

300mA ULTRA LOW DROPOUT REGULATORS

FEATURES

- 5-PIN SOT-23 Package
- Stable with 2.2µF Ceramic Capacitor
- 2% Voltage Reference Accuracy
- Only 270mV Dropout at 300mA and 170mV Dropout at 150mA
- 5μA Quiescent Current in Shutdown
- Current Limit and Thermal Shutdown
- Logic Input Enable Pin

RoHS Compliant

APPLICATIONS

- Laptop, Notebook & Palmtop computers
- Battery Powered Equipments
- PCMCIA Vcc & Vpp Regulator
- Consumer Electronics
- High Efficiency Linear Power Supplies

TYPICAL APPLICATION

DESCRIPTION

The APU8831 device is an efficient linear voltage regulator with better than 2% initial voltage accuracy, very low dropout voltage and very low ground current designed especially for hand held, battery powered applications. Other features of the device are: TTL compatible enable/ shutdown control input, current limiting and thermal shutdown.

The APU8831 is available in fixed and adjustable output voltage versions in a small SOT-23 5-Pin package.

Figure 1 - Typical application of the APU8831 ajustable voltage regulator.

PACKAGE ORDER INFORMATION

Тյ (°С)	5-PIN SOT-23	OUTPUT VOLTAGE		
0 To 125	APU8831Y5	Adj		

ABSOLUTE MAXIMUM RATINGS

Input Voltage (V _{IN})	10V
Enable Input Voltage	10V
Storage Temperature Range	-65°C To 150°C
Operating Junction Temperature Range	0°C To 150°C

PACKAGE INFORMATION

ELECTRICAL SPECIFICATIONS

Unless otherwise specified, these specifications apply over $C_{IN}=Co=22\mu F$, $Io=100\mu A$, $V_{IN(MIN)}=2.5V$ (Adjustable devices) $V_{IN}=Vo + 1V$ (for fixed voltage devices), $V_{OUT}=V_{FB}$ (for adjustable version only), $C_{BYP}=470pF$ (for fixed voltage devices), VENB=2V and $T_A=25^{\circ}C$. Typical values refer to $T_A=25^{\circ}C$. Low duty cycle pulse testing is used which keeps junction and case temperatures equal to the ambient temperature.

PARAMETER	SYM	TEST CONDITION	MIN	TYP	MAX	UNITS
Reference Voltage	Vo					%
(See Table 1 for typical values)			-2		2	
Line Regulation	ΔVι	Vo + 1V <vin<10v< td=""><td></td><td>0.005</td><td></td><td>%/V</td></vin<10v<>		0.005		%/V
Load Regulation (Note 1)	ΔV_L	1mA <lo<100ma< td=""><td></td><td>0.8</td><td></td><td>%</td></lo<100ma<>		0.8		%
		100mA <io<300ma< td=""><td></td><td>0.1</td><td></td><td></td></io<300ma<>		0.1		
Dropout Voltage (Note 2)	$\Delta V_{I(O)}$	lo=100μA		10	50	mV
		Io=100μA (Note 4)		13	70	
		lo=50mA		85	110	
		Io=50mA (Note 4)		100	140	
		lo=150mA		170	220	
		Io=150mA (Note 4)		204	260	
		Io=300mA		270	350	
		Io=300mA (Note 4)		324	400	
Ground Current (Note 3)	la	V _{EN} =2V, Io=100μA		120	160	μA
		Io=100μA (Note 4)		240		
		lo=50mA		420	600	
		Io=50mA (Note 4)		540		
		lo=150mA		2200	2900	
		Io=150mA (Note 4)		2900		
		Io=300mA		7200	9500	
		Io=300mA (Note 4)		9300		
Ground Current-SD Activated	Q(SD)	V _{EN} =0V to 0.8V or Open		5		μA
Current Limit	lc∟	Vo=0V	320	420		mA
Thermal Regulation	ΔV_{P}	V _{IN} =10V, Io=150mA, 10ms Pulse		0.05		%/W
Adjust Pin Current	ADJ	VIN=2.5V, VO=VADJ		0.1		μA
Enable Pin Input LO Voltage	VEN(L)	Regulator OFF			0.8	V
Enable Pin Input HI Voltage	Ven(H)	Regulator ON	2			V
Enable Pin Input LO Current		$V_{EN(L)}=0V$ to 0.8V		0.01		μA
Enable Pin Input HI Current		VEN(H)=2V to VIN		20		μA

Note 1: Low duty cycle pulse testing with Kelvin connections is required in order to maintain accurate data.

Note 2: Dropout voltage is defined as the minimum differential voltage between V_{IN} and V_{OUT} required to maintain regulation at V_{OUT} . It is measured when the output voltage drops 1% below its nominal value.

Note 3: Ground current is the regulator quiescent current plus the pass transistor current. The total current from the supply is the sum of the load current plus the ground pin current.

	PIN DESCRIPTIONS		
PIN #	PIN SYMBOL	PIN DESCRIPTION	
3	Vin	The input pin of the regulator. Typically a large storage capacitor is connected from this pin to ