		1'b1: mask
		1'b0: range
1	TCP/UDP_SOURCE_MASK	This indicates the definition of bytes 5 and4
		1'b1: mask
		1'b0: range
8:6	[23:20] Reserved	
	[19:0] IPV6_FLOW_LABEL_MASK	Flow Label
9	Reserved	
11:10	TCP/	The TCP/UDP destination mask or the high bound
	UDP_DESTINATION_PORT_MASK/	port number. See mask byte 15 bit 1.
-	TCP/UDP_DESTINATION_PORT_HIGH	
13:12	TCP/UDP_SOURCE_PORT_MASK/TCP/	The TCP/UDP source port mask or the high bound
-	UDP_SOURCE_PORT_HIGH	port number. See mask byte 15 bit 0.
16:14	Reserved	

Table 2-15. Window Rule

Byte	Name	Description
15:0	DATA	
16	[7] Layer select [6:0] OFFSET	[7]: 1'b0, Layer 2 1'b1, Layer 3

Table 2-16. Window Mask

Byte	Name	Description
15:0	DATA	1'b0: compare
		1'b1: un-compare
16	Reserved	

2.4.16 ACL Access

The ACL Table is locatedat address space 0x58000 ~ 0x58FFFF. The following table shows the detailed addressing

The ACL table is located at address space 0x58000~0x58FFFF. The following table shows the detail addressing.

Table 2-17. ACL Rule Address Mapping

A[18:12]	A[11:10]	A[9:5]	A[4:1]	Data	Description
0x58	00b	Entry #	0000b~	[15:0]	Result
			0001b		Total 4 bytes
0x58	01b	Entry #	0000b~	[15:0]	Rule Table
			1000b		Total 17 bytes
0x58	11b	Entry #	0000b~	[15:0]	Mask Table
			0111b		Total 16 bytes
0x58	10b	Entry #	0000b	[3:0]	rule control: ADDR_VALID
0x58	10b	Entry #	0010b	[4:0]	Rule control: ADDR0
0x58	10b	Entry #	0100b	[4:0]	Rule control: ADDR1
0x58	10b	Entry #	0110b	[4:0]	Rule control: ADDR2
0x58	10b	Entry #	1000b	[4:0]	Rule control: ADDR3
0x58	10b	Entry #	1010b	[6:0]	The physical source port information
0x58	10b	Entry #	1100b	[5:0]	Rule control: RULE LENGTH
0x58	10b	Entry #	1110b	[2:0]	RULE SELECT

2.5 Register Access

The MDIO interface allows users to access the Switch internal registers and MII registers. The figure shown below is the format to access MII registers in the embedded PHY. The Phyaddress is from 0x00 up to 0x04. The Op code "10" indicates the read command and "01" is the write command.

start Op 2'b0 Phy_ad reg_addr TA dr[2:0] [4:0] [1:0]	Data[15:0]
dr 2:0 4:0 1:0	Data[15.0]

The Switch internal registers are 32-bits wide, but the MDIO access is only 16-bits wide. So it needs 2 times access to complete the internal registers access. Moreover the address spacing is more than 10 bits supported by MDIO, So it needs to write the upper address bits to internal registers, like page mode access method. For example, the register address bit 18 to 9 are treated as page address and will be written out first as High_addr[9:0], refer the Table 1 below. Then the register could be accessed via Table 2, where Low_addr[7:1] is the address bit [8:2] of register and Low_add[0]

is 0 for Data[15:0] or Low_addr[0] is 1 for Data[31:16].

1. First, access high-address command.

Where High_Addr[9:0] is address[18:9] fo register

start Op 2'b11 8'b0	TA [1:0] 6'b0	High_addr[9:0]
---------------------	------------------	----------------

2. Second, re-access low-address command.

Table 2: where Low_Addr[7:1] is address [8:2] of register and Low_Addr[0] is 0 for Data[15:0], 1 for Data[31:16]

start	Op 2'b10) Low_addr[7:0] TA [1:0]	Data[15:0]
-------	----------	-----------------------------	------------

2.6 LED Control

There are a total of 5 LED control rules. Two of them are used to control the LEDs of PHY 0 to PHY 3. The other two are used to control the LEDs of PHY4. The last one is used to control the LED of MACO, MAC5 and MAC6. Each PHY port has 2 LEDs, the default behaviour of the LEDs are 100 link activity and 10 link activity. Each MAC0/5/6 have one LED, the default behaviour of the LED is link activity. The

LED output is open-drain output type. So two of them can be connected together to indicate OR operation of the original LEDs. To achieve this operation, another way is to modify the LED control register. Refer the register offset $0x0B0 \sim 0x0BC$.

Each LED can be controlled by 16-bits shown in the following table.

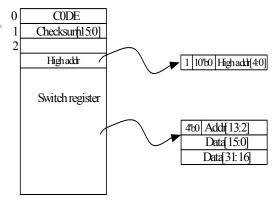
Table 2-18. LED Control

Bit	Name	Description
15:14	PATTERN_EN	2'b00: LED always off
		2'b01: LED blinking at 4 Hz
		2'b10: LED always on
		2'b11: LED controlled by the following bits
13	FULL_LIGHT_EN	1'b1: LED will light when link up in full-duplex
12	HALF_LIGHT_EN	1'b1: LED will light when link up at half-duplex
11	POWER_ON_LIGHT_EN	1'b1: module should enter POWER_ON_RESET
		status after reset.
10	LINK_1000m_LIGHT_EN	1'b1: LED will light when link up at 1000 Mbps
9	LINK_100M_LIGHT_EN	1'b1: LED will light when link up at 100 Mbps
8	LINK_10M_LIGHT_EN	1'b1: LED will light when link up at 10 Mbps
7	COL_BLINK_EN	1'b1: LED will blink when collision is detected
6	Reserved	Must be 1'b0
5	RX_BLINK_EN	1'b1: LED will blink when recieving frame
4	TX_BLINK_EN	1'b1: LED will blink when transmitting frame
3	Reserved	Must be 1'b0
2	LINKUP_OVER_EN	1'b1: RX/TX blinking should check with LINKUP
		speed, LINKUP LED is ON, allow blinking. Otherwise, OFF
		1'b0: RX/TX blinking will ignore the LINKUP speed.
1:0	LED_BLINK_FREQ	LED blink frequency select
		2'b00: 2 HZ
		2'b01: 4 Hz
		2'b10: 8 Hz
		if link up at 100Mbps, use 4 Hz
		if link up at 10 Mbps, use 2 Hz

Table 2-19. LED Rule Default Value

	Name	MAC_LED_RULE	LED_RULE_0/1	LED_RULE_2/3
Bit	Default Value	0xCF35	0xC935	0xCA35
15:14	PATTERN_EN	2'b11	2'b11	2'b11
13	FULL_LIGHT_EN	1′b0	1′b0	1′b0
12	HALF_LIGHT_EN	1′b0	1′b0	1′b0
11	POWER_ON_LIGHT_EN	1'b1	1′b1	1'b1
10	LINK_1000M_LIGHT_EN	1'b1	1′b0	1′b0
9	LINK_100M_LIGHT_EN	1'b1	1′b0	1'b1
8	LINK_10M_LIGHT_EN	1'b1	1′b1	1'b0
7	COL_BLINK_EN	1′b0	1′b0	1′b0
6	Reserved	1′b0	1′b0	1'b0
5	RX_BLINK_EN	1'b1	1′b1	1'b1
4	TX_BLINK_EN	1′b11	′b11	′b1
3	Reserved	1′b0	1′b0	1′b0
2	LINKUP_OVER_EN	1′b1	1'b1	1'b1
1:0	LED_BLINK_RFREQ	1'b01: 4Hz	1'b01: 4Hz	1'b01: 4Hz

2.7 EEPROM Description


The AR8229/AR8228 supports an optional external serial EEPROM device for programming its internal registers and phy registers. The EEPROM data will be read in once after reset. The AR8229/AR8228 support 1K bits, 2K bits or 4K bits EEPROM devices. The external EEPROM device must be configured in x16 data organization mode.

The EEPROM device is read and processed in this way:

- 1.Start at EEPROM address 0x00, data in it should be 0xC0DE.
- 2.Read in address 0x01, is checksum result of EEPROM data.
- 3.read out next address, if bit15 is 1'b1, this address will set spi read high address in theAR8229/AR8228. If bit 15 is 1'b0, this address is register address to be configured. Then the next to register address should be data[15:0] and data[31:16].

4.The last register to be configured in EEPROM must be register 0, and the LOAD_EEPROM bit must be set to 1'b0.

EEPROM Store:

2.8 VLANs

The AR8229/AR8228 switch supports many VLAN options including IEEE 802.1Q and port-based VLANs. The AR8229/AR8228 supports 4096 IEEE 802.1Q VLAN groups and 4K VLAN table entries, and the AR8229/AR8228 device checks VLAN port membership from the VLAN ID, extracted from the tag header of the frame. Table 2-18 shows the AR8229/AR8228-supported 802.1Q modes. The

port-based VLAN is enabled according to the user-defined PORT VID value. The AR8229/AR8228 supports optional discards of tagged, untagged frames, and priority tagged frames. The AR8229/ AR8228 also supports untagging of the VLAN ID for packets going out on untagged ports on a per-port basis.

2.8.1 Port-Based VLAN

The AR8229/AR8228 switch supports port-based VLAN functionality used for non-management frames when 802.1Q is disabled on the ingress port. When FORCE PORT VLAN EN is enabled. non-management frames conform to portbased configurations even if 802.1Q is enabled on the ingress port. Each ingress port contains a register that restricts the output (or egress) ports to which it can to send frames. This port-based VLAN register has a field called PORT VID MEM that contains the port based setting. If bit 0 of a port's PORT VID MEM is set to a one, the port is allowed to send frames to Port 0, bit [2] for Port 2, and so on. At reset, the PORT VID MEM for each port is set to a value of all 1s, except for each port's own bit, which clears to zero. Note that the CPU port is port 0.

2.8.2 802.1Q VLANs

The AR8229/AR8228 supports a maximum of 4096 entries in the VLAN table. The device supports 4096 VLAN ID range from 0 to 4095. The AR8229/AR8228 only supports shared VLAN learning (SVL). This means that forwarding decisions are based on the frame's destination MAC address, which should be unique among all VLANs.

2.8.3 Leaky VLAN

The AR8229/AR8228 support leaky vlan to enable specific frames to be forwarded across VLAN boundary. Totally three types

of frames can be leaked across VLAN boundry: Unicast, Multicast and ARP, among which Unicast and Mulicast leaky are port or MAC address based and ARP is port based.

2.8.4 VLAN Translation Architecture

The AR8229/AR8228 supports VLAN translation function. Each frame will be processed through the following flow as Fig 4. There include some modules as below:

- 1. Translation Table: support the C-VID/S-VID translation. There are 16 entries in the table.
- 2. Ingress Key Selection: Provide the Key for searching the Translation Table at the ingress port.
- 3. Egress Key Selection: Provide the Key for searching the Translation Table at egress port.
- 4. Ingress Tagging Translation: The ingress frame tagging calculation. It depending on the port configuration and the searching result.
- 5. Egress Tagging Translation: The egress frame tagging calculation. It depending on the port configuration and the searching result.
- 6. Egress: It depends on the egress VLAN mode and attach the desired C-VID/S-VID.

Figure 2-2 shows the block diagram for the VLAN Translation Architecture.

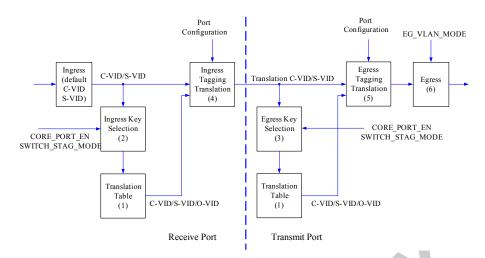


Figure 2-3. VLAN Translation Architecture

2.8.5 VLAN Translation Table

The VLAN translation table allows user to modify the C-VID and/or S-VID. The table is shown below.

Table 2-20. VLAN Translation Table

Bit	Name	Description
44:38	PORT_BIT_MAP	Be used to source when frame received, destination port when frame send out.
37	SINGLE_DIRC	1'b1: this entry only be used as translation from O_VID to S_VID/C_VID, can't be used from S_VID/C_VID pair to O_VID. 1'b0: bi-directory translation
36	ENTRY_VALID	Enable entry to be used
35:24	C_VID Custom	vid
23:12	S_VID Service	vid
11:0	O_VID original	vid

2.8.6 Ingress Key Selection

The egress key for lookup the VLAN translation table will depend on the configuration of the port. The table below shows the detail. The Key will be compared with the related field in the VLAN translation table.

Table 2-21. Ingress Key Table

SWITCH_STAG_ MODE	CORE_PORT_EN	Kev	Compared Field
00	CORE_I ORI_ER	C-VID	O-VID
0	1	S-VID & C-VID	S-VID & C-VID
10		C-VID	O-VID
1	1	S-VID	S-VID & C-VID

2.8.7 Egress Key Selection

The ingress key for lookup the VLAN translation table will depend on the configuration of the port. The table below

shows the detail. The Key will be compared with the related field in the

Table 2-22. Egress Key Table

VLAN translation table. The Key is the Translation C-VID/S-VID after ingress tagging translation.

The translation table will depend on the configuration of the port. The table below

shows the detail. The Key will be compared with the related field in the VLAN translation table. The Key is the Translation C-VID/S-VID after ingress tagging translation.

The ingress key for lookup the VLAN

SWITCH_STAG_ MODE	CORE_PORT_EN	Key	Compared Field
0	0	C-VID	O-VID
0	1	C-VID	O-VID
1	0	S-VID & C-VID	S-VID & C-VID
1	1	S-VID	0-VID

2.8.8 Ingress Tagging Translation

2.8.9 Egress Tagging Translation

The egress tagging translation will depend on the result of VLAN translation table and the translation S-VID/C-VID from the ingress port. The egress VID can be calculated as following table.

Table 2-23. Egress VID Table

2.8.10 Egress Mode

The AR8229/AR8228 supports per port egress VLAN mode:

- 1. Tag mode
- 2. Untag mode
- 3. Unmodified

4. Hybrid

The frame sent out with tagged or untagged will depend on the egress mode setting. The following table shows the tagging or untagging frame on different egress mode.

Table 2-24. Egress Mode Settings

EG_VLAN_		Egress VID=Priority	
MODE	Egress VID=untagged	tagged	Egress VID= tagged
Tag	Egress port default VID	Egress port default VID	Egress VID
unmodify	untagged	Priority tagged	Egress VID
untag	untagged	untagged	untagged
hybrid	untagged	untagged	if(egress VID = egress
			port default VID)
			untagged;
			else tagged;

2.8.11 VLAN Table

The AR8229/AR8228 support 4K VLAN membership table. It also supports the following commands to access the VLAN table:

- 1. Search one entry
- 2. Use getnext read out whole table
- 3. Loading and purging of an entry
- 4. Flush all entries, flush all of one port's entries

2.9 IEEE Port Security

The AR8229/AR8228 supports 802.1Q security features. Its switch discards ingress frames that do not meet security requirements and ensures those frames that

do meet the requirements are sent to the designated ports only. Levels of security can be set differently on each port, and options are processed using the ingress frame's VID:

Mode	Description
Secure	The frame is discarded if the frame's VID is not in the VLAN table or the ingress port is not a member of the VLAN. The frame is allowed to exit only the ports that are members of the frame's VLAN.
Check	The frame is discarded if the frame's VID is not in the VLAN table.
	The frame is allowed to exit only the ports that are members of the frame's VLAN.

Mode	Description
Fallback	If the frame's VID is in the VLAN table, the frame can exit only ports that are members of the frame's VLAN. Otherwise the switch decides forwarding policy based on the port-based VLAN. If a frame arrives untagged, the AR8229/AR8228 forwards based on the port-based VLAN even if the ingress port's 802.1Q mode is enabled.
Egress	The AR8229/AR8228 supports port-based egress, both unmodified and force untagged.

In these application cases, the ports work as:

Port Number	Description
Port 0	CPU Port
Port 1	LAN A
Port 2	
Port 3	LANB
Port 4	
Port 5	WAN Port

In application case 1, all LAN ports can directly send frames to each other but not to the WAN port. The CPU can send frames to all ports. A

2.9.1 Port Locking

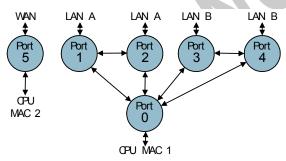


Figure 2-5. Application Case 2

The AR8229/AR8228 supports port lock state in which a frame received with SA can not be found in ARLtable or registered Egress port is not the ingress port of the frame will be dropped or redirect to CPU port. In this way, the AR8229/AR8228 can support MAC based ingress control cooperated with LEARN_EN which can enable or disable learning ability of a port. MAC based egress control can be done by

LAN port must go through the CPU port to send frames to the WAN port. Similarly, the WAN port must also go through the CPU to send frames to LAN ports,. Normally a firewall application runs in the CPU, causing traffic between the LANs and WAN to go through the host CPU. Figure 2-4 shows application case 1.

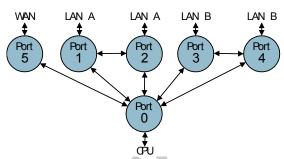


Figure 2-4. Application Case 1

In application case 2, the WAN port is isolated from other ports, so the switch is a five-port switch with an independent PHY. Figure 2-5 shows application case 2.

UNI_FLOOD_DP which can control if a frame with unregistered unicast MAC address in DA field can be egressed from a port.

2.9.2 802.1X

The AR8229/AR8228 supports identifying EAPOL frames by their reserved group addresses. Combined with port security feature, the AR8229/AR8228 can

implement port based or MAC based access control.

Application Cases 1 and 2

	Application Case 1		Application Case 2	
Member	Ports	Description	Ports	Description
Ports	Each port configured in 802.1Q secure mode		Each port configured in 802.1Q secure mode	
	Ports	Create For	Ports	Create For
VLAN1	Port 0, 1, 2	Create for LAN A	Ports 0, 1, 2	LAN A
VLAN2	Ports 0, 3, 4	Create for LAN B	Ports 0, 3, 4	LAN B
VLAN3	Ports 0, 5	Create for WAN	_	_

2.10 Class/Quality of Service

The AR8229/AR8228 switch identifies the packets' priority level based on several types of QoS priority information: portbased, 802.1p CoS, IPv4TOS/Diffserv, and IPv6 TC. The AR8229/AR8228 switch supports up to four queues per egress port. For tagged packets, the incoming packet priority can be mapped to one of the four CoS queues based on the priority field in the tag header or based on the result of classification lookup. For untagged packets, the CoS priority is derived either from a configurable field within the VLAN address tables or from the result of classification lookup. After the packets are mapped into an egress queue, they are forwarded using either strict priority or weighted fair queuing scheduler.

Mode	Description
Strict Priority (SP)	Any packets residing in the higher priority queues transmit first. Lower priority packets transmit once these queues are emptied.
Weighted Fair Queuing	Each queue is assigned a weight that determines how many packets are sent from each priority queue.
Mix Mode	The highest priority queue use SP and other queues conform to WRR at 4,2,1 weight

The AR8229/AR8228 recognizes the QoS information of ingress frames and map to

different egress priority levels. The AR8229/AR8228 determines the priority of the frames based on DA, TOS/TC, VLAN, and port. Each has an enable bit that can be applied. When more than one type of priority is selected, the order in which the frame priority should be applied can be determined. Priority enable bits and select order bits are set by port base at 0x110 for port 0, 0x210 for port 1, and so on. When more than one priority enable bit is set to 1'b1, bits [7:0] in 0x110, 0x210, etc. (DA PRI SEL, IP PRI SEL, VLAN PRI SEL, PORT PRI SEL) can determine the order in which the frame priority should be applied. If * PRI SEL is set to 2'b0, frame priority is determined by that first. Otherwise, priority is determined by which * PRI SEL is set to 2'b01, then 2'b10, 2'b11, etc.

Priority Determined	Description
DA	Set DA_PRI_EN bit [18] to 1'b1 and add the address to the ARL table-set priority_over_en to 1'b1. ARL priority bits [59:58] can be used as DA priority.
TOS/TC	Set IP_PRI_EN bit [16] to 1'b1, and set the IP priority mapping register (0x60–0x6C).
VLAN	Set VLAN_PRI_EN (bit [17]) to 1'b1, and set the TAG priority mapping register (0x70).
Port's Default Authority	Set PORT_PRI_EN to 1'b1, and set port base register ING_PORT_PRIORITY (bits [19:28] in 0x108, 0x208, etc.).

When more than one priority enable bit is set to 1'b1, bits [7:0] in 0x110, 0x210, etc. (DA_PRI_SEL, IP_PRI_SEL, VLAN_PRI_SEL, PORT PRI SEL) can determine the order in which the frame priority should be applied. If *_PRI_SEL is set to 2'b0, frame priority is determined by that first. Otherwise, priority is determined by which *_PRI_SEL is set to 2'b01, then 2'b10, 2'b11, etc.

2.10.3 Priority Scheduling

The Priority scheduling support four mechanism:

- Strict priority mode: The Queue 3 has the highest priority, then Queue 2 and Queue 1, and the Queue 0 is the lowest priority.
- Mix priority mode I: The Queue 3 has the highest priority. While other Queues use the Weighted Round Robin scheme, the weight is configurable from 1 to 15 for each queue.
- Mix priority mode II: The Queue 3 has the highest priority and the Queue 2 owns the second priority. While Queues 1 and 0 use the Weighted Round Robin scheme, the weight is configurable from 1 to 15 for each queue.
- •Weighted Round Robin Mode: All the four Queues use the Weighted Round Robin scheme, the weight is configurable from 1 to 15 for each queue.

2.10.4 Rate Limiting

In triple-play applications, the switch may need to limit the rate for all frames but continue to maintain QoS policy. The AR8229/AR8228 supports ingress and egress rate limiting requirements on a perport basis by configuring the Port Rate Limit register. The AR8229/AR8228 can also support per port per Queue based egress rate limiting. Ingress rate limit can include or exclude the consideration of Management frames and registered multicast frames, while Egress rate limit can be configured to take management

frames into account. The AR8229/AR8228 can limit all frames and support rate limits from 32 Kbps to 1 Gbps at 32 Kbps granularity.

2.11 Mirroring

Mirroring monitors traffic for information gathering or troubleshooting higher-layer protocol operations. Users can specify that a desired mirrored-to port (sniffer port) receive a copy of all traffic passing through a designated mirrored port. The AR8229/AR8228 supports mirror frames that:

- Come from an ingress specified port (ingress mirroring)
- Are destined for egress-specified port (egress mirroring)
- Mirror all ingress and egress traffic to a designated port
- Mirror frames to a specific MAC address

2.12 Broadcast/Multicast/unknown Unicast Storm Control

The AR8229/AR8228 supports port based broadcast suppression which can include unregistered multicast, unregistered unicast and broadcast. If the broadcast/multicast strom control is enabled, all broadcast/ multicast/unknown unicast packets beyond the default threshold of 10 ms (for 100 Mbps operations) and 100 ms (for 10 Mbps operations) are discarded.

2.13 IGMP/MLD Snooping

The AR8229/AR8228 switch supports IPv4 IGMP snooping (v1/v2/v3 supported) and Ipv6 MLDv1/v2 snooping. By setting the IGMP MLD EN bit in the Port Control register, the AR8229/AR8228 can look inside IPv4 and IPv6 packets and redirect IGMP/MLD frames to the CPU for processing. The AR8229/AR8228 also supports hardware IGMP join and fast leave functions. By setting IGMP JOIN EN and IGMP LEAVE EN bits int he Port Control register, the AR8229/AR8228 will

update the ARL table automatically when the AR8229/AR8228 receives IGMP/MLD join or leave packets, and then forward it to the router port directly in the case the CPU is not acting as a router or when enabling multicast VLAN LEAKY to bypass multicast traffic directly from WAN to LAN.

The hardware join/fast leave support the following packets:

- 1. IGMPv1 join
- 2. IGMPv2/MLDv1 join/leave
- 3. IGMPv3/MLDv2 report exclude NONE or include NONE.

2.14 Spanning Tree

IEEE 802.1D Spanning Tree allows bridges to automatically prevent and resolve Layer 2 forwarding loops. Switches exchange BPDUs and configuration messages and selectively enable and disable forwarding on specified ports. A tree of active forwarding links ensures an active path between any two nodes in the networks.

Spanning Tree can be enabled globally or on a per-port basis by configuring the Port Status register.

2.15 MIB/Statistics Counters

The statistics counter block maintains a set of forty MIB counters per port. These counters provide a set of Ethernet statistics for frames received on ingress and transmitted on egress. A register interface allows the CPU to capture, read, or clear the counter values. All MIB counters are cleared when read.

The counters support:

- RMON MIB
- Ethernet-like MIB
- MIB II
- Bridge MIB
- RFC2819

The CPU interface supports:

- Autocast MIB counters after half-full
- Autocast MIB counters after time out
- Autocast MIB counters when requested
- Clearing all MIB counters

Table 2-21 describes the statistics counter for each port.

Table 2-25. MIB Counters

Counter	Width	Offset	Description
RxBroad	32bit	0x00	The number of good broadcast frames received
RxPause	32bit	0x04	The number of PAUSE frames received
RxMulti	32bit	0x08	The number of good multicast frames received
RxFcsErr	32bit	0x0c	The total number of frames received with a valid length, but an invalid FCS and an integral number of octets
RxAllignErr	32bit	0x10	The total number of frames received with a balid length that do not have an integral number of octets and an invalid FCS
RxRunt	32bit	0x14	The number of frames received that are less than 64 bytes long and have a bad FCS
RxFragement	32bit	0x18	The number of frames recdeived that are less than 64 bytes long and have a bad FCS
Rx64Byte	32bit	0x1C	The number of frames received that are exactly 64 bytes long including those with errors

Rx128Byte	32bit	0x20	The number of frames received whose length is
			between 65 and 127 bytes, including those with
			errors
Rx256Byte	32bit	0x24	The number of The number of frames received
			whose length is between 128and 255 bytes, including
			those with errors
Rx512Byte	32bit	0x28	The number of frames received whose length is
			between 256 and 511 bytes, including those with
			errors
Rx1024Byte	32bit	0x2C	The number of frames received whose length is
			between 512 and 1023 bytes, including those with
			errors
Rx1518Byte	32bit	0x30	The number of frames received whose length is
			between 1024 and 1518 bytes, including those with
			errors
RxMaxByte	32bit	0x34	The number of frames received whose length is
			between 1519 and maxlength, including those with
			errors (Jumbo)
RxTooLong	32bit	0x38	The number of frames received whose length
			exceeds maxlength including those with FCS errors
RxGoodByte	64bit	0x3C:0x40	Total data octets received in a frame with a valid
•			FCS. All frame sizes are included.
RXBadByte	64bit	0x44:0x48	Total data octets received in frame with an invalid
,			FCS. All frame sizes are included. Pause frame is
			included with a valid FCS.
RxOverFlow	32bit	0x4C	Total valid frames received that are discarded due to
			lack of buffer space
Filtered	32bit	0x50	Port disabled and unknown VID
TxBroad	32bit	0x54	Total good frames tranmitted with a broadcast
			Destination address
TxPause	32bit	0x58	Total good PAUSE frames transmitted
TxMulti	32bit	0x5C	Total good frames transmitted with a multicast
TAMATA	52510	OASC	Destination address
TxUnderRun	32bit	0x60	Total valid frames discarded that were not
TXOTIGETRUIT	32bit	0.000	transmitted due to transmit FIFO buffer underflow
Tre APreto	32bit	0x64	
Tx64Byte	320It	UX04	Total frames tranmitted with a length of exactly 64 bytes, including errors
T. 100D (221.11	0.70	
Tx128Byte	32bit	0x68	Total frames tranmitted with a length between 65
E OF CD	201 14	0.46	and 127 bytes, including those with errors
Tx256Byte	32bit	0x6C	Total frames tranmitted with a length between 128
	001.1	. =	and 255 bytes, including those with errors
Tx512Byte	32bit	0x70	Total frames tranmitted with a length between 256
T 406 17	001.1	0.71	and 511 bytes, including those with errors
Tx1024Byte	32bit	0x74	Total frames tranmitted with a length between 512
			and 1023 bytes, including those with errors
Tx1518Byte	32bit	0x78	Total frames transmitted with length between 1024
			and 1518, including those with errors (Jumbo)
TxMaxByte	32bit	0x7C	Total frames transmitted with length between 1519
			and Maxlength, including those with errors (Jumbo)
TxOverSize	32bit	0x80	Total frames over Maxlength but transmitted
			truncated with bad FCS
TxByte	64bit	0x84:0x88	Total data octets transmitted from counted,
,			including those with a bad FCS
TxCollision	32bit	0x8C	Total collisions experienced by a port during packet
			transmission
TxAbortCol	32bit	0x90	Total number of frames not transmitted becase the
			frame experienced 16 transmission attempts and was
			discarded
	1	1	

TxMultiCol	32bit	0x94	Total nuber of successfully transmitted fromes that experienced more than one collision
TxSingalCol	32bit	0x98	Total number of successfully transmitted frames that experienced exactly one collision
TxExcDefer	32bit	0x9C	The number of frames that defered for an excessive period of time
TxDefer	32bit	0xA0	Total frames whose transmission was delayed on its first attempt because the medium way was busy
TXLateCol	32bit	0xA4	Total number of times a collision is detedted later than 512 bit-times into the transmission of a frame

2.16 Atheros Header Configuration

Table 2-26 Table 2-22 describes the Atheros header configuration. The Atheros header is a two-byte header that the CPU uses to configure the AR8229/AR8228 switch.

The Atheros header will be located after the SA of the packet.

Table 2-26. Atheros Header Configuration

Bit	Name	Descrip	tion						
15:14	Version	2′b10				7			
13:12	PRIORITY	Packet p	riority						
11:8	TYPE	Packet Ty	icket Type:						
		0	Normal Packet	manage	l packet ement. D nd the VI	estination de la constitución de	on port o	clude letermined	l by
		1R	ES	Reserve	ed				
		2	MIB	Auto-ca	ast MIB	frame			
		4:3	RES	Reserve	ed				
		5	READ_WRITE_REG	Read or write register frame (see Table):					
				8-byte	4-byte	2-byte	0—12- byte	34—46- byte	4-byte
				Comma nd (low byte first)	data (low byte first)	header (high byte first)	data (low byte first)	Padding	CRC
		6	READ_WRITE_REG_ACK	Read or	r write re	egister A	CK fran	ne from the	CPU
		15 – 7	RES	Reserve	ed				
7	FROM_CPU	This bit indicates the forwarding method;							
		1: Forwarding is based upon the PORT_NUM (bit6:0)							
		0: Forwarding is based upon the VLAN table result and PORT_NUM (bit6:0)							
6:0	PORT_NUM	packet. I	("FROM_CPU") is set to 1, t f bit [7] ("BROADCAST") is PORT_NUM indicates the so	set to 1,	this bit is	s ignored			

Read or Write Register Frame

Value	Name	Descrip	tion			
63:33	SEQ_NUM	Sequenc	equence number for CPU_DETECT			
31:29	CHECK_CODE	3'b101				
28	CMD	0	Write			
		1R	ead			
27:24	CHECK_CODE	4b'0000	4b'0000			
23:20	LENGTH	Read/w	Read/write length			
		4	Register length			
		6	VLAN table length			
		10	ARL table length			
19:18	CHECK_CODE	2′b00				
17:0	ADDR	register	offset address, must be DWORD aligned			

2.17 IEEE 802.3 Reserved Group Addresses Filtering Control

The AR8229/AR8228 supports the ability to drop/redirect/copy 802.1D specified reserved group MAC addresses: 01-80-C2-00-00-04 to 01-80-C2-00-00-0F by adding the address to ARL table.

2.18 Forwarding Unknown

The AR8229/AR8228 can be configured to prevent the forwarding of unicast frames and multicast frames with unregistered destination MAC address on per port base. This can be done by setting UNI FLOOD DP and MULTI FLOOD DP where a bit represents a port of the AR8229/AR8228.

2.19 PPPoE Header Removal

The frame type support: PPPoE, VLAN + PPPoE, SNAP + PPPoE, VLAN + SNAP + **PPPoE**

The AR8229/AR8228 can support the PPPoE header remove for the multicast streaming to offload the CPU loading and improve the CPU performance. The supported PPPoE session number is 16 sessions. The detail is shown below.

shows the block diagram for the PPPoE Removal.

Figure 2-6. PPPoE Removal

The PPPoE Session ID Table shows the possible results.

Table 2-27. PPPoE Session ID Table

Bit	Name	Description
19	Session ID Valid	1'b1: session id is valid (drop pppoe header)
		1'b0: no valid session id to be compared to

Table 2-27. PPPoE Session ID Table

Bit	Name	Description
18:16	reserved	
15:0	Session ID	Session id to be compared with PPPoE session frame

2.20 Memory Map

The Memory Map is shown below:

Table 2-28. Memory Map

Global Regis- ter	Offset
Global Register	0x0000 ~ 0x000FC
Port Register	0x0100 ~ 0x0012C
MIB Register	0x20*00 ~ 0x20*A4
ACL Table	0x58000 ~ 0x58FEC
Translation Table	0x59000 ~ 0x5907C
Session ID Table	0x59100 ~ 0x5913F

3. Register Descriptions

Table 3-1 shows the reset types used in this document.

Table 3-1. Register Reset Types

Туре	Description
LH	Register field with latching high function. If status is high, then the register is set to one and remains set until a read operation is performed through the management interface or a reset occurs.
LL	Register field with latching low function. If status is low, then the register is cleared to a zero and remains cleared until a read operation is performed through the management interface or a reset occurs.
Retain	Value written to a register field takes effect without a software reset.
RES	Reserved for future use. All reserved bits are read as zero, unless otherwise noted.
RO	Read Only.
ROC	Read Only Clear. After a read, the register field is cleared to zero.
R/W	Read/Write.
RWC	Read/Write Clear on read. All bits are readable and writable. After a reset, or after the register is read, the register field is reset to zero.

Table 3-1. Register Reset Types (continued)

Туре	Description
RWR	Read/Write Reset. All bits are readable and writable. After a reset, or after the register is read, the register field is cleared to zero.
RWS	Read/Write Set. All bits are readable and writable. After a reset, the register field is set to a non-zero value specified in the text.
SC	Self-Clear. Writing a one to this register causes the desired function to execute immediately, and the register field clears to zero when the function is complete.
Update	The value written to the register field does not take effect until a software reset is executed. The value can still be read after it is written.
WO	Write Only. Reads to this type of register field returen undefined data.

3.1 Global Control Registers 0x0000 —0x00FC

Table 3-2 summarizes the global control registers.

Table 3-2. Global Control Register Summary

Offset	Description	Page
0x0000	Mask Control Register	page 49
0x0004	Operational Mode Register 0	page 50
0x0008	Operational Mode Register 1	page 52
0x000C	Operational Mode Register 2	page 54
0x00010	Power-On Strapping Register	page 56
0x0010	Global Interrupt Register	page 57
0x0014	Global Interrupt Mask Register	page 58
0x0020 — 0x0024	Global MAC Address Register	page 59
0x0028	Loop Check Result Register	page 49

Table 3-2. Global Control Register Summary (continued)

Offset	Description	Page
0x002C	Flood Mask Register	page 62
0x0030	Global Control Register	page 62
0x0034	Flow Control Register 0	page 64
0x0038	Flow Control Register 1	page 64
0x003C	QM Control Register	page 65
0x0040 — 0x0044	VLAN Table Function Register	page 67
0x0050 — 0x0058	Address Table Function Register	page 72
0x005C	Address Table Control Register	page 72
0x0060 — 0x006C	IP Priority Mapping Register 2	page 73
0x0070	Tag Priority Register	page 76
0x0074	Service Tag Register	page 76
0x0078	CPU Port Register	page 77
0x0080	MIB Function Register	page 77
0x0098	MDIO Control Register	page 78
0x00B0 — 0x00B8	LED Control Register	page 79

3.2 Port Control Registers 0x0100 — 0x0124

Table 3-3 summarizes the Port Control Registers.

Table 3-3. **Port Control Registers — Summary**

Port	Offset	Name	Page	
Port 0	0x0100 - 0x01FC	Total Port 0 control register memory allocation		
	0x0100	Port status register	page 82	
	0x0104	Port control register	page 90	
	0x0108	Port based VLAN register	page 86	
	0x0110	Priority control register	page 90	
	0x0114	Storm control register	page 90	
	0x0118	Queue control register	page 91	
	0x010C, 0x011C, 0x0120	Rate limit registers	page 93	
Port 1	0x0200 - 0x01FC	Total Port 1 control register memory allocate	on	
	0x0200	Port status register	page 82	
	0x0204	Port control register	page 90	
	0x0208	Port based VLAN register	page 86	
	0x0210	Priority control register	page 90	
	0x0214	Storm control register	page 90	
	0x0218	Queue control register	page 91	
	0x020C, 0x021C, 0x0220	Rate limit registers	page 93	
Port 2	0x0300 - 0x03FC	Total Port 2 control register memory allocate	on	
	0x0300	Port status register	page 82	
	0x0304	Port control register	page 90	
	0x0308	Port based VLAN register	page 86	
	0x0310	Priority control register	page 90	
	0x0314	Storm control register	page 90	
	0x0318	Queue control register	page 91	
	0x030C, 0x031C, 0x0320	Rate limit registers	page 93	

Port	Offset	Name	Page	
Port 3	0x0400 - 0x04FC	Total Port 3 control register memory alloca	ition	
	0x0400	Port status register	page 82	
	0x0404	Port control register	page 90	
	0x0408	Port based VLAN register	page 86	
	0x0410	Priority control register	page 90	
	0x0414	Storm control register	page 90	
	0x0418	Queue control register	page 91	
	0x040C, 0x041C, 0x0420	Rate limit registers	page 93	
Port 4	0x0500 - 0x05FC	Total Port 4 control register memory alloca	ition	
	0x0500	Port status register	page 82	
	0x0504	Port control register	page 90	
	0x0508	Port based VLAN register	page 80	
	0x0510	Priority control register	page 9	
	0x0514	Storm control register	page 9	
	0x0518	Queue control register	page 9	
	0x050C, 0x051C, 0x0520	Rate limit registers	page 93	
Port 5	0x0600 - 0x06FC	Total Port 5 control register memory allocation		
	0x0600	Port status register	page 82	
	0x0604	Port control register	page 90	
	0x0608	Port based VLAN register	page 86	
	0x0610	Priority control register	page 90	
	0x0614	Storm control register	page 90	
	0x0618	Queue control register	page 93	
	0x0600C, 0x061C, 0x0620	Rate limit registers	page 93	
Port 6	0x0700 - 0x07FC	Total Port 6 control register memory alloca	ition	
	0x0700	Port status register		
	0x0704	Port control register		
	0x0708	Port based VLAN register		
	0x0710	Priority control register		
	0x0714	Storm control register		
	0x0718	Queue control register		
	0x070C, 0x071C, 0x0720	Rate limit registers		

3.3 Mask Control Register

Address Offset: 0x0000

Table 3-4 summarizes the Mask Control Registers

Table 3-4. Mask Control Register

Bit	R/W	Inital Value	Mnemonic	Description
31	W/SC	0	SOFT_RET	1'b1: software reset. This bit is set by the sofware to initate the hardware. It should be slef-cleared by the hardware after the initialization is done.
30:26	R/O	0	Reserved	4
25:20	R/W	0	Reserved	
19:17	R/O	0	Reserved	
16	R/W	0	LOAD_EEPROM	load EEPROM enable. This bit is set to automatically load registers from an EEPROM. It should be cleared after the loading is complete.
15:8	RO	0x02	DEVICE_ID	Device identifier
7:0	RO	0x01	REV_ID	Revision identifier

NOTE: this register can only be reset by a hardware reset.

3.4 Operational Mode Register 0

Address Offset: 0x0004

Table 3-5 summarizes the Mask Control Registers

Table 3-5. Operational Mode Register 0

Bit	R/W	Inital Value	Mnemonic	Description
31:27	R/W	0	Reserved	
26	R/W	0	MAC0_RGMII_EN	1'b1 mac0 connected to cpu through RGMII interface
25	R/W	0	MAC0_RGMII_TXCLK_DELAY_ EN	1'b1 RGMII interface txclk(input from cpu) will be delay, delay value depend on bit23:bit22
24	R/W	0	MAC0_RGMII_RXCLK_DELAY_ EN	1'b1 GMII interface rxclk (output to cpu) will be delayed. The delay value depends upon bit21:bit20
23:22	R/W	0	MAC0_RGMII_TXCLK_DELAY_ SEL	2'b11 ~ 2'b00 Control the delay value of RGMII interface txclk,2'b11 has the max delay
21:20	R/W	0	MAC0_RGMII_RXCLK_DELAY_ SEL	2'b11 ~ 2'b00 Control the delay value of RGMII interface rxclk,2'b11 has the max delay
19	R/W	0	MAC0_RMII_TXCLK_SEL	1'b1 select invert clock for RMII tx pipe
18	R/W	0	MAC0_RMII_RXCLK_SEL	1'b1 select invert clock for RMII rx pipe
17	R/W	0	MAC0_RMII_EN	1'b1 mac0 connected to cpu through RMII interface
16:15	R/W	0	RESERVED	
14	R/W	0	MAC0_PHY_GMII_EN	1'b1 mac0 connected to cpu through GMII interface, phy mode
13	R/W	0	MAC0_PHY_GMII_TXCLK_SEL	1'b1 select invert clock input for port0 phymode, GMII interface txclk
12	R/W	0	MAC0_PHY_GMII_RXCLK_SEL	1'b1 select invert clock output for port0 phymode, GMII interface rxclk
11	R/W	0	RESERVED	
10	R/W	0	MAC0_PHY_MII_EN	1'b1 mac0 connected to cpu through MII interface, phy mode
9	R/W	0	MAC0_PHY_MII_TXCLK_SEL	1'b1 select invert clock output for port0 phymode ,MII interface txclk
8	R/W	0	MAC0_PHY_MII_RXCLK_SEL	1'b1 select invert clock output for port0 phymode ,MII interface rxclk
7R	/W	0	RESERVED	
6	R/W	0	MAC0_MAC_GMII_EN	1'b1 mac0 connected to cpu through GMII interface, mac mode
5	R/W	0	MAC0_MAC_GMII_TXCLK_SEL	1'b1 select invert clock output for port0 macmode, GMII interface txclk

Bit	R/W	Inital Value	Mnemonic	Description
4	R/W	0	MAC0_MAC_GMII_RXCLK_SEL	1'b1 select invert clock input for port0 macmode, GMII interface rxclk
3	R/W	0	RESERVED	
2	R/W	0	MAC0_MAC_MII_EN	1'b1 mac0 connected to cpu through MII interface, mac mode
1	R/W	0	MAC0_MAC_MII_TXCLK_SEL	1'b1 select invert clock input for port0 macmode, MII interface txclk
0	R/W	0	MAC0_MAC_MII_RXCLK_SEL	1'b1 select invert clock input for port0 macmode, MII interface rxclk

NOTE: this register can only be reset by a hardware reset.

3.5 Operational Mode Register 1

Address Offset: 0x0008

Table 3-6 summarizes the Mask Control Registers

Table 3-6. Operational Mode Register 1

Bit	R/W	Inital Value	Mnemonic	Description
31:30	R/W	0	RESERVED	
29	R/W	0	PHY4_RMII_EN	1'b1 phy4 connected to cpu through RMII interface
28	R/W	0	PHY4_MII_EN	1'b1 phy4 connected to cpu through MII interface
27	R/W	0	RESERVED	. 1
26	R/W	0	MAC5_RGMII_EN	1'b1 Mac5 connected to cpu through RGMII interface
25	R/W	0	MAC5_RGMII_TXCLK_DELAY_EN	1'b1 RGMII interface txclk(input from cpu) will be delay, delay value depend on bit23:bit22
24	R/W	0	MAC5_RGMII_RXCLK_DELAY_ EN	1'b1 RGMII interface rxclk will be delay, 1000M: delay 2ns output to cpu 10/100M: delay value depend on bit21:bit20
23:22	R/W	0	MAC5_RGMII_TXCLK_DELAY_ SEL	2'b11 ~ 2'b00 Control the delay value of RGMII interface txclk,2'b11 has the max delay
21:20	R/W	0	MAC5_RGMII_RXCLK_DELAY_ SEL	2'b11 ~ 2'b00 Control the delay value of RGMII interface rxclk,2'b11 has the max delay
19	R/W	0	MAC5_RMII_TXCLK_SEL	1'b1 select invert clock for RMII tx pipe
18	R/W	0	MAC5_RMII_RXCLK_SEL	1'b1 select invert clock for RMII rx pipe
17	R/W	0	MAC5_RMII_EN	1'b1 mac0 connected to cpu through RMII interface
16:15	R/W	0	RESERVED	
14	R/W	0	MAC5_PHY_GMII_EN	1'b1 mac0 connected to cpu through GMII interface, phy mode
13	R/W	0	MAC5_PHY_GMII_TXCLK_SEL	1'b1 select invert clock input for port0 phymode, GMII interface txclk
12	R/W	0	MAC5_PHY_GMII_RXCLK_SEL	1'b1 select invert clock output for port0 phymode, GMII interface rxclk
11	R/W	0	RESERVED	
10	R/W	0	MAC5_PHY_MII_EN	1'b1 mac0 connected to cpu through MII interface, phy mode
9	R/W	0	MAC5_PHY_MII_TXCLK_SEL	1'b1 select invert clock output for port0 phymode ,MII interface txclk

Bit	R/W	Inital Value	Mnemonic	Description
8	R/W	0	MAC5_PHY_MII_RXCLK_SEL	1'b1 select invert clock output for port0 phymode ,MII interface rxclk
7	R/W	0	RESERVED	
6	R/W	0	MAC5_MAC_GMII_EN	1'b1 mac0 connected to cpu through GMII interface, mac mode
5	R/W	0	MAC5_MAC_GMII_TXCLK_SEL	1'b1 select invert clock output for port0 macmode, GMII interface txclk
4	R/W	0	MAC5_MAC_GMII_RXCLK_SEL	1'b1 select invert clock input for port0 macmode, GMII interface rxclk
3	R/W	0	RESERVED	
2	R/W	0	MAC5_MAC_MII_EN	1'b1 mac0 connected to cpu through MII interface, mac mode
1	R/W	0	MAC5_MAC_MII_TXCLK_SEL	1'b1 select invert clock input for port0 macmode, MII interface txclk
0	R/W	0	MAC5_MAC_MII_RXCLK_SEL	1'b1 select invert clock input for port0 macmode, MII interface rxclk

NOTE: this register can only be reset by a hardware reset.

3.6 Operational Mode Register 2

Address Offset: 0x000C

Table 3-7 summarizes the Mask Control Registers

Table 3-7. Operational Mode Register 2

Bit	R/W	Inital Value	Mnemonic	Description
31:27	R/W	0	RESERVED	
26	R/W	0	MAC6_RGMII_EN	1'b1 mac6 connected to cpu through RGMII interface
25	R/W	0	MAC6_RGMII_TXCLK_DELAY_ EN	1'b1 RGMII interface txclk(input from cpu) will be delay, delay value depend on bit23:bit22
24	R/W	0	MAC6_RGMII_RXCLK_DELAY_ EN	1'b1 RGMII interface rxclk will be delay, 1000M: delay 2ns output to cpu 10/100M: delay value depend on bit21:bit20
23:22	R/W	0	MAC6_RGMII_TXCLK_DELAY_ SEL	2'b11 ~ 2'b00 Control the delay value of RGMII interface txclk,2'b11 has the max delay
21:20	R/W	0	MAC6_RGMII_RXCLK_DELAY_ SEL	2'b11 ~ 2'b00 Control the delay value of RGMII interface rxclk,2'b11 has the max delay
19	R/W	0	MAC6_RMII_TXCLK_SEL	1'b1 select invert clock for RMII tx pipe
18	R/W	0	MAC6_RMII_RXCLK_SEL	1'b1 select invert clock for RMII rx pipe
17	R/W	0	MAC6_RMII_EN	1'b1 mac6 connected to cpu through RMII interface
16:15	R/W	0	RESERVED	
14	R/W	0	MAC6_PHY_GMII_EN	1'b1 mac6 connected to cpu through GMII interface, phy mode
13	R/W	0	MAC6_PHY_GMII_TXCLK_SEL	1'b1 select invert clock input for port6 phymode, GMII interface txclk
12	R/W	0	MAC6_PHY_GMII_RXCLK_SEL	1'b1 select invert clock output for port6 phymode, GMII interface rxclk
11	R/W	0	RESERVED	
10	R/W	0	MAC6_PHY_MII_EN	1'b1 mac6 connected to cpu through MII interface, phy mode
9	R/W	0	MAC6_PHY_MII_TXCLK_SEL	1'b1 select invert clock output for port6 phymode ,MII interface txclk
8	R/W	0	MAC6_PHY_MII_RXCLK_SEL	1'b1 select invert clock output for port6 phymode ,MII interface rxclk
7R	/W	0	RESERVED	
6	R/W	0	MAC6_MAC_GMII_EN	1'b1 mac6 connected to cpu through GMII interface, mac mode

Bit	R/W	Inital Value	Mnemonic	Description
5	R/W	0	MAC6_MAC_GMII_TXCLK_SEL	1'b1 select invert clock output for port6 macmode, GMII interface txclk
4	R/W	0	MAC6_MAC_GMII_RXCLK_SEL	1'b1 select invert clock input for port6 macmode, GMII interface rxclk
3	R/W	0	RESERVED	
2	R/W	0	MAC6_MAC_MII_EN	1'b1 mac6 connected to cpu through MII interface, mac mode
1	R/W	0	MAC6_MAC_MII_TXCLK_SEL	1'b1 select invert clock input for port6 macmode, MII interface txclk
0	R/W	0	MAC6_MAC_MII_RXCLK_SEL	1'b1 select invert clock input for port6 macmode, MII interface rxclk

Note: this register can only be reset by a hardware reset.

3.7 Power-On Strapping Register

Address Offset: 0x0010

Table 3-8 Summarizes the Power-On Strapping registers

Table 3-8. Power-On Strapping Register

Bit	R/W	Inital Value	Mnemonic	Description
31	R/W	0	POWER_ON_SEL	1'B1: use register configuration value to replace power on strip for bits 25:24
30:26	R/O	0	Reserved	
25	R/W	0	SPI_EN	1'b1: EEPROM is connected to the AR8229/AR8228
24	R/W	1	LED_OPEN_EN	1'b1 LED PAD is open drain mode
23:21	R/W	0	Reserved	
20	R/W	0	Reserved	
19	R/W	0	Reserved	
18	R/W	1	Reserved	
17	R/W	1	Reserved	
16	R/W	0	Reserved	
15	R/W	0	Reserved	
14	R/W	0	Reserved	
13	R/W	0	Reserved	
12	R/W	1	Reserved	
11	R/W	1	Reserved	
10	R/W	0	Reserved	
9	R/W	1	Reserved	
8	R/W	1	Reserved	
7	R/W	0	Reserved	
6	R/W	0	Reserved	
5	R/W	1	Reserved	
4	R/W	0	Reserved	
3	R/W	0	Reserved	
2	R/W	0	Reserved	
1	R/W	0	Reserved	
0	R/W	0	Reserved	

3.8 Global Interrupt Register

Address Offset: 0x0014

Table 3-9 Summarizes the Global Interrupt register

Table 3-9. Global Interrupt Register

Bit	R/W	Inital Value	Mnemonic	Description
31:24	R/O	0	Reserved	
23:19	R/O	0	Reserved	
18	RW1C	0	LOOP_CHECK_INT	Interrupt when loop checked by hardware
17	R/W1C	0	Reserved	4
16	R/W1C	0	Reserved	
15	R/O	0	Reserved	
14	R/W1C	1	HARDWARE_INI_DONE	Interrupt when hardware memory initialization is complete
13	R/W1C	1	MIB_INI_INT	Interrupt when MIB memory intialization is complete
12	R/W1C	0	MIB_DONE_INT	Interrupt when MIB access by CPU is complete
11	R/W1C	0	BIST_DONE_INT	Interrupt when BIST test is complete
10	R/W1C	0	VT_MISS_VIO_INT	Interrupt when the VID is not found in the VLAN table
9	R/W1C	0	VT_MEM_VIO_INT	Interrupt when the VID is in the VLAN table, but the source port is not a member of the VLAN
8	R/W1C	0	VT_DONE_INT	Interrupt when the CPU has completed an access of the VLAN table
7	R/W1C	1	QM_INI_INT	Interrupt when the QM memory intialization is complete
6	R/W1C	1	AT_INI_INT	Interrupt when the Address table initialization is complete
5	R/W1C	0	ARL_FULL_INT	Interrupt when a new address is "learned" by being added to the address table, but the two addresses are both valid
4	R/W1C	0	ARL_DONE_INT	Interrupt when the CPU access of the Address table is complete
3	R/W1C	0	MDIO_DONE_INT	Interrupt when MDIO access of the switch register is complete
2	R/W1C	0	PHY_INT	Physical layer interrupt
1	R/W1C	0	EEPROM_ERR_INT	Interrupt when an error is detected during the loading of an EEPROM
0	R/W1C	0	EEPROM_INT	Interrupt when the loading of an EEPROM is complete

3.9 Global Interrupt Mask Register

Address Offset: 0x0014

allowed to be sent out when both interrupt evernt and mask bit are set.

Each bit in this register is corresponding to G LOBAL INTERRUPT REGISTER. Interrupt is

Table 3-10 Summarizes the Global Interrupt Mask register

Table 3-10. Global Interrupt Mask Register

Bit	R/W	Inital Value	Mnemonic	Description
31:18	R/W	0	Reserved	
18	R/W	0	LOOP_CHECK_INT_EN	Enable loop check interrupt
17	R/W	0	Reserved	
16	R/W	0	Reserved	
15	R/O	0	Reserved	
14	R/W	0	HARDWARE_INI_DONE_EN	Enable interrupt when hardware memory initiation is complete
13	R/W	0	MIB_INI_INT_EN	MIB was accessed by the CPU
12	R/W	0	MIB_DONE_INT_EN	Enable the interrupt of MIB accesse done by CPU
11	R/W	0	BIST_DONE_INT_EN	Enable BIST test complete interrupt
10	R/W	0	VT_MISS_VIO_INT_EN	Interrupt when the VID of the received frame is not in the VLAN table
9	R/W	0	VT_MEM_VIO_INT_EN	Interrupt when the VID of the received frame is in the VLAN table, but the source port is not the member of the VID
8	R/W	0	VT_DONE_INT_EN	The VLAN table was accessed by the CPU
7	R/W	0	QM_INI_INT_EN	Enable interrupt when qm memory initiation is complete
6	R/W	0	AT_INI_INT_EN	Enable interrupt when address table initiation is complete
5	R/W	0	ARL_FULL_INT_EN	Interrupt when a new address to learn is in the address table, but the address's two entries are both valid
4	R/W	0	ARL_DONE_INT_EN	The address table was accessed by the CPU
3	R/W	0	MDIO_DONE_INT_EN	The MDIO access switch register was interrupted
2	R/W	0	PHY_INT_EN	Physical layer interrupt
1	R/W	0	EEPROM_ERR_INT_EN	Interrupt when an error occurred during load EEPROM
0	R/W	0	EEPROM_INT_EN	Interrupt when an EEPROM load has completed

3.9.5 Global MAC Address Register

Address Offset: 0x0020, 0x0024

Note: these registers can only be reset by hardware.

Table 3-11 Summarizes the Global MAC Address register

Table 3-11. Global MAC Address Register

Offset	Bit	R/W	Inital Value	Mnemonic	Description
0x0020	31:16	R/O	0	Reserved	
	15:8	R/W	0	MAC_ADDR_BYTE4	Station address of switch. Used as
	7:0	R/W	0x01	MAC_ADDR_BYTE5	source address in pause frame or other management frames
0x0024	31:24	R/W	0	MAC_ADDR_BYTE0	Station address of the switch, used as
	23:16	R/W	0	MAC_ADDR_BYTE1	source address in pause frame or other management frames
	15:8	R/W	0	MAC_ADDR_BYTE2	
	7:0	R/W	0	MAC_ADDR_BYTE3	

3.9.6 Loop Check Result

Address Offset: 0x0028

Note: these registers can only be reset by hardware.

Table 3-11 Summarizes the Loop Check Result register

Table 3-12. loop Check Result Register

Bit	R/W	Inital Value	Mnemonic	Description
31:8	R/O	0	Reserved	
7:4	R/O	0	PORT_NUM_NEW	When hardware checked loop occur, these bits indicate MAC address new port num.
4:0	R/O	0	PORT_NUM_OLD	When hardware checked loop occur, these bits indicate MAC address old port num.

3.10 Flood Mask Register

Address Offset: 0x002C

Table 3-13 Summarizes the Flood Mask Register

Table 3-13. Flood Mask Register

Bit	R/W	Inital Value	Mnemonic	Description
31:25	R/W	0x7E	BROAD_DP	If mac received broadcast frame, use these bits to determine the destination port
24	R/W	0	ARL_UNI_LEAKY_EN	1'b1: USE LEAKY_EN bit in ARL table to control unicast fram leaky VLAN and ignore "UNI_LEAKY_EN"
				1'b0: ignore LEAKY_EN bit in ARL table to control unicast frame leaky VLAN. Only use port-pased UNI_LEAKY_EN to control unicast frame leaky VLAN

Bit	R/W	Inital Value	Mnemonic	Description
23	R/W	0	ARL_MULTI_LEAKY_EN	1'b1: use LEAKY_EN bit in ARL table to control multicast frame leaky VLAN, and ignore "MULTI_LEAKY_EN".
				1'b0: ignore LEAKY_EN bit in ARL table to control multicast frame leaky VLAN. Only use port base MULTI_LEAKY_EN to control multicast frame leaky VLAN.
22:16	R/W	0x7E	MULTI_FLOOD_DP	If MAC received unknown milticast frame which DA is notcontained in the ARL table, use these bits to determine the destination port.
15:14	R/O	0	Reserved	
13:8	R/W	6'b0	IGMP_JOIN_LEAVE_DP	If MAC received IGMP/MLD fast join or leave frame, use these bits to determine the destination port
7:6	R/O	0	Reserved	
6:0	R/W	0x7E	UNI_FLOOD_DP	If MAC received unkonown unicast fram in which the DA is not contained in the ARL table, use these bits to determine the destination port

3.11 Global Control Register

Address Offset: 0x0030

Table 3-14 Summarizes the Global Control Register

Table 3-14. Global Control Register

Bit	R/W	Inital Value	Mnemonic	Description
31:30	R/W	0	Reserved	
29	R/W	1	RATE_DROP_EN	drop packet enable due to rate limit.
29	R/ W	1	KATE_DROI_EN	1'b1: switch will drop frames due to rate limit. 1'b0: switch would use flow control to the source port due to rate limit, if the port won't stop switch will drop frame from that port.
28	R/W	0	Reserved	
27:26	R/W	0	Reserved	
25:24	R/W	0x1	ING_RATE_TIME_SLOT	Ingress rate limit control timer slot.
23:20	R/W	0xF	RELOAD_TIMER	2'b00: 100us; 2'b01: 1ms 2'b10: 10ms 2'b11: 100ms Notes: if port rate limit set to less than 96kbps, don't select 100us as time slot. Reload EEPROM timer
				If the EEPROM can't be read from, the EEPROM should be reloaded when the timer is completed. The timer is set by multiplying the number here by 8ms. If these bits are zero, the EEPROM will not be reloaded
19	R/O	0	Reserved	
18	R/W	0	BROAD_DROP_EN	Broadcast storm control drop packet enable. 1'b1: switch will drop frames if broadcast storm occur. 1'b0: when broadcast storm occur, switch will use flow control to the source port first, if the port won't stop switch will drop frame.

Bit	R/W	Inital Value	Mnemonic	Description
17:14	R/O	0	Reserved	
13:0	R/W	'h5EE	MAX_FRAME_SIZE	Max frame sized can be received and tranmitted by MAC. If a packet's size is larger than MX_FRAME_SIZE, it will be dropped by the MAC. The value is for a normal packet. It should add 4 by MAC if VLANs are supported, add 8 for double VLANs, and add 2 for Atheros header. For Jumbo frames, the maximum frame size is 9 Kbytes.

3.12 Flow Control Register 0

Address Offset: 0x0034

Table 3-15 Summarizes the Flow Control Register 0

Table 3-15. Flow Control Register 0

Bit	R/W	Inital Value	Mnemonic	Description
31	R/W	0	Reserved	
30:24	R/O	0	Reserved	
23:16	R/W	'h60	GOL_XON_THRES	Global-based transmit on threshold. When block memory used by all the ports is less that the value entered here, the MAC would send out a pause off frame and the link partner will start to transmit frames
15:8	R/O	0	Reserved	
7:0	R/W	'h90	GOL_XOFF_THRES	Global-based transmit off threshold. When block memory used by all the ports is more than the value entered here, the MAC will send out a pause on frame, and the link partner will stop transmitting frames

3.13 Flow Control Register 1

Address Offset: 0x0038

Table 3-16 Summarizes the Flow Control Register 1

Table 3-16. Flow Control Register 1

Bit	R/W	Inital Value	Mnemonic	Description
31:24	R/W	0	Reserved	
23:16	R/W	0x16	PORT_XON_THRES	Port-based transmit on threshold. When bolck memory used by one port is less than this value, the MAC will send out a pause off frame and the link partner will begin to transmit frames
15:8	R/O	0	Reserved	
7:0	R/W	0x20	PORT_XOFF_THRES	Port-based transmit off threshold. When block memory used by one port is more than this value, the MAC will send out a pause on frame and the link partner will stop transmitting frames

3.13.7 QM Control Register

Address Offset: 0x003C

Table 3-17 Summarizes the QM Register

Table 3-17. QM Register

Bit	R/W	Inital Value	Mnemonic	Description
31	R/W	1′b1	Reserved	
30	R/W	1′b1	Reserved	
29:28	R/O	0	Reserved	
27:24	R/W	4'hF	IGMP_JOIN_STATUS	Use for igmp packet learn in arl table, define the status 4'h0: Inticates entry is empty
				4'h1 ~ 7: indicatesentry is dynamic and valid 4'h8 ~ 4'hE: Reverved for future use
				4'F: Indicates entry is static and won't be aged out or changed by the hardware
23	R/W	1′b0	IGMP_JOIN_LEAKY_EN	IGMP join address leaky vlan enable.
				1'b1: igmp join address should be set the leaky_en bit in ARL table 1'b0: igmp join address should be clear the leaky_en bit in ARL table
22	R/W	0	IGMP_JOIN_NEW_EN	1'b1: enable hardware add new address to ARL table when received IGMP/MLD join frame and remove address from ARL when received IGMP/MLD leave frame.
21	R/W	1′b0	ACL_EN	ACL rule enable. If this bit is set to zero, acl check is disable.
20	R/W	1′b0	PPPOE_REDIRECT_EN	Enable sending PPPoE discovery frames to the CPU. If this bit is set to 1, PPPoE discovery frames are sent to the CPU port. If this bit is set to 0, PPPoE discovery frames are transmitted as normal frames
19	R/W	1′b0	IGMP_V3_EN	1'b1: hardware acknowledge IGMP v3 frame and MLD v2 frame, and multicast address can be hardware join or leave
18	R/W	1Ъ0	IGMP_JOIN_PRI_REMAP_EN	Use for igmp packet learn in arl table, define DA priority remap enable

Bit	R/W	Inital Value	Mnemonic	Description
17:16	R/W	2′b00	IGMP_JOIN_PRI	Use for igmp packet learn in arl table, define DA priority when IGMP_JOIN_PRI_REMAP_EN is enable.
15	R/W	1′b0	ARP_EN	ARP frame acknowledge enable
14	R/W	1′b0	ARP_REDIRECT_EN	1'b1: ARP frame redirect to cpu port 1'b0: ARP frame copy to cpu
13	R/W	1′b0	RIP_COPY_EN	1'b1 : rip v1 frame copy to cpu 1'b0: don't copy rip v1 frame to cpu
12	R/W	1′b0	EAPOL_REDIRECT_EN	1'b1:802.1x frame redirect to cpu 1'b0: 802.1x frame copy to cpu
11	R/W	0	IGMP_COPY_EN	1'b1: QM will copy IGMP/MLD frames to the CPU port 1'b0: QM will redirect IGMP/MLD frames to the CPU port
10	R/W	0	PPPOE_EN	1'b1: hardware acknowledge PPPoE frame enable
9	R/O	0	Reserved	
8	R/W	0	Reserved	
7	R/W	0	Reserved	
6	R/W	1	MANAGE_VID_VIO_DROP_EN	1'b1: management frame should be drop if vlan violation occur
			No	1'b0: management frame transmit out if vlan violation occur.
5:0	R/W	'hE	FLOW_DROP_CNT	Max free queue could be use after the port has been flow control. Then packets should be drop except the highest priority.
				Default value 'hE is set to normal packets which length is no more than 1518 bytes. For jumbo frame, 'd33 is commanded.

3.14 VLAN Table Function Register 0

Address Offset: 0x0040

Table 3-18 Summarizes the VLAN Table Function Register 0

Table 3-18. VLAN Table Function Register 0

Bit	R/W	Inital Value	Mnemonic	Description
31	R/W	0	VT_PRI_EN	when VT_PRI_EN is set, then VT_PRI will replace VLAN priority in the frame as its QoS classification
30:28	R/W	0	VT_PRI	when VT_PRI_EN is set, the VT_PRI will replace VLAN priority in the frame as its QoS classification
27:16	R/W	0	VID	VLAN ID to be added or purged
15:12	R/O	0	Reserved	
11:8	R/W	0	VT_PORT_NUM	Port number to be removed
7:4	R/O	0	Reserved	
3	R/W	0	VT_BUSY	VLAN table is busy. This bit must be set to 1 to start a VT operation and cleared to 0 after the operation is done. If this bit is set to 1, the CPU can not request another operation
2:0	R/W		VT_FUNC	VLAN table operation control 3'b000: no operation 3'b001: flush all entries 3'b010: load an entry. If these bits are set, the CPU will load an entry form the VLAN table 3'b011: purge an entry. If these bits are set, the CPU will purge an entry form the VLAN table 3'b100: remove a port form the VLAN table. The port umber which will be removed is indicted in VT_PORT_NUM 3'b101: get next VID if VID is 12'b0 and VT_BUSY is set by software, hardware will search for the first valid entry in the VLAN table If VID is 12'b0 and VT_Busy is reset by hardware, then there is no valid entry from VID set by the software
				3'b110: read one entry

3.15 VLAN Table Function Register 1

Address Offset: 0x0044

Table 3-19 Summarizes the VLAN Function Register 1

Table 3-19. VLAN Function Register 1

Bit	R/W	Inital Value	Mnemonic	Description
31:12	R/O		Reserved	
11	R/W		VT_VALID	1: indicated entry is valid
				0: indicates the entry is empty
10:7	R/O		Reserved	
6:0	R/W	0	VID_MEM	VID member in the VLAN table. These bits are used to indicate which ports are members of the VLAN. Bit 0 is assigned to port0, 1 to port1, 2, to port2, and so on.

3.16 Address Table Function Register 0

Address Offset: 0x0050

Table 3-20 Summarizes the Address Table Function Register 0

Table 3-20. Address Table Function Register 0

Bit	R/W	Inital Value	Mnemonic	Description
31:24	R/W	0	AT_ADDR_BYTE4	Byte 4 of the address
23:16	R/W	0	AT_ADDR_BYTE5	the last byte of the address
15:13	R/O	0	Reserved	
12	R/W 1C	0	AT_FULL_VIO	ARL table-full violation. This bit is set to 1 if the ARL table is full when the CPU wants to add a new entry to the ARL table. can also be set to 1 if the ARL table is empty when the CPU wants to purge and entry to the ARL table
11:8	R/W	0	AT_PORT_NUM	Port number to be flushed. If "AT_FUNC" is set to 3'b101, lookup module must flush all the unicast entries for the port (or flush the port from the ARL table)
7:5	R/O	0	Reserved	

		Inital		
Bit	R/W	Value	Mnemonic	Description
4	R/W	0	FLUSH_STATIC_EN	1'b1: when AT_FUNC is set to 3'b101, all static entries in the ARL table can be flushed.
				1'b0: when AT_Func is set to 3'b101, only dynamic entries in the ARL table will be flushed
3	R/W	0	AT_BUSY	Address table busy. This bit must be set to 1 to start an AT operation and cleared to 0 when the operation is complete. If this bit is set to 1, the CPU can not request another operation
2:0	R/W	0	AT_FUNC	Address table function
				3'b000: no operation 3'b001: flush all entries 3'b010: load an entry. If these bits are set to 3'b010, the CPU will load an entry into the ARL table 3'b011: purge an entry. If these bits are set, the CPU will purge an entry fromthe ARL table. 3'b100: flush all unlocked entries in the ARL 3'b101: flush one port from the ARL table 3'b110: get the next valid or static entr in the ARL table If the address and AT_STATUS are all zero, the hardware will search for the first valid entry from entry0 If the address and AT_STATUS is not zero, the hardware will search for the next valid entry whose address is 48'h0. If hardware returns with the address and AT_STATUS all zero, there is no next valid entry in the ARL table.
				3'b111: search MAC address

3.17 Address Table Function Register 1

Address Offset: 0x0054

Table 3-21 Summarizes the Address Table Function Register 1

Table 3-21. Address Table Function Register 1

Bit	R/W	Inital Value	Mnemonic	Description
31:24	R/W	0	AT_ADDR_BYTE0	The first byte of the address to operate. This byte is the highest byte of the MAC address fo the MSB.
23:16	R/W	0	AT_ADDR_BYTE1	The second byte of the address
15:18	R/W	0	AT_ADDR_BYTE2	The third byte of the address
7:0	R/W	0	AT_ADDR_BYTE3	The forth byte of the address

3.18 Address Table Function Register 2

Address Offset: 0x0058

Table 3-22 Summarizes the Address Table Function Register 2

Table 3-22. Address Table Function Register 2

Bit	R/W	Inital Value	Mnemonic	Description
31:27	R/O	0	Reserved	
26	R/W	0	COPY_TO_CPU	1'b1: packet received with this address will be copied to the CPU port
25	R/W	0	REDIRECT_TO_CPU	1'b1: packet reveived with this address will be redirected to the CPU port. If no CPU is connected to the switch, this packet will be discarded
24	R/W	0	LEAKY_EN	1'b1: enables leaky VLANs for this MAC address This bit can be used for unicast and multicast frames, control by ARL_UNI_LEAKY_EN and ARL_MULTI_LEAKY_EN
23:20	R/O	0	Reserved	

Bit	R/W	Inital Value	Mnemonic	Description
19:16	R/W	0	AT_STATUS	Destination address status, associated to "status" bits in the Address Table
				4'h0: indicates entry is empty
				4'h1 ~ 7: indicates the entry is dynamic and valid
				4'h8 ~ 4'hE: reserved for future use
				4'hF: indicates entry is static ane won't be aged out or changed by the hardware.
15	R/W	0	MAC_CLONE	MAC clone address.
				1'b1: this address is set to MAC clone. CPU can not age-out. Other ports learn and age as normal. If DA and VID result is CPU port, send the packet to normal ports only.
14	R/W	0	SA_DROP_EN	SA drop enable
				Drop packe enable when source address in in this entry. If this bit is set to 1'b1, the packet with an SA of this entry will be dropped
13	R/W	0	MIRROR_EN	Port mirror enable
			No	1: indicates packets will be sent to the mirror port and the destination port.
				0: indicates packet will be sent only to the destination port
12	R/W	0	AT_PRIORITY_EN	DA priority enable
				1: indicates AT_PRIORITY can override any other priority determined by the frame's data
11:10	R/W	0	AT_PRIORITY	DA priority These priority bits can be used as a frame's priority when AT_PRIORITY_EN is set to one.
9	R/W	0	HASH_HIGH_ADDR	Mac hash addr max bit use for cpu_func (get next valid)
8	R/W	0	CROSS_PORT_STATE_EN	1'b1, cross port_state enable.
7	R/W	0	Reserved	
6:0	R/W	0	DES_PORT	Destination port bits for address. These bits indicate which ports are associated with the MAC address when they are set to one. Bit 0 is assigned to port 0, 1 to port1, 2 to port2, and so on.

3.19 Address Table Control Register

Address Offset: 0x005C

Table 3-23 Summarizes the Address Table Register

Table 3-23. Address Table Control Register

Bit	R/W	Inital Value	Mnemonic	Description
31:27	R/O	0	Reserved	
26:24	R/W	0	LOOP_CHECK_TIMER	3'h0: disable loop back check 3'h1: 1ms 3'h2: 10ms 3'h3: 100ms 3'h4: 500ms 3'h5~7: reserved
23	R/O	0	Reserved	
22	R/W	0	VID_4095_DROP_EN	1'b1: if frame with vid='d4095, will be dropped by switch.
21	R/W	0	SWITCH_STAG_MODE	Select switch work vlan mode. 1'b1: S-TAG mode 1'b0: C-TAG mode
20	R/W	0	Reserved	
19	R/W	1	Reserved	
18	R/W	0	LEARN_CHANGE_EN	1'b1: enable new mac address change old one if hash violation occur when learning 1'b0: if hash violation occur when learning, no new address be learned to arl.
17	R/W	1	AGE_EN	Enable age operation. 1'b1: lookup module can age the address in the address table.
16	R/O	0	Reserved	
15:0	R/W	'h2B	AGE_TIME	Address Table Age Timer. These bits determine the time that each entry remains valid in the address table, since last accessed. For the time is times 7s, maximum age time is about 10,000 minutes. The default value is 'h2B for five minutes. If AGE_EN is set to 1'b1, these bits shouldn't be set to zero.

3.20 IP Priority Mapping Register 2

Address Offset: 0x0060,0x0064,0x0068,0x006C

Table 3-24 Summarizes the IP Priority Mapping Register 2

Table 3-24. IP Priority Mapping Register 2

Offset	Bit	R/W	Inital Value	Mnemonic	Description
0x0060	31:30	R/W	0	IP_0x3C	Priority mapping value of ipv4 TOS or ipv6 TC field.
	29:28	R/W	0	IP_0x38	Bit7 to bit2 are used to map queue
	27:26	R/W	0	IP_0x34	priority, but bit1 and bit0 are ignord.
	25:24	R/W	0	IP_0x30	If TOS[7:2] or TC[7:2] is equal to 0x3C,
	23:22	R/W	0	IP_0x2C	the queue priority should be mapped
	21:20	R/W	0	IP_0x28	to value of these bits.
	19:18	R/W	0	IP_0x24	
	17:16	R/W	0	IP_0x20	
	15:14	R/W	0	IP_0x1C	
	13:12	R/W	0	IP_0x18	
	11:10	R/W	0	IP_0x14	
	9:8	R/W	0	IP_0x10	
	7:6	R/W	0	IP_0x0C	
	5:4	R/W	0	IP_0x08	
	3:2	R/W	0	IP_0x04	
	1:0	R/W	0	IP_0x00	

Offset	Bit	R/W	Inital Value	Mnemonic	Description
0x0064	31:30	R/W	0x1	IP_0x7C	Priority mapping value of IPV4 TOS or
-	29:28	R/W	0x1	IP_0x78	IPV6 TC field Bits [7:2] map queue priority, but bits
-	27:26	R/W	0x1	IP_0x74	[1:0] are ignored.
	25:24	R/W	0x1	IP_0x70	If TOCI7.21 TCI7.211 t- 02C
	23:22	R/W	0x1	IP_0x6C	If TOS[7:2] or TC[7:2] is equal to 0x3C, the queue priority should be mapped
	21:20	R/W	0x1	IP_0x68	to value of these bits.
	19:18	R/W	0x1	IP_0x64	
	17:16	R/W	0x1	IP_0x60	
	15:14	R/W	0x1	IP_0x5C	
	13:12	R/W	0x1	IP_0x58	
	11:10	R/W	0x1	IP_0x54	
	9:8	R/W	0x1	IP_0x50	
	7:6	R/W	0x1	IP_0x4C	
	5:4	R/W	0x1	IP_0x48	
	3:2	R/W	0x1	IP_0x44	
	1:0	R/W	0x1	IP_0x40	
0x0068	31:30	R/W	0x2	IP_0xBC	Priority mapping value of IPV4 TOS or
-	29:28	R/W	0x2	IP_0xB8	IPV6 TC field Bits [7:2] map queue priority, but bits
	27:26	R/W	0x2	IP_0xB4	[1:0] are ignored.
-	25:24	R/W	0x2	IP_0xB0	If TOS[7:2] on TC[7:2] is acqual to 0:2C
-	23:22	R/W	0x2	IP_0xAC	If TOS[7:2] or TC[7:2] is equal to 0x3C, the queue priority should be mapped
	21:20	R/W	0x2	IP_0xA8	to value of these bits.
-	19:18	R/W	0x2	IP_0xA4	
-	17:16	R/W	0x2	IP_0xA0	
	15:14	R/W	0x2	IP_0x9C	
-	13:12	R/W	0x2	IP_0x98	
	11:10	R/W	0x2	IP_0x94	
	9:8	R/W	0x2	IP_0x90	
	7:6	R/W	0x2	IP_0x8C	
	5:4	R/W	0x2	IP_0x88	
	3:2	R/W	0x2	IP_0x84	
	1:0	R/W	0x2	IP_0x80	

Offset	Bit	R/W	Inital Value	Mnemonic	Description
0x006C	31:30	R/W	0x3	IP_0xFC	Priority mapping value of IPV4 TOS or
	29:28	R/W	0x3	IP_0xF8	IPV6 TC field Bits [7:2] map queue priority, but bits
	27:26	R/W	0x3	IP_0xF4	[1:0] are ignored.
	25:24	R/W	0x3	IP_0xF0	If TOO[7:2] as TO[7:2] is a small to 0:20
	23:22	R/W	0x3	IP_0xEC	If TOS[7:2] or TC[7:2] is equal to 0x3C, the queue priority should be mapped
-	21:20	R/W	0x3	IP_0xE8	to value of these bits.
-	19:18	R/W	0x3	IP_0xE4	
-	17:16	R/W	0x3	IP_0xE0	
-	15:14	R/W	0x3	IP_0xDC	
	13:12	R/W	0x3	IP_0xD8	
	11:10	R/W	0x3	IP_0xD4	
	9:8	R/W	0x3	IP_0xD0	
-	7:6	R/W	0x3	IP_0xCC	
	5:4	R/W	0x3	IP_0xC8	
-	3:2	R/W	0x3	IP_0xC4	
-	1:0	R/W	0x3	IP_0xC0	

3.21 Tag Priority Mapping Register

Address Offset: 0x0070

Table 3-25 Summarizes the Tag Priority Mapping Register

Table 3-25. Tag Priority Mapping Register

Bit	R/W	Inital Value	Mnemonic	Description
31:16	R/O	0	Reserved	
15:14	R/W	0x3	TAG_0X07	Priority mapping value of TAG.
				If pri[2:0] in the tag is equal to 0x07, the queue priority should be mapped to value of these bits.
13:12	R/W	0x3	TAG_0X06	
11:10	R/W	0x2	TAG_0X05	
9:8	R/W	0x2	TAG_0X04	
7:6	R/W	0x1	TAG_0X03	
5:4	R/W	0x1	TAG_0X02	U
3:2	R/W	0	TAG_0X01	
1:0	R/W	0	TAG_0X00	

3.22 Service Tag Register

Address Offset: 0x0074

Table 3-26 Summarizes the Service Tag Register

Table 3-26. Service Tag Register

Bit	R/W	Inital Value	Mnemonic	Description
31:16	R/O	0	Reserved	
15:0	R/W	0x88A8	SERVICE_TAG	Service tag. These bits are used to recognize double tag at ingress and insert double tag at egress.

3.23 CPU Port Register

Address Offset: 0x0078

Table 3-27 Summarizes the CPU Port Register

Table 3-27. CPU Port Register

Bit	R/W	Inital Value	Mnemonic	Description
31:9	R/O	0	Reserved	
8	R/W	0	CPU_PORT_EN	1"b1: cpu is connected to port0;
				1'b0: no cpu is connected to switch.
7:4	R/W	0xF	MIRROR_PORT_NUM	Port number which packet should be mirrored to. 4'h0 is port0, 4'h1 is port1,etc.
				If the value is more than 5, no mirror port connected to switch
3:0	R/O	0x0	Reserved	

3.24 MIB Function Register 0

Address Offset: 0x0080

Table 3-28 Summarizes the MIB Function register 0

Table 3-28. MIB Function Register 0

Bit	R/W	Inital Value	Mnemonic	Description
31	R/W	0	Reserved	
30	R/W	0	MIB_EN	1'b1: mib count enable. If this bit set to zero, mib module won't count.
29:27	R/O	0	Reserved	
26:24	R/W	0	MIB_FUNC	3'b000: no operation; 3'b001: flush all counters for all ports; 3'b010: reserved for future. 3'b011: capture all counters for all ports and auto-cast to cpu port; 3'b1xx:reserved for future.
23:18	R/O	0	Reserved	

Bit	R/W	Inital Value	Mnemonic	Description
17	R/W	0	MIB_BUSY	1'b1: mib module is busy now, and can't access another new command.
				1'b0: mib module is empty now, and can access new command
16	R/W	1′b0	MIB_AT_HALF_EN	MIB auto-cast enable due to half flow. If this bit is set to 1'b1, MIB would be auto-cast when any counter's highest bit count to 1'b1.
15:0	R/W	15′h0	MIB_TIMER	MIB auto-cast timer. If these bits are set to zero, MIB won't auto-cast due to timer time out. The timer is times of 8.4ms, recommended value is 'h100.

3.25 MDIO Control Register

Address Offset: 0x0098

Table 3-29 Summarizes the MDIO Control register

Table 3-29. MDIO Control register

Bit	R/W	Inital Value	Mnemonic	Description
31	R/W	0	MDIO_BUSY	1'b1: internal mdio interface is busy. This bit should be set to 1'b1 when cpu read or write phy register through internal mdio interface, and should be clear after hardware finish the command.
30	R/W	0	MDIO_MASTER_EN	1"b1: use mdio master to config phy register. Mdc should be changed to internal mdc to phy.
29:28	R/O	0	Reserved	
27	R/W	0	MDIO_CMD	1'b0: write
				1'b1: read
26	R/W	0	MDIO_SUP_PRE	1'b1: suppose preamble enable
25:21	R/W	0	PHY_ADDR	Phy address
20:16	R/W	0	REG_ADDR	Phy register address
15:0	R/W	0	MDIO_DATA	When write, these bits are data written to phy register. When read, these bits are data read out from phy register.

3.26 LED Control Register

Address Offset: 0x00B0, 0x00B4, 0x00B8, 0x00BC

Table 3-30 Summarizes the LED Control register

Table 3-30. **LED Control register**

Note: This register can be hardware reset only

Offset	Bit	R/W	Inital Value	Mnemonic	Description
0x00B0	31:16	R/W	0XC935	LED_CTRL_RULE_1	Wan port LED_LINK1000n_4 control rule
	15:0	R/W	0xC935	LED_CTRL_RULE_0	Lan port LED_LINK1000n_[3:0] control rule
0x00B4	31:16	R/W	0xCA35	LED_CTRL_RULE_3	Wan port LED_LINK100n_4 control rule
	15:0	R/W	0xCA35	LED_CTRL_RULE_2	Lan port LED_LINK100n_[3:0] control rule
0x00B8	31:16	R/W	0	Reserved	
	15:0	R/W	0xCF35	MAC_LED_CTRL_RULE	MAC led control rule, include port0,5,6 [15:14] only control pattern enable for port0, other lan ports controlled by MAC_LED_PATTERN_EN_**.
0x00BC	31:26	R/O		Reserved	
	25:24	R/W	2'b11	LED_PATTERN_EN_31	Pattern enable for port3 LED1.
	23:22	R/W	2'b11	LED_PATTERN_EN_30	Pattern enable for port3 LED0
	21:20	R/W	2'b11	LED_PATTERN_EN_21	Pattern enable for port2 LED0
	19:18	R/W	2'b11	LED_PATTERN_EN_20	Pattern enable for port2 LED0.
	17:16	R/W	2'b11	LED_PATTERN_EN_11	Pattern enable for port1 LED1
	15:14	R/W	2'b11	LED_PATTERN_EN_10	Pattern enable for port1 LED0
	13:12	R/W	2′b11	MAC_LED_PATTERN_E N_6	Led control pattern for mac6
	11:10	R/W	2′b11	MAC_LED_PATTERN_E N_5	Led control pattern for mac5
	9:2	R/W	0	Reserved	
	1:0	R/W	16'hCF35	BLINK_HIGH_TIME	When led blinking, these bits determine led light time. 2'b00: 50% of blinking period. 250ms for 2Hz, 125ms for 4Hz, 62.5ms for 8Hz 2'b01: 12.5% 2'b10: 25%

3.27 Port Control Registers — Summary for all Ports

Table 3-31 summarizes the Port Congrol Registers

Table 3-31. Port Control Registers

Port	Offset	Name	
Port 0	0x0100 - 0x01FC	Total Port 0 control register memory allocation	
	0x0100	Port status register	
	0x0104	Port control register	
	0x0108	Port based VLAN register	
	0x010C, 0x011C, 0x0120, 0x0124	Rate limit registers	
	0x0110	Priority control register	
	0x0114	Storm control register	
	0x0118	Queue control register	
Port 1	0x0200 - 0x01FC	Total Port 1 control register memory allocation	
	0x0200	Port status register	
	0x0204	Port control register	
	0x0208	Port based VLAN register	
	0x020C, 0x021C, 0x0220, 0x0224	Rate limit registers	
	0x0210	Priority control register	
	0x0214	Storm control register	
	0x0218	Queue control register	
Port 2	0x0300 - 0x03FC	Total Port 2 control register memory allocation	
	0x0300	Port status register	
	0x0304	Port control register	
	0x0308	Port based VLAN register	
	0x030C, 0x031C, 0x0320, 0x0324	Rate limit registers	
	0x0310	Priority control register	
	0x0314	Storm control register	
	0x0318	Queue control register	

Table 3-31. Port Control Registers (continued)

Port	Offset	Name	
Port 3	0x0400 - 0x04FC	Total Port 3 control register memory allocation	
	0x0400	Port status register	
	0x0404	Port control register	
	0x0408	Port based VLAN register	
	0x040C, 0x041C, 0x0420, 0x0424	Rate limit registers	
	0x0410	Priority control register	
	0x0414	Storm control register	
	0x0418	Queue control register	
Port 4	0x0500 - 0x05FC	Total Port 4 control register memory allocation	
	0x0500	Port status register	
	0x0504	Port control register	
	0x0508	Port based VLAN register	
	0x050C, 0x051C, 0x0520, 0x0524	Rate limit registers	
	0x0510	Priority control register	
	0x0514	Storm control register	
	0x0518	Queue control register	
Port 5	0x0600 - 0x06FC	Total Port 5 control register memory allocation	
	0x0600	Port status register	
	0x0604	Port control register	
	0x0608	Port based VLAN register	
	0x020C, 0x021C, 0x0620, 0x0624	Rate limit registers	
	0x0210	Priority control register	
	0x0614	Storm control register	
	0x0618	Queue control register	

3.28 Port Status Register

Address Offset: 0x0100 - Port 0, 0x0200 - Port 1, 0x0300 - Port 2, 0x0400 - Port 3, 0x0500 - Port 4,

0x0600 - **Port** 5 Access: R/W

Table 3-32 Summarizes the Port Status register

Table 3-32. Port Status register

Bit	R/W	Inital Value	Mnemonic		Description
31:13	R/O		Reserved		
12	R/W	1	FLOW_LINK_EN	Phy lin	k mode enable.
				with pl	nable mac flow control config auto-neg ny ac can be config by software
11	R/O	0	LINK_ASYN_PAUSE_ EN	Link pa	artner support asyn flow control
10	R/O	0	LINK_PAUSE_EN	Link pa	artner support flow control
9	R/W	1	LINK_EN	PHY lis	nk mode enable
				0	Software can configure the MAC
			.01	1	Enable PHY link status to configure the MAC
8	RO	0	LINK	Link st	atus
				0	PHY link down
				1	PHY link up
7	R/W	1	TX_HALF_FLOW_EN	1'b1: tr mode	ansmit flow conrol enable in half-duplex
6	R/W	0	DUPLEX_MODE	Duplex	mode
				0	Half-duplex mode
				1	Full-duplex mode
5	R/W	0	RX_FLOW_EN	RXMA	C Flow Control enable
4	R/W	0	TX_FLOW_EN	TXMA	C Flow Control enable
3	R/W	0	RXMAC_EN	RXMAC enable	
2	R/W	0	TXMAC_EN	TXMAC enable	
1:0	R/W	00	SPEED	Speed 1	mode
				00	10 Mbps
				01	100 Mbps
				10	1000 Mbps
				11	Error speed mode

3.29 Port Control Register

Address Offset: 0x0104 - Port 0, 0x0204 - Port 1, 0x0304 - Port 2, 0x0404 - Port 3, 0x0504 - Port 4, 0x0604 - **Port** 5

Table 3-33 Summarizes the Port Control register

Table 3-33. **Port Control register**

Bit	R/W	Inital Value	Mnemonic	Description
31:24	R/O	0	Reserved	
23	R/W	0	EAPOL_EN	1'b1: hardware acknowledge 802.1x frame, and send frame copy or redirect to cpu controlled by "EAPAL_REDIRECT_EN"
22	R/W	0	ARP_LEAKY_EN	1'b1: if mac receive ARP frame from this port, it can cross all VLAN (include port base VLAN and 802.1q). 1'b0: ARP frame can't cross vlan
21	R/W	0	IGMP_LEAVE_EN	1'b1: enable IGMP/MLD fast leave.
20	R/W	0	IGMP_JOIN_EN	1'b1: enable MLD hardware join.
19	R/W	0	DHCP_EN	1'b1: acknowledge DHCP frame enable
18	R/W	0	IPG_DEC_EN	1'b1: mac will decrease two bytes of IPG when send out frame and receive check.
17	R/W	0	ING_MIRROR_EN	Ingress port mirror. If this bit is set to 1'b1, all packets received from this port should be copied to mirror port.
16	R/W	0	EG_MIRROR_EN	Egress port mirror. If this bit is set to 1'b1, all packets send out through this port should be copied to mirror port.
15	R/W	0	Reserved	
14	R/W	0x1	LEARN_EN	Enable learn operation. 1'b1: lookup module can learn new address into address table.
13	R/W	0	Reserved	
12	R/W	0	MAC_LOOP_BACK	1'b1: enable mac loop back at mii interface
11	R/W	0	HEAD_EN	Frames transmitted out and received in with atheros header enable. If this bit is set to 1'b1, all frames transmitted and received will be added 2 bytes Atheros header.
10	R/W	0	IGMP_MLD_EN	IGMP/MLD snooping enable. If this bit is set to 1'b1, the port will examine all received frames and copy or redirect to cpu port controlled by IGMP_COPY_EN.

Bit	R/W	Inital Value	Mnemonic	Description
9:8	R/W	0	EG_VLAN_MODE	Egress VLAN mode. 2'b00: egress should transmit frames unmodified. 2'b01: egress should transmit frames
				without VLAN 2'b10: egress should transmit frames with VLAN
7	R/W	0	LEARN_ONE_LOCK	1'b1: this port shouldn't learn SA except first packet, and locked the address to static. 1'b0: normal learning mode.
6	R/W	0	PORT_LOCK_EN	1'b1: enable port lock. All packet received with SA not in ARL table or SA in ARL but port member is not the source port, should be redirect to cpu or drop, controlled by LOCK_DROP_EN.
5	R/W	0	LOCK_DROP_EN	1'b1: if SA is not in ARL table or SA in ARL but port member is not the source port, packet should be dropped when PORT_LOCK_EN is set to 1'b1. 1'b0: if SA is not in ARL table or SA in ARL but port member is not the source port, packet should be redirect to cpu when PORT_LOCK_EN is set to 1'b1.

Bit	R/W	Inital Value	Mnemonic	Description
4:3	R/O	0	Reserved	
2:0	R/W	3′b100	PORT_STATE	Port State. These bits are used to manage the port to determine what kind of frames are allowed to enter or leave the port for simple bridge loop detection or 803.1D Spanning Tree.
				3'b000: Disable mode. The port is completely disable, and can't receive or transmit any frames.
				3'b001: Blocking Mode. In this state, the port forwards received management frames to the designed port only. Any other frames can't be transmitted or received by the port, and without learning any SA address.
				3'b010: Listening Mode. In this state, the port will receive and transmit only management frames, but without learning any SA address. Any other frames can't be transmitted or received by the port.
			70,	3'b011: Learning Mode. In this state, the port will learning all SA, and discard all frames except management frames, and only management frames allowed to be transmitted out.
				3'b100: Forward Mode. In this state, the port will learning all SA, transmit and receive all frames like normal.

3.30 Port-based VLAN Register

Address Offset: 0x0108 - Port 0, 0x0208 - Port 1, 0x0308 - Port 2, 0x0408 - Port 3, 0x0508 - Port 4, 0x0608 - **Port 5**

Table 3-34 Summarizes the Port-based VLAN register

Table 3-34. Port-based VLAN register

Bit	R/W	Inital Value	Mnemonic	Description
31:29	R/W	0	ING_PORT_PRI	Port default priority for received frames.
28	R/W	0	FORCE_PORT_VLAN_EN	1'b1: force to use port base vlan enable. If this bit is set to 1'b1, use port base vlan & vlan table result to determine destination port.
27:16	R/W	0x1	PORT_DEFAULT_CVID	Port Default VID. This field is used as Tagged VID added to untagged frames when transmitted from this port.
15	R/W	0	PORT_CLONE_EN	1'b1: enable port clocne. 1'b0: enable port replace
14	R/W	0	PORT_VLAN_PROP_EN	1'b1: enable port base vlan propagate function.
13	R/W	0	PORT_TLS_MODE	1'b1: port work at TLS mode 1'b0: port work at NON-TLS mode
12	R/W	0	FORCE_DEFAULT_VID_EN	1'b1: force to use port default VID and priority for received frame, when 802.1Q mode is not disable.
				1'b0: use frame tag only.
11:0	R/W	0x1	PORT_DEFAULT_SVID	Port Default VID. This field is used as Tagged VID added to untagged frames when received from this port.

3.31 Port-based VLAN Register2

Address Offset: 0x010C - Port 0, 0x020C - Port 1, 0x030C - Port 2, 0x040C - Port 3, 0x050C - Port 4, 0x060C - Port 5

Table 3-34 Summarizes the Port-based VLAN register

Table 3-35. Port-based VLAN register

_		Inital		
Bit	R/W	Value	Mnemonic	Description
31:30	R/W	2ъ00	802.1Q_MODE	2'b00: 802.1Q disable. Use port base VLAN only. 2'b01: fallback. Enable 802.1Q for all received frames. Don't discard ingress membership violation and use the port base VLAN if the frame's VID isn't contained in VLAN Table. 2'b10: check. Enable 802.1Q for all received frames. Don't discard ingress membership violation but discard frames which VID isn't contained in VLAN Table. 2'b11: secure. Enable 802.1Q for all received frames. Discard frames with ingress membership violation orwhose VID isn't contained in the VLAN Table.
29	R/W	0	CORE_PORT_EN	1'b0: egde port 1'b1: core port
28:27	R/W	0	ING_VLAN_MODE	2'b00: all frame can be received in, include untagged and tagged 2'b01: only frame with tag can be received by this port. 2'b10: only frame untagged can be received by this port, include no vlan and priority vlan. 2'b11: reserved for future.
26:24	R/W	0	Reserved	
23	R/W	0	VLAN_PRI_PRO_EN	1'b1: VLAN priority propagation enable

22:16 R/W PortD: 111110 PortI: 111110 PortI: 111110 PortI: 111110 PortI: 111101 PortI:	Bit	R/W	Inital Value	Mnemonic	Description
14 R/W 0 UNI_LEAKY_EN unicast frame leaky VLAN enable. Also use ARL_UNI_LEAKY_EN and LEAKY_EN bit in ARL table to control unicast leaky VLAN. When ARL_UNI_LEAKY_EN is set to zero, only UNI_LEAKE_EN control unicast frame leaky VLAN. If ARL_UNI_LEAKY_EN is set to 17b1, only frame with DA in ARL table and LEAKY_EN bit bit set to 17b1 can be forward as leaky VLAN, ignore UNI_LEAKY_EN. If mac receive unicast frame from this port which should forward as leaky VLAN, the frame could be switched to destination port defined in ARL table and cross all VLAN (include port base and 802.1q). 13 R/W 0 MULTI_LEAKY_EN Multitast frame leaky VLAN enable. Also use ARL_MULTI_LEAKY_EN and LEAKY_EN bit in ARL table to control unicast leaky VLAN. When ARL_MULTI_LEAKY_EN is set to zero, only MULTI_LEAKE_EN control multicast frame leaky VLAN. If ARL_MULTI_LEAKY_EN bit is ARL table and LEAKY_EN bit is and LEAKY_EN	22:16	R/W	111110 Port1: 111101	PORT_VID_MEM	restrict which port can send frames to. To send frames to port0, bit 16 must be set to 1'b1, etc. These bits are set to one after reset except the port's bit. This prevents frames going out the port
Also use ARL_UNI_LEAKY_EN and LEAKY_EN bit in ARL table to control unicast leaky VLAN. When ARL_UNI_LEAKY_EN is set to zero, only UNI_LEAKY_EN is set to zero, only UNI_LEAKY_EN is set to 1'b1, only frame with DA in ARL table and LEAKY_EN bit is set to 1'b1 can be forward as leaky VLAN, ignore UNI_LEAKY_EN. If mac receive unicast frame from this port which should forward as leaky VLAN, the frame could be switched to destination port defined in ARL table and cross all VLAN (include port base and 802.1q.). R/W MULTI_LEAKY_EN Multicast frame leaky VLAN enable. Also use ARL_MULTI_LEAKY_EN and LEAKY_EN bit in ARL table to control unicast leaky VLAN. When ARL_MULTI_LEAKY_EN is set to 1'b1, only frame with DA in ARL table and LEAKY_EN bit is set to 1'b1 can be forward as leaky VLAN, ignore MULTI_LEAKE_EN. If ARL_MULTI_LEAKY_EN is set to 1'b1, only frame with DA in ARL table and LEAKY_EN bit is set to 1'b1 can be forward as leaky VLAN, ignore multicast frame from this port which should forward as leaky VLAN, the frame could be switched to destination port defined in ARL table and cross all VLAN (include port base VLAN and 802.1q.).	15	R/O	0	Reserved	
Also use ARL_MULTI_LEAKY_EN and LEAKY_EN bit in ARL table to control unicast leaky VLAN. When ARL_MULTI_LEAKY_EN is set to zero, only MULTI_LEAKE_EN control multicast frame leaky VLAN. If ARL_MULTI_LEAKY_EN is set to 1'b1, only frame with DA in ARL table and LEAKY_EN bit is set to 1'b1 can be forward as leaky VLAN, ignore MULTI_LEAKE_EN. If mac receive multicast frame from this port which should forward as leaky VLAN, the frame could be switched to destination port defined in ARL table and cross all VLAN (include port base VLAN and 802.1q).	14	R/W	0	UNI_LEAKY_EN	Also use ARL_UNI_LEAKY_EN and LEAKY_EN bit in ARL table to control unicast leaky VLAN. When ARL_UNI_LEAKY_EN is set to zero, only UNI_LEAKE_EN control unicast frame leaky VLAN. If ARL_UNI_LEAKY_EN is set to 1'b1, only frame with DA in ARL table and LEAKY_EN bit is set to 1'b1 can be forward as leaky VLAN, ignore UNI_LEAKY_EN. If mac receive unicast frame from this port which should forward as leaky VLAN, the frame could be switched to destination port defined in ARL table and cross all VLAN (include port base
12·0 R/O 0 Reserved	13	R/W		MULTI_LEAKY_EN	Also use ARL_MULTI_LEAKY_EN and LEAKY_EN bit in ARL table to control unicast leaky VLAN. When ARL_MULTI_LEAKY_EN is set to zero, only MULTI_LEAKE_EN control multicast frame leaky VLAN. If ARL_MULTI_LEAKY_EN is set to 1'b1, only frame with DA in ARL table and LEAKY_EN bit is set to 1'b1 can be forward as leaky VLAN, ignore MULTI_LEAKE_EN. If mac receive multicast frame from this port which should forward as leaky VLAN, the frame could be switched to destination port defined in ARL table and cross all VLAN (include
12.0 N/O U INCOLLACE	12:0	R/O	0	Reserved	-

3.32 Rate Limit Register

Address Offset: 0x0110 - Port 0, 0x0210 - Port 1, 0x0310 - Port 2, 0x0410 - Port 3, 0x0510 - Port 4, 0x0610 - Port 5

Table 3-38 Summarizes the Storm Control register

Table 3-36. Rate Limit Register

Bit	R/W	Inital Value	Mnemonic	Description
31:24	R/W	b'h18	ADD_RATE_BYTE	Byte number should be added to frame when calculate rate limit. Default is 24 bytes for IPG, preamble, crc and SFD.
23	R/W	0	EGRESS_RATE_EN	Enable port base rate limit. Rate should be set at EG_PRI3_RATE.?port based rate limit enable?eg_pri3_rate is duplicated for port based and queue based) Enable port based max burst size also, Max burst size should be set at max_burst_size_pri3. (port based max burst size enable, max_burst_size_pri3 is duplicated for port based and queue based
22	R/W	0	EGRESS_MANAGE_RATE_EN	Enable management frame to be calculate to egress rate limit .
21	R/W	0	INGRESS_MANAGE_RATE_EN	Enable management frame to be calculate to ingress rate limit .
20	R/W	0	INGRESS_MULTI_RATE_EN	Enable multicast frame which da can be found in ARL table to be calculate to ingress rate limit .
19:15	R/O	0	Reserved	
14:0	R/W	0x7FFF	ING_RATE	Ingress Rate Limit for all priority. Rate is limited to times of 32kbps. Default 15'h7FFF is for disable rate limit for egress priority 2. if these bits are set to 15'h0, no frame should be received in from this port.

3.33 Priority Control Register

Address Offset: 0x0114 - Port 0, 0x0214 - Port 1, 0x0314 - Port 2, 0x0414 - Port 3, 0x0514 - Port 4, 0x0614 - **Port** 5

Table 3-37. **Priority Control register**

Table 3-37 Summarizes the Priority Control register

Bit	R/W	Inital Value	Mnemonic	Description
31:20	R/O	0	Reserved	
19	R/W	1	PORT_PRI_EN	1'b1: port base priority can be used for QOS.
18	R/W	0	DA_PRI_EN	1'b1: DA priority can be used for QOS.
17	R/W	0	VLAN_PRI_EN	1'b1: VLAN priority can be used for QOS.
16	R/W	0	IP_PRI_EN	1'b1: TOS/TC can be used for QOS.
15:8	R/O		Reserved	
7:6	R/W	0	DA_PRI_SEL	DA priority selected level for QOS. There are five levels priority for QOS. The highest is priority in packet header. The others are selected by these bits. If these bits are set to zero, DA priority is selected after header. If these bits are set to n, DA priority is selected after the priority set to n-1.
5:4	R/W	1	VLAN_PRI_SEL	VLAN priority selected level for QOS.
3:2	R/W	2	IP_PRI_SEL	IP priority selected level for QOS.
1:0	R/W	3	PORT_PRI_SEL	Port base priority selected level for QOS

3.34 Storm Control Register

Address Offset: 0x0118 - Port 0, 0x0218 - Port 1, 0x0318 - Port 2, 0x0418 - Port 3, 0x0518 - Port 4, 0x0618 - **Port** 5

Table 3-38 Summarizes the Storm Control register

Table 3-38. **Storm Control register**

Bit	R/W	Inital Value	Mnemonic	Description
31:26	R/O	0	Reserved	
25:24	R/W	0	Reserved	
23:11	R/O	0	Reserved	

Bit	R/W	Inital Value	Mnemonic	Description
10	R/W	0	MULTI_STORM_EN	1'b1: enable unknown multicast frame calculate to storm control.
9	R/W	0	UNI_STORM_EN	1'b1: enable unknown unicast frame calculate to storm control.
8	R/W	0	BROAD_STORM_EN	1'b1: enable broadcast frame calculate to storm control.
7:4	R/O	0	Reserved	
3:0	R/W	0	STORM_RATE	Storm control rate 4'h0: storm control disable 4'h1: 1k frame per second 4'h2: 2k frame per second 4'h3: 4k frame per second 4;h4: 8k frame per second 4;h5: 16k frame per second 4'h6: 32k frame per second 4'h7: 64k frame per second 4'hB: 1M frame per second.

3.35 Queue Control Register

Address Offset: 0x011C - Port 0, 0x021C - Port 1, 0x031C - Port 2, 0x041C - Port 3, 0x051C - Port 4, 0x061C - Port 5

Table 3-39 Summarizes the Queue Control register

Table 3-39. Queue Control register

Bit	R/W	Inital Value	Mnemonic	Description
31:28	R/w	4'h6 (for port 0) 4'h2(for other ports)	ING_BUF_NUM	Buffer number is times of 4. 4'h0: 0 4'h1: no more than 4 4'h2: no more than 8 4'hF: no more than 60
27:26	R/O	0	Reserved	
25	R/W	0x1	PORT_QUEUE_CTRL_EN	1'b1: enable use PORT_QUEUE_NUM to control queue depth in this port.
24	R/W	0x1	PRI_QUEUE_CTRL_EN	1'b1: enable use PRI*_QUEUE_NUM to control queue depth in this port.
23:22	R/O		Reserved	

Bit	R/W	Inital Value	Mnemonic	Description
21:16	R/W	0x2A	PORT_QUEUE_NUM	Most buffer can be used for this port. Buffer number is times of 4. 6'h0: 0 6'h1: no more than 4 6'h2: no more than 8 6'h31F: no more than 252
15:12	R/W	0x8	PRI3_QUEUE_NUM	Most buffer can be used for priority 3 queue. Buffer number is times of 4. 4'h0: 0 4'h1: no more than 4 4'h2: no more than 8 4'hF: no more than 60
11:8	R/W	0x8	PRI2_QUEUE_NUM	Most buffer can be used for priority 2 queue. Buffer number is times of 4. 4'h0: 0 4'h1: no more than 4 4'h2: no more than 8 4'hF: no more than 60
7:4	R/W	0x8	PRI1_QUEUE_NUM	Most buffer can be used for priority 1 queue. Buffer number is times of 4. 4'h0: 0 4'h1: no more than 4 4'h2: no more than 8 4'hF: no more than 60
3:0	R/W	0x8	PRI0_QUEUE_NUM	Most buffer can be used for priority 0 queue. Buffer number is times of 4. 4'h0: 0 4'h1: no more than 4 4'h2: no more than 8 4'hF: no more than 60

3.36 Rate Limit Register 1

Address Offset: 0x0120 - Port 0, 0x0220 - Port 1, 0x0320 - Port 2, 0x0420 - Port 3, 0x0520 - Port 4, 0x0620 - Port 5

Table 3-40 Summarizes the Rate Limit register 1

Table 3-40. Rate Limit register 1

Bit	R/W	Inital Value	Mnemonic	Description
31	R/O	0		
30:16	R/W	0x7FFF	EG_PRI1_RATE	Egress Rate Limit for priority 1. Rate is limited to times of 32kbps. Default 15'h7FFF is for disable rate limit for egress priority 2. if these bits are set to 15'h0, no priority 1 frame should be send out from this port.
15	R/O	0		
14:0	R/W	0x7FFF	EG_PRIO_RATE	Egress Rate Limit for priority 0. Rate is limited to times of 32kbps. Default 15'h7FFF is for disable rate limit for egress priority 2. if these bits are set to 15'h0, no priority 0 frame should be send out from this port.

3.37 Rate Limit Register 2

Address Offset: 0x0124 - Port 0, 0x0224 - Port 1, 0x0324 - Port 2, 0x0424 - Port 3, 0x0524 - Port 4, 0x0624 - Port 5

Table 3-41 Summarizes the Rate Limit register 2

Table 3-41. Rate Limit register 2

Bit	R/W	Inital Value	Mnemonic	Description
31	R/O	0	Reserved	
30:16	R/W	0x7FFF	EG_PRI3_RATE	Egress Rate Limit for priority 3. Rate is limited to times of 32kbps.
				Default 15'h7FFF is for disable rate limit for egress priority 2. if these bits are set to 15'h0, no priority 3 frame should be send out from this port.

Bit	R/W	Inital Value	Mnemonic	Description
15	R/O	0	Reserved	
14:0	R/W	0x7FFF	EG_PRI2_RATE	Egress Rate Limit for priority 2. Rate is limited to times of 32kbps. Default 15'h7FFF is for disable rate limit for egress priority 2. if these bits are set to 15'h0, no priority 2 frame should be send out from this port.

3.38 Rate Limit Register 3

Address Offset: 0x0128 - Port 0, 0x0228 - Port 1, 0x0328 - Port 2, 0x0428 - Port 3, 0x0528 - Port 4, 0x0628 - Port 5

Table 3-42 Summarizes the Rate Limit register 3

Table 3-42. Rate Limit register 3

P.:	D ///	Inital		
Bit	R/W	Value	Mnemonic	Description
31:24	R/O		Reserved	
23:22	R/W	2'b01	Reserved	
21:20	R/W	2'b01	Reserved	
19:18	R/W	2′b01	Reserved	
17:16	R/W	2'b01	Reserved	
15:3	R/O	0	Reserved	
2:0	R/W		EG _TIME_SLOT	Egress rate limit time slot control
				register. 3'h0: 1/128 ms
				3'h1: 1/64 ms
				3'h2: 1/32 ms
				3'h3: 1/16 ms
				3'h4: 1/4 ms
				3'h5: 1 ms
				3'h6: 10 ms
				3'h7: 100 ms

3.39 Robin Register

Address Offset: 0x012C - Port 0, 0x022C - Port 1, 0x032C - Port 2, 0x042C - Port 3, 0x052C - Port 4, 0x062C - Port 5

Table 3-42 Summarizes the Rate Limit register 2

Table 3-43. Rate Limit register 2

Bit	R/W	Inital Value	Mnemonic	Description
31	R/W	0	Reserved	
30:29	R/W	2'b00	WEIGHT_PRI_CTRL	2'b00: strict priority 2'b01: only highest queue use strick priority, others use weighted fair queuing schme 2'b10: the highest two queues use strick priority, other two queues use weighted fair queuing schme. 2'b11: all queues use weighted fair queuing schme which defined in "WRR_PRI3/2/1/0".
28:24	R/W	8	WRR_PRI3	Wrr setting for priority 3
23:21	R/W	0		
20:16	R/W	4	WRR_PRI2	Wrr setting for priority 2
15:13	R/W	0		
12:8	R/W	2	WRR_PRI1	Wrr setting for priority 1
7:5	R/W	0		
4:0	R/W	1	WRR_PRI0	Wrr setting for priority 0

4. PHY Control Registers

Table 3-2 summarizes the PHY Control registers.

Table 4-1. PHY Register Summary

Offset	Description	Page
0	Control Register	page 97
1	Status Register	page 99
2P	HY Identifier	page 101
3	PHY Identifier 2	page 102
4	Auto-negotiation Advertisement Register	page 103
5	Link Partner Ability Register	page 107
6	Auto-negotiation Expansion Register	page 103
7	Reserved	
8	Reserved	
9	Reserved	
10	Reserved	
11	Reserved	
12	Reserved	
13	Reserved	
14	Reserved	
15	Reserved	
16	PHY-specific Control Register	page 112
17	PHY-specific Status Register	page 112
18	Interrupt Enable Register	page 114
19	Interrupt Status Register	page 116
20	Extended PHY-specific Register	page 118
21	Receive Error Counter Register	page 119
22	Virtual Cable Tester Control Register	page 119
23	Reserved	
24	LED Control Register	
25	Manual LED Override Register	
26	Reserved	
27	Reserved	
28	Virtual Cable Tester Status Register	page 120
29	Debug port 1 (Address Offset)	page 121
30	Debug port 2 (Data Port)	page 122
31	Reserved	

4.40 Control Register

Address Offset: 0x00

Table 4-2 summarizes the Registers

Table 4-2. Control Register

Bit	Symbol	Ту	pe	Description
15	Reset	Mode	R/W	PHY Software Reset. Writing a "1" to
		HW Rst	0	this bit causes the PHY the reset operation is done, this bit is cleared to
		SW Rst	SC	"1" automatically. The reset occurs immediately.
				1= PHY reset 0 =Normal operation
14	Loopback	Mode	R/W	When loopback is activated, the
		HW Rst	0	transmitter data presented on TXD is looped back to RXD internally. Link is
		SW Rst	0	broken when loopback is enabled.
				1 = Enable Loopback 0 = Disable Loopback
13	Speed Selection	Mode	R/W	(00:10Mbps,01:100Mbps,10:Reserved,1
		HW Rst		1:Reserved)
		SW Rst		_
12	Auto-negotiation	Mode	R/W	1 = Enable Auto-Negotiation Process
		HW Rst		0 = Disable Auto-Negotiation Process
		SW Rst		_
11	Power Down	Mode	R/W	When the port is switched from power
		HW Rst	0	down to normal operation, software reset and restart Auto-Negotiation are
		SW Rst	0	performed even when bits Reset (0.15) and Restart Auto-Negotiation (0.9) are not set by the user.
				1 = Power down
				0 = Normal operation
10	Isolate	Mode	R/W	The GMII/MII output pins are tristated
		HW Rst	0	when this bit is set to 1. The GMII/MII inputs are ignored.
		SW Rst	0	
				1 = Isolate
				0 = Normal operation

Bit	Symbol	Ту	pe	Description
9	Restart Auto-negotiation	Mode	R/W, SC	Auto-Negotiation automatically
		HW Rst	0	restarts after hardware or software reset regardless of whether or not the
		SW Rst	SC	restart bit (0.9) is set.
				1 = Restart Auto-Negotiation Process 0 = Normal operation
8	Duplex Mode	Mode	R/W, SC	1:Full Duplex
		HW Rst		0 :Half Duplex
		SW Rst		
7	Collision Test	Mode	R/W	Setting this bit to 1 will cause the COL
		HW Rst	0	pin to assert whenever the TX_EN pin is asserted.
		SW Rst	0	
				1 = Enable COL signal test
				0 = Disable COL signal test
6	Speed Selection (MSB)	Mode	R/W	See bit 0.13
		HW Rst	See Desc.	
		SW Rst		
5:0	Reserved	Mode	RO	Will always be 00000.
		HW Rst	000000	
		SW Rst	00000	7

4.41 Status Register

Address Offset: 0x01, or 0d01

Table 4-3 summarizes the Registers

Table 4-3. Status Register

Bit	Symbol	Туре		Description
15	100Base-T4	Mode	RO	100BASE-T4.
		HW Rst	Always 0	This protocol is not available.
		SW Rst	Always 0	0 = PHY not able to perform 100BASE- T4
14	100Base-TX	Mode	RO	Capable of 100-Tx Full Duplex
		HW Rst	Always 1	operation
		SW Rst	Always 1	
13	10 Mbps Full-Duplex	Mode	RO	Capable of 100-Tx Full Duplex
		HW Rst	Always 1	operation
		SW Rst	Always 1	
12	10 Mbps Full-Duplex	Mode	RO	Capable of 100-Tx Full Duplex
		HW Rst	Always 1	operation
		SW Rst	Always 1	
11	100Base-T2 Half-Duplex	Mode	RO	Capable of 100-Tx Full Duplex
		HW Rst	Always 1	operation
		SW Rst	Always 1	
10	100Base-T2 Full-Duplex	Mode	RO	Not able to perform 100BASE-T2
		HW Rst	Always 0	
		SW Rst	Always 0	
9	100Base-T2 Half-Duplex	Mode	RO	Not able to perform 100BASE-T2
		HW Rst	Always 0	
		SW Rst	Always 0	
8	Reserved	Mode	RO	Always 0
		HW Rst	Always 0	
		SW Rst	Always 0	
7	Reserved	Mode	RO	Always 0
		HW Rst	Always 0	
		SW Rst	Always 0	
6	MF Preamble Suppression	Mode	RO	PHY accepts management frames with
		HW Rst	Always 1	preamble suppressed
		SW Rst	Always 1	

Bit	Symbol	Ту	pe	Description
5	Auto-negotiation Complete	Mode	RO	1: Auto negotiation process complete
		HW Rst	0	0:Auto negotiation process not complete
		SW Rst	0	Complete
4	Remote Fault	Mode	RO, LH	1: Remote fault condition detected
		HW Rst	0	0:Remote fault condition not detected
		SW Rst	0	
3	Auto-negotiation Ability	Mode	RO	1 : PHY able to perform auto
		HW Rst	Always 1	negotiation
		SW Rst	Always 1	
2	Link Status	Mode	RO, LL	This register bit indicates whether the
		HW Rst	0	link was lost since the last read. For the current link status, read
		SW Rst	0	register bit 17.10 Link Real Time.
				1 1:41:2
				1 = Link is up 0 = Link is down
1	Jabber Detect	Mode	RO, LH	1: Jabber condition detected
		HW Rst	0	0: Jabber condition not detected
		SW Rst	0	
0	Extended Capability	Mode	RO	1: Extended register capabilities
		HW Rst	Always 1	1
		SW Rst	Always 1	

4.42 PHY Identifier

Address Offset: 0x02 or 0d02

Table 4-4 summarizes the Registers

Table 4-4. PHY Identifier

Bit	Symbol	Туре		Description
15:0	Organizationally Unique Identifer	Mode	RO	Organizationally Unique Identifier bits
	Bit 3:18	HW Rst	Always 16'h004d	3:18
		SW Rst	Always 16'h004d	

4.43 PHY Identifier 2

Address Offset: 0x03, or 0d03

Table 4-5 summarizes the Registers

Table 4-5. PHY Identfier 2

Bit	Symbol	Туре		Description
15	OUI LSB Model Number Revision	Mode	RO	Organizationally Unique Identifier bits
	Number	HW Rst	Always 16'hd041	19:24
		SW Rst	Always 16'hd041	

4.44 Auto-negotiation Advertisement Register

Address Offset: 0x04, or 0d04 Table 4-6 summarizes the Registers

Table 4-6. Auto-negotiation Advertisement Register

Bit	Symbol	Туре		Description
15	Reserved	Mode	R/W	Always 0
		HW Rst	0	
		SW Rst	0	
14	Ack	Mode	RO	Must be 0
		HW Rst	Always 0	
		SW Rst	Always 0	
13	Remote Fault	Mode	R/W	1 = Set Remote Fault bit
		HW Rst	Always 0	0 = Do not set Remote Fault bit
		SW Rst	Always 0	
12	Reserved	Mode	RO	Always 0.
		HW Rst	Always 0	
		SW Rst	Always 0	
11	Asymmetric Pause	Mode	R/W	The value of this bit will be updated immediately after writing to this register. But the value written to this bit does not takes effect until any one of the following occurs:
		HW Rst	1	
		SW Rst	Update	
				Software reset is asserted (register 0.15)
				Restart Auto-Negotiation is asserted (register 0.9)
				Power down (register 0.11) transitions from power down to normal operation
				Link goes down
				1 = Asymmetric Pause 0 = No asymmetric Pause (this bit has added the pad control and can be set from the F001 top, its default value is one)

Bit	Symbol	Туре		Description
10	PAUSE	Mode	R/W	The value of this bit will be updated
		HW Rst	1	immediately after writing to this register. But the value written to this bit
		SW Rst	Update	does not takes effect until any one of the following occurs:
				Software reset is asserted (register 0.15)
				Restart Auto-Negotiation is asserted (register 0.9)
				Power down (register 0.11) transitions from power down to normal operation
				Link goes down
				1 = MAC PAUSE implemented
				0 = MAC PAUSE not implemented
				(this bit has added the pad control and can be set from the F001 top, its default value is one)
9	100Base-T4	Mode	RO	Not able to perform 100BASE-T4
		HW Rst	Always 0	
		SW Rst	Always 0	
8	100Base -TX	Mode	R/W	The value of this bit will be updated
		HW Rst	1	immediately after writing to this register. But the value written to this bit
		SW Rst	Update	does not takes effect until any one of the following occurs:
	0,			Software reset is asserted (register 0.15)
	00			Restart Auto-Negotiation is asserted (register 0.9)
				Power down (register 0.11) transitions from power down to normal operation
				Link goes down
				1 = Advertise
				0 = Not advertised

Bit	Symbol	Туре		Description
7	100BASE-TX	Mode	R/W	The value of this bit will be updated
	Half Duplex	HW Rst	1	immediately after writing to this register. But the value written to this bit
		SW Rst	Update	does not takes effect until any one of the following occurs:
				Software reset is asserted (register 0.15)
				Restart Auto-Negotiation is asserted (register 0.9)
				Power down (register 0.11) transitions from power down to normal operation
				Link goes down
				1 = Advertise
				0 = Not advertised
6	10BASE-TX	Mode	R/W	The value of this bit will be updated immediately after writing to this
	Full Duplex	HW Rst	1	register. But the value written to this bit
		SW Rst	Update	does not takes effect until any one of the following occurs:
				Software reset is asserted (register 0.15)
		O		Restart Auto-Negotiation is asserted (register 0.9)
				Power down (register 0.11) transitions from power down to normal operation
				Link goes down
				1 = Advertise
				0 = Not advertised

Bit	Symbol	Туре		Description
5	10BASE-TX	Mode	R/W	The value of this bit will be updated
	Half Duplex	HW Rst	1	immediately after writing this register. But the value written to this bit does
		SW Rst	Update	not takes effect until any one of the following occurs:
				Software reset is asserted (register 0.15)
				Restart Auto-Negotiation is asserted (register 0.9)
				Power down (register 0.11) transitions from power down to normal operation
				Link goes down
				1 = Advertise 0 = Not advertised
4:0	Selector Field	Mode	RO	Selector Field mode
		HW Rst	Always 00001	00001 = 802.3
		SW Rst	Always 00001	

4.45 Link Partner Ability Register

Address Offset: 0x05, or 0d05

Table 4-7 summarizes the Registers

Table 4-7. Link Partner Ability Register

Bit	Symbol	Туре		Description
15	Reserved	Mode	RO	Always 0
		HW Rst	0	
		SW Rst	0	
14	Ack	Mode	RO	Acknowledge
		HW Rst	0	Received Code Word Bit 14
		SW Rst	0	1 = Link partner received link code word 0 = Link partner does not have Next Page ability
13	Remote Fault	Mode	RO	Remote Fault
		HW Rst	0	Received Code Word Bit 13
		SW Rst	0	1 = Link partner detected remote fault
				0 = Link partner has not detected remote fault
12	Reserved	Mode	RO	Technology Ability Field
		HW Rst	0	Received Code Word Bit 12
		SW Rst	0	
11	Asymmetric Pause	Mode	RO	Technology Ability Field Received Code Word Bit 11
		HW Rst	0	
		SW Rst	0	1 = Link partner requests asymmetric pause 0 = Link partner does not request asymmetric pause
10	PAUSE	Mode	RO	Technology Ability Field Received Code Word Bit 10
		HW Rst	0	
		SW Rst	0	1 = Link partner is capable of pause operation0 = Link partner is not capable of pause operation
9	100BASE-T4	Mode		Technology Ability Field
		HW Rst		Received Code Word Bit 9
		SW Rst		1 = Link partner is 100BASE-T4 capable 0 = Link partner is not 100BASE-T4 capable

Bit	Symbol	Туре		Description
8	100BASE-TX	Mode	RO	Technology Ability Field
	Full Duplex	HW Rst	0	Received Code Word Bit 8
		SW Rst	0	1 = Link partner is 100BASE-TX full- duplex capable 0 = Link partner is not 100BASE-TX full-duplex capable
7	100BASE-TX	Mode	RO	Technology Ability Field
	Half Duplex	HW Rst	0	Received Code Word Bit 7
		SW Rst	0	1 = Link partner is 100BASE-TX half- duplex capable 0 = Link partner is not 100BASE-TX half-duplex capable
6	10BASE-TX Full Duplex	Mode	RO	Technology Ability Field Received Code Word Bit 6
		HW Rst	0	
		SW Rst	0	1 = Link partner is 10BASE-T full- duplex capable 0 = Link partner is not 10BASE-T full- duplex capable
5	10BASE-TX Half Duplex	Mode	RO	Technology Ability Field Received Code Word Bit 5
		HW Rst	0	
		SW Rst	0	1 = Link partner is 10BASE-T half- duplex capable 0 = Link partner is not 10BASE-T half- duplex capable
4:0	Selector field	Mode	RO	Selector Field
		HW Rst	00000	Received Code Word Bit 4:0
		SW Rst	00000	

4.46 Auto-negotiation Expansion Register

Address Offset: 0x06, or 0d06 Table 4-8 summarizes the Registers

Table 4-8. Auto-negotiation Expansion Register

Bit	Symbol	Ту	pe	Description
15:5	Reserved	Mode	RO	Reserved. Must be 0.
		HW Rst	Always 0x000	
		SW Rst	Always 0x000	
4	Parallel Detection Fault	Mode	RO, LH	1: a fault has been detect
		HW Rst	0	0: no fault has been detected
		SW Rst	0	
3	Reserved	Mode	RO	Always 0
		HW Rst	0	
		SW Rst	0	
2	Reserved	Mode	R/W	
		HW Rst	1	
		SW Rst	1	
1	Reserved	Mode	RO, LH	Always 0
		HW Rst	0	
		SW Rst	0	
0	Link Partner Auto-negotiation	Mode	RO	1: Link partner is auto negotiation able
	Able	HW Rst	0	0: Link partner is not auto negotiation able
		SW Rst	0	

4.47 Function Control Register

Address Offset: 0x10, or 0d16

Table 4-9 summarizes the Registers

Table 4-9. Function Control Register

Bit	Symbol	Ту	/pe	Description
15:12	Reserved	Mode	RO	Always 0
		HW Rst	0	
		SW Rst	0	
11	Assert CRS on Transmit	Mode	R/W	11
		HW Rst	0	
		SW Rst	Retain	
10	Reserved	Mode	RO	Always 0
		HW Rst	0	
		SW Rst	0	
9:8	Energy Detect	Mode	R/W	0x = Off
		HW Rst	0	10 = Sense only on Receive (Energy Detect)
		SW Rst	0	11 = Sense and periodically transmit NLP
6:5	MDI Crossover Mode	Mode	R/W	Changes to these bits are disruptive to
		HW Rst	11	the normal operation; therefore any changes to these registers must be
		SW Rst	Updage	followed by a software reset to take effect.
	00			00 = Manual MDI configuration 01 = Manual MDIX configuration 10 = Reserved 11 = Enable automatic crossover for all modes
4:3	Reserved	Mode	RO	Always 0
		HW Rst	0	
		SW Rst	0	
2	SQE Test	Mode	R/W	SQE Test is automatically disabled in
		HW Rst	0	full-duplex mode.
		SW Rst	Retain	1 = SQE test enabled 0 = SQE test disabled
1	Polarity Reversal	Mode	R/W	If polarity is disabled, then the polarity
	•	HW Rst	0	is forced to be normal in 10BASE-T.
		SW Rst	Retain	100/101-1.
				1 = Polarity Reversal Disabled 0 = Polarity Reversal Enabled
				0 – Folatity Neversal Eliablea

Bit	Symbol	Туре		Description
0	Disable Jabber	Mode	R/W	Jabber has effect only in 10BASE-T
		HW Rst	0	half-duplex mode.
		SW Rst	Retain	1 = Disable jabber function 0 = Enable jabber function

4.48 PHY Specific Status Register

Address Offset: 0x11, or 0d17

Table 4-10 summarizes the Registers

Table 4-10. PHY Specific Status Register

Bit	Symbol	Ту	pe	Description
15:14	Speed	Mode	RO	These status bits are valid when Auto-
		HW Rst	00	Negotiation is completed or Auto- Negotiation is disabled.
		SW Rst	Retain	
				11 = Reserved 10 = Reserved
				01 = 100 Mbps
				00 = 10 Mbps
13	Duplex	Mode	RO	This status bit is valid only Auto-
		HW Rst	0	Negotiation is completed or Auto- Negotiation is disabled.
		SW Rst	Retain	
				1 = Full-duplex 0 = Half-duplex
12	Page Received (Real Time)	Mode	RO	1 = Page received
	(HW Rst	0	0 = Page not received
		SW Rst	Retain	
11	Speed and Duplex Resolved	Mode	RO	When Auto-Negotiation is not enabled
		HW Rst	0	for force speed mode.
		SW Rst	0	1 = Resolved
				0 = Not resolved
10	Link (Real Time)	Mode	RO	1 = Link up
		HW Rst	0	0 = Link down
		SW Rst	0	
9:7	Reserved	Mode	RO	Always 0
		HW Rst	0	
		SW Rst	0	
6M	DI Crossover	Mode	RO	This status bit is valid only when Auto- Negotiation is completed or Auto-
	Status	HW Rst	0	Negotiation is disabled.
		SW Rst	Retain	1 MOV
				1 = MDIX $0 = MDI$
5	Wirespeed downgrade	Mode	RO	1 = Downgrade
		HW Rst	0	0 = No Downgrade
		SW Rst	0	

Bit	Symbol	T	ype	Description
4	Energy Detect Status	Mode	RO	1 = Sleep
		HW Rst	0	0 = Active
		SW Rst	0	
3	Transmit Pause Enabled	Mode	RO	This is a reflection of the MAC pause
		HW Rst	0	resolution. This bit is for information purposes and is not used by the device.
		SW Rst	0	This status bit is valid only when Auto- Negotiation is completed or Auto- Negotiation is disabled.
				1 = Transmit pause enabled
				0 = Transmit pause disabled
2	Receive Pause Enabled	Mode	RO	This is a reflection of the MAC pause resolution. This bit is for information
		HW Rst	0	purposes and is not used by the device.
		SW Rst	Retain	This status bit is valid only when Auto- Negotiation is completed or Auto- Negotiation is disabled.
				1 = Receive pause enabled
				0 = Receive pause disabled
1	Polarity (Real Time)	Mode	RO	1 = Reversed
		HW Rst	0	0 = Normal
		SW Rst	0	
0	Jabber (Real Time)	Mode	RO	1 = Jabber
		HW Rst	0	0 = No jabber
		SW Rst	Retain	

4.49 Interrupt Enable Register

Address Offset: 0x12, or 0d18

Table 4-11 summarizes the Registers

Table 4-11. **Interrupt Enable Register**

Bit	Symbol	Ту	/pe	Description
15	Auto-Negotiation	Mode	R/W	1 = Interrupt enable
	Error Interrupt Enable	HW Rst	0	0 = Interrupt disable
	Enable	SW Rst	Retain	
14	Speed Changed	Mode	R/W	1 = Interrupt enable
	Interrupt Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	
13	Reserved	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	
12	Page Received	Mode	R/W	1 = Interrupt enable
	Interrupt Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	
11	Auto-Negotiation	Mode	R/W	1 = Interrupt enable
	Completed	HW Rst	0	0 = Interrupt disable
	Interrupt Enable	SW Rst	Retain	
10	Link Status	Mode	R/W	1 = Interrupt enable
	Changed	HW Rst	0	0 = Interrupt disable
	Interrupt Enable	SW Rst	Retain	
9	Symbol Error	Mode	R/W	1 = Interrupt enable
	Interrupt Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	
8	False Carrier	Mode	R/W	1 = Interrupt enable
	Interrupt Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	
7	7 FIFO Over/ Underflow Interrupt Enable	Mode	R/W	1 = Interrupt enable
		HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	
6M	DI Crossover	Mode	R/W	1 = Interrupt enable
	Changed	HW Rst	0	0 = Interrupt disable
	Interrupt Enable	SW Rst	Retain	

Bit	Symbol	T	уре	Description
5	Wirespeed-	Mode	R/W	1 = Interrupt enable
	downgrade	HW Rst	0	0 = Interrupt disable
	Interrupt Enable	SW Rst	Retain	
4	Energy Detect	Mode	R/W	1 = Interrupt enable
	Interrupt Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	
3:2	3:2 Reserved	Mode	R/W	Always 00
		HW Rst	0	
		SW Rst	Retain	
1	Polarity	Mode	R/W	1 = Interrupt enable
	Changed	HW Rst	0	0 = Interrupt disable
	Interrupt Enable	SW Rst	Retain	
0	0 Jabber Interrupt Enable	Mode	R/W	1 = Interrupt enable
		HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	

4.50 Interrupt Status Register

Address Offset: 0x13, or 0d19

Table 4-12 summarizes the Registers

Table 4-12. Interrupt Status Register

Bit	Symbol	Ту	/pe	Description
15	Auto-Negotiation	Mode	RO, LH	An error is said to occur if MASTER/
	Error	HW Rst	0	SLAVE does not resolve, parallel detect fault, no common HCD, or link does
		SW Rst	Retain	not come up after negotiation is completed.
				1 = Auto-Negotiation Error 0 = No Auto-Negotiation Error
14	Speed Changed	Mode	RO, LH	1 = Speed changed
		HW Rst	0	0 = Speed not changed
		SW Rst	Retain	
13	Reserved	Mode	RO, LH	Reserved
		HW Rst	0	
		SW Rst	Retain	
12	Page Received	Mode	RO	1 = Page received
		HW Rst	0	0 = Page not received
		SW Rst	Retain	
11	Auto-Negotiation	Mode	RO	1 = Auto-Negotiation completed 0 = Auto-Negotiation not completed
	Completed	HW Rst	0	
		SW Rst	Retain	
10	Link Status	Mode	RO, LH	1 = Link status changed
	Changed	HW Rst	0	0 = Link status not changed
		SW Rst	Retain	
9	Symbol Error	Mode	RO, LH	1 = Symbol error
		HW Rst	0	0 = No symbol error
		SW Rst	Retain	
8	False Carrier	Mode	RO, LH	1 = False carrier 0 = No false carrier
		HW Rst	0	
		SW Rst	Retain	
7	FIFO Over/Underflow	Mode	RO, LH	1 = Over/Underflow Error
		HW Rst	0	0 = No FIFO Error
		SW Rst	Retain	Not implement, always 0.

Bit	Symbol	T	/pe	Description
6	MDI rossover C	Mode	RO, LH	1 = Crossover changed
	Changed	HW Rst	0	0 = Crossover not changed
		SW Rst	Retain	
5	Wirespeed-	Mode	RO, LH	1 = Wirespeed-downgrade detected.
	downgrade	HW Rst	0	0 = No Wirespeed-downgrade.
	Interrupt	SW Rst	Retain	_
4	Energy Detect Changed	Mode	RO, LH	1 = Energy Detect state changed
		HW Rst	0	0 = No Energy Detect state change detected
		SW Rst	Retain	detected
				Not implement, always 0.
3:2	Reserved	Mode	RO, LH	Always 0
		HW Rst	0	
		SW Rst	Retain	
1	Polarity	Mode	RO, LH	1 = Polarity Changed
	Changed	HW Rst	0	0 = Polarity not changed
		SW Rst	Retain	
0	Jabber	Mode	RO, LH	1 = Jabber
		HW Rst	0	0 = No jabber
		SW Rst	Retain	

4.51 Receive Error Counter Register

Address Offset: 0x15, or 0d21

Table 4-13 summarizes the Registers

Table 4-13. Status Register

Bit	Symbol	Туре		Description
15:0	Receive Error Count	Mode	RO	Counter will peg at 0xFFFF and will
		HW Rst	0x0000	not roll over.
		SW Rst	Retain	(when rx_dv is valid, count rx_er numbers)
				(in this version, only for 100Base-T and 1000Base-T)

4.52 Virtual Cable Tester Control Register

Address Offset: 0x16, or 0d22

Table 4-14 summarizes the Registers

Table 4-14. Virtual Cable Tester Contol Register

Bit	Symbol	Ту	pe	Description
15:10	Reserved	Mode	RO	Reserved
		HW Rst	Always 0	_
		SW Rst	Always 0	
9:8	MDI Pair	Mode	R/W	Virtual Cable Tester TM Control
	Select	HW Rst	00	registers. Use the Virtual Cable Tester Control Registers to select which MDI
		SW Rst	Retain	pair is shown in the Virtual Cable Tester Status register. 00 = MDI[0] pair
				01 = MDI[1] pair 10 = MDI[2] pair 11 = MDI[3] pair
7:1	Reserved	Mode	RO	Always 0.
		HW Rst	0	
		SW Rst	0	
0	Enable Test	Mode	R/W	When set, hardware automatically
		HW Rst	0	disable this bit when VCT is done.
		SW Rst	Retain	1 = Enable VCT Test 0 = Disable VCT Test

4.53 Virtual Cable Tester Status Register

Address Offset: 0x1C, or 0d28

Table 4-15 summarizes the Registers

Table 4-15. Virtual Cable Tester Status Register

Bit	Symbol	Ту	pe	Description
15:10	Reserved	Mode	RO	Reserved.
		HW Rst	Always 0	
		SW Rst	Always 0	
9:8	Status	Mode	RO	The content of the Virtual Cable Tester
		HW Rst	00	Status Registers applies to the cable pair selected in the Virtual Cable
		SW Rst	00	Tester TM Control Registers.
			C	11 = linkup state, no open or short in cable. 00 = Valid test, normal cable (no shor or open in cable) 10 = Valid test, open in cable for MDI pair 0/2. Short in cable for MDI pair 1/3 01 = Valid test, short in cable for MDI pair 0/2. Open in cable for MDI pair 1/3
7:0	Delta_Time	Mode	R/W	Delta time to indicate distance.
		HW Rst	0	Length = Delta_Time * 0.824
		SW Rst	0	

4.54 Debug Port (Address Offset)

Address Offset: 0x1D, or 0d29

Table 4-16 summarizes the Registers

Table 4-16. Debug Port (Address Offset)

Bit	Symbol	Ty	/pe	Description
15:6	Reserved	Mode	RO	
		HW Rst	0	
		SW Rst	0	
5:0	Address Offset	Mode	R/W	The address index of the register will
		HW Rst	0	be write or read.
		SW Rst	0	

4.55 Debug Port 2 (R/W Port)

Address Offset: 0x1E, or 0d20

Table 4-17 summarizes the Registers

Table 4-17. Debug Port 2 (R/W Port)

Bit	Symbol	Ту	pe	Description
15:0	Debug Data Port	Mode	R/W	The data port of debug register.
		HW Rst	0	Before access this register, must set the address offset first.
		SW Rst	0	

4.56 Debug Register — Analog Test Control

Address Offset: 0x00, or 0d00

Table 4-16 summarizes the Registers

Table 4-18. **Debug Register — Analog Test Control**

Bit	Symbol	Ту	pe	Description
15	Rxclk_Delay	Mode	R/W	Control bit for RGMII interface RX
		HW Rst	0	clock delay:
		SW Rst	Retain	1 = rgmii rx clock delay enable
				0 = rgmii rx clock delay disable
14:10	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	0	
9	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	Retain	
8	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	
7	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	Retain	
6	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	Retain	
5	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	Retain	
4	10_ClassA	Mode	R/W	This bit is 10BT Class AB, class A select
		HW Rst	0	bit:
		SW Rst	Retain	1'b0 : 10BT in Class AB mode;
				1'b1: 10BT in Class A mode.
3:1	RES	Mode	R/W	Reserved
		HW Rst	3'b111	
		SW Rst	0	
0	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	

4.57 Debug Register — System Mode Control

Address Offset: 0x05, or 0d05

Table 4-16 summarizes the Registers

Table 4-19. Debug Register — System Control Mode

Bit	Symbol	Ту	pe	Description
15	RES	Mode	RO	Reserved
		HW Rst	0	
		SW Rst	0	
14	RES	Mode	RO	Reserved
		HW Rst	0	
		SW Rst	0	
13	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	Retain	
12	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	Retain	
11	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	Retain	
10	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	Retain	
9	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	
8	Gtxclk_delay	Mode	R/W	Rgmii tx clock delay control bit:
		HW Rst	0	1
		SW Rst	Retain	1 = rgmii tx clock delay enable 0 = rgmii tx clock delay disable.
7	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	†
6	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	

Bit	Symbol	T	уре	Description
5:4	RES	Mode	R/W	Reserved
		HW Rst	2'b00	
		SW Rst	Retain	
3	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	
2	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	Retain	
1	100_ClassA	Mode	R/W	This bit is 100BT ClassA and ClassAB
		HW Rst	1	mode select bit.
		SW Rst	Retain	0: 100BT ClassAB;
				1: 100BT ClassA;
0	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	

4.58 Debug Register — RGMII Mode Selection

Address Offset: 0x012, or 0d18

Table 4-16 summarizes the Registers

Table 4-20. Debug Register — RGMII Mode Selection

Bit	Symbol	T	уре	Description
15:14	RES	Mode	R/W	Reserved
		HW Rst	01	
		SW Rst	Retain	
13:12	RES	Mode	R/W	Reserved
		HW Rst	00	
		SW Rst	Retain	1
11	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	Retain	
10	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	Retain	
9:6	RES	Mode	RO	Reserved
		HW Rst	0	
		SW Rst	0	
5	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	0	
4	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	
3	Rgmii_mode	Mode	R/W	1: select RGMII interface with MAC;
		HW Rst	0	0: select GMII/MII interface with MAC.
		SW Rst	Retain	WAC.
2	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	1	
1:0	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	0	

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Table 5-1 summarizes the absolute maximum ratings and Table 5-2 lists the recommended operating conditions for the AR8229/AR8228. Absolute maximum ratings are those values beyond which

damage to the device can occur. Functional operation under these conditions, or at any other condition beyond those indicated in the operational sections of this document, is not recommended.

Table 5-1. Absolute Maximum Ratings

Symbol	Parameter	Max Rating	Unit
AVDD2P5	2.5 V analog supply voltage	3.0	V
AVDD	1.2 V digital core supply voltage	1.6	V
DVDD_IO	2.5 V digital supply voltage	3.0	V
DVDD	1.2 V digital supply voltage	1.6	V
VDD3P3	3.3 V digital I/O supply voltage	4.0	V
T _{store}	Storage temperature	-65 to 150	°C
ESD	Electrostatic discharge tolerance	2000	V

5.2 Recommended Operating Conditions

Table 5-2. Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
VDD3P3	3.3 V I/O voltage	3.0	3.3	3.6	V
AVDD2P5/DVDD_IO	2.5 V analog/digital	_	2.50	_	V
AVDD/DVDD	1.2 V analog/digital	1.14	1.2	1.26	V
T _{ambient} (AR8228)	Ambient Temperature	0	_	70	°C
T _{ambient} (AR8229)	Ambient Temperature	-40	_	85	°C
T _J	Junction Temperature	0	_	120	°C
$\Psi_{ m JT}$	Heat Dissipation Coefficent	_	3	_	°C/W

5.3 RGMII/GMII Characteristics

Table 5-3 shows the RGMII/GMII DC characteristics.

Table 5-3. **RGMII/GMII DC Characteristics**

Symbol	Parameter	Min	Max	Unit
V _{OH}	Output high voltage	2.0	_	V
V _{OL}	Output low voltage	_	0.4	V
I _{IH}	Input high current	_	-0.4	mA
I_{IL}	Input low current	0.4	_	mA

Table 5-3. RGMII/GMII DC Characteristics

VIH	Input high voltage	1.7	_	V
VIL	Input high voltage		0.7	V

5.4 Power-on Strapping

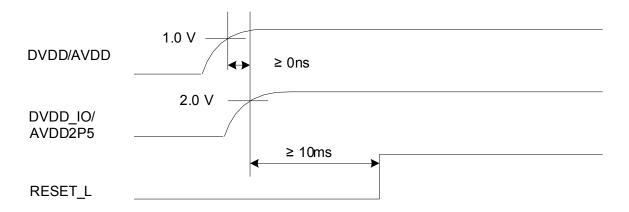

Table 5-4 shows the pin-to-PHY core configuration signal power-on strapping.

Table 5-4. Power-On Strapping

Pin Name	Pin Signal	Pin	Descrip	tion
MDIO_EN	SPI_DO	70	0	UART interface
			1	MDIO interface
UART_SPEED	RXD4_0	123	0	Normal operation
			1	High speed for function test
SPI_SIZE	RXD6_0	125	0	1K
				4K or 2K
FUNC_MODE0	SPI_CS	69	00	Normal Operation
FUNC_MODE1	SPI_CLK	68	01	Test Mode
			10 11	
LED_OPEN_EN	INT_n	104	0	Driver
			1 Op	en Drain
SPI_EN	COL_2	89	0	No EEPROM connected
			1	EEPROM enable

5.4.8 Power-on-Reset Timing

Figure 5-2 shows the Power-on-Reset timing diagram.

POWER-ON-RESET

Figure 5-1. Power-on-Reset Timing Diagram

5.5 AC Timing

5.5.9 XTAL/OSC Timing

Figure 5-2 shows the XTAL timing diagram.

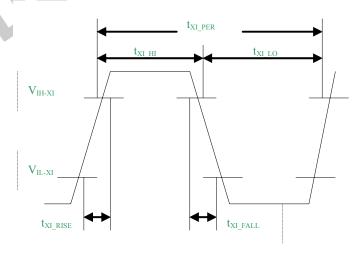


Figure 5-2. XTAL/OSC Timing Diagram

Table 5-5. XTAL/OSC Timing

Symbol	Parameter	Min	Тур	Max	Unit
T_XI_PER	XI/OSCI Clock Period	40.0 - 50ppm	40.0	40.0 + 50ppm	ns
T_XI_HI	XI/OSCI Clock High	14	20.0		ns
T_XI_LO	XI/OSCI Clock Low	14	20.0		ns
T_XI_RISE	$XI/OSCI$ Clock Rise Time, V_{IL} (max) to V_{IH} (min)			4n	s
T_XI_FALL	$XI/OSCI$ Clock Fall time, V_{IL} (max) to V_{IH} (min)			4n	S
V_IH_XI	The XTLI input high level	0.8		1.4	V
V_IL_XI	The xtli input low lever voltage	-0.3		0.15	V

5.5.10 MII Timing

Figure 5-3 shows the MII timing diagram.

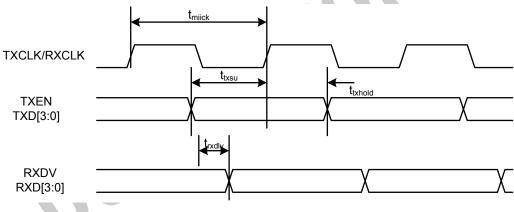


Figure 5-3. 100BASE-TX MII Input Timing Diagram

Table 5-6. MII Timing

Symbol	Parameter	Min	Тур	Max	Unit
tmiick	TXCLK/RXCLK Period		40		ns
ttxsu	TXEN and TXD to TXCLK rising setup	10			ns
ttxhold	TXEN and TXD to TXCLK rising hold	10			ns
ttxdly	RXCLK falling to RXDV, and RXD Output Delay	08			ns

5.5.11 GMII Timing

Figure 5-4 shows the GMII timing diagram.

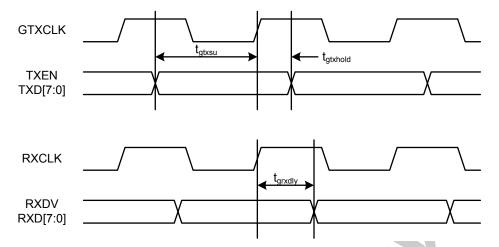


Figure 5-4. 1000Base-TX GMII Timing Diagram

Table 5-7. 1000Base-Tx GMII Timing

Symbol	Parameter	Min	Тур	Max	Unit
tgtxsu	TXEN and TXD to GTXCLK	2.0			ns
tgtxhold	TXEN and TXD GTXCLK rising hold time	0n			S
tgrxdly	RXCLK falling to RXDV, and RXD Output Delay	0.5		5.5	ns

5.5.12 RGMII Timing

Figure 5-5 shows the RGMII timing diagram.

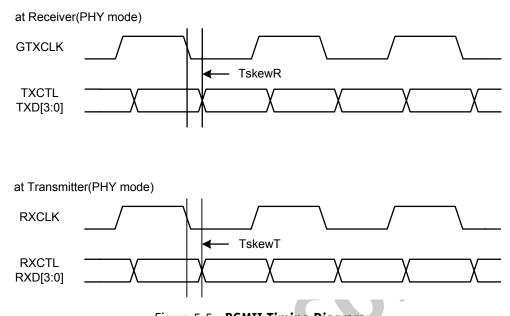


Figure 5-5. RGMII Timing Diagram

Table 5-8. Reduced GMII Timing

Symbol	Parameter	Min	Тур	Max	Unit
TskewT	Data to Clock output skew	-0.5		0.5	ns
TskewR	Data to Clock input skew	1		2.6	ns

5.5.13 SPI Timing

Figure 5-6 shows the SPI timing diagram.

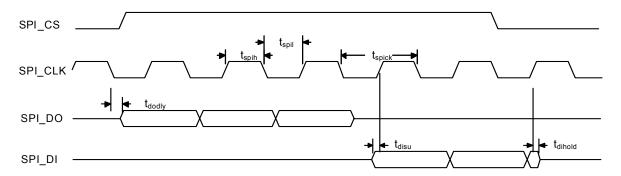


Figure 5-6. **EEPROM Interface Timing Diagram**

Table 5-9. **EEPROM Interface Timing**

Symbol	Parameter	Min	Тур	Max	Unit
tspick	SPI_CLK Period	100			ns
tspil	SPI_CLK Low Period	=		-	ns
tspih	SPI_CLK High Period	=		-	ns
tdisu	SPI_DI to SPI_CLK Rising Setup Time	10			ns
tdihold	SPI_DI to SPI_CLK Rising Hold Time	10			ns
tdodly	SPI_CLK Falling to SPI_DO Output Delay Time			20 ns	

5.5.14 MDIO Timing

Figure 5-7 shows the MDIO timing diagram.

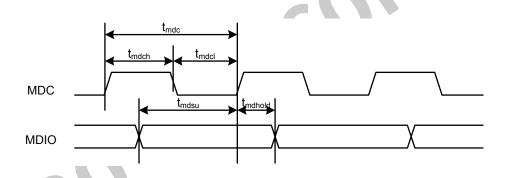


Figure 5-7. MDIO Timing Diagram

Table 5-10. MDIO Timing

Symbol	Parameter	Min	Тур	Max	Unit
tmdc	MDC Period	100			ns
tmdcl	MDC Low Period	40			ns
tmdch	MDC High Period	40			ns
tmdsu	MDIO to MDC rising setup time			10	ns
tmdhold	MDIO to MDC rising hold time	10			ns

5.6 Typical Power Consumption Parameters

The following conditions apply to the typical characteristics unless otherwise specified:

DVDD/AVDD = 1.2 V $DVDD_IO/AVDD2P5 = 2.5 V$, Tamb = 25 °C

Table 5-11 shows the typical power drain on each of the on-chip power supply domains as a function of the AR8229/AR8228's operating mode.

Table 5-11. Total System Power

2.5 V Supply (mA)	1.2 V Supply (mA)	2.0 V Supply (mA)	Total (mW)	Condition
15	39	0	84.3	No Link
25	143	216	666.1	All ports linked at 100 Mbps and activity present
17	43	0	94.1	All ports linked at 100 Mbps and no activity
27	48	304	733.1	All ports linked at 10 Mbps and activity present

6. Package Dimensions

The AR8229/AR8228 is packaged in a 128-pin LQFP-EP package. The body size is 14 mm by 14 mm. The package drawings and dimensions are provided in Figure 6-1 and Table 6-1.

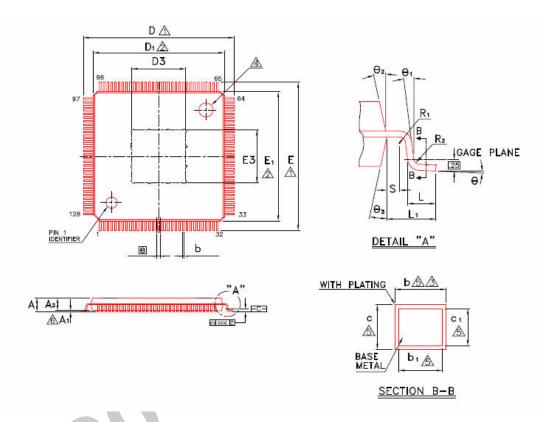


Figure 6-1. 128 pin LQFP-EP (Exposed Pad) Package Drawing

NOTE: EXPOSED PAD SIZE D3/E3 = 5.72 REF (mm)

Atheros Communications, Inc.

Table 6-1. Package Dimensions

Dimension Label	Min	Nom	Max	Unit
A	_	_	1.60	mm
A1	0.05	_	_	mm
A2	1.35	1.40	1.45	mm
b	0.13	0.18	0.23	mm
b1	0.13	0.16	0.19	mm
С	0.09—0		.20	mm
c1	0.09—0		.16	mm
D	15.85	16.00	16.15	mm
D1	13.90	14.00	14.10	mm
Е		22.00 BSC		mm
Е	15.85	16.00	16.15	mm
E1	13.90	14.00	14.10	mm
e		0.40 BSC	11	mm
L	0.45	0.60	0.75	mm
L1		176	REF	
R1	0.08	_	_	
R2	0.08—0		.20	mm
S0	.20	_		mm
θ	0°	3.5°	7°	deg
θ1	0°			deg
θ2		12° TYP		deg
θ3		12° TYP		deg
ccc		0.08		mm

Notes:

- 1. TO BE DETERMINED AT SEATING PLANE -C-
- 2. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH
- 3. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRU-SION. dAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.
- 4. EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- 5. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 mm AND 0.25 mm FROM THE LEAD TIP.

- a1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 7. CONTROLLING DIMENSION: MILLIMETER
- 8. REFERENCE DOCUMENT: JEDEC MS-026
- 9. SPECIAL CARACTERISTICS C CLASS: ccc
- 10. EXPOSED PAD SIZE D3/E3 = 5.72 REF (mm) 0.225 REF (inches)

7. Ordering Information

The order number AR8228–AH1E specifies a lead-free version of the AR8228.

The order number AR8229–AH1E specifies a lead-free version of the AR8229.

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Atheros assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any updates. Atheros reserves the right to make changes, at any time, to improve reliability, function or design and to attempt to supply the best product possible.

Document Number: 981-00077-001 MKG-0675 Rev. 1

Atheros Communications, Incorporated

5480 Great America Parkway Santa Clara, CA 95054 t: 408/773-5200 f: 408/773-9940 www.atheros.com

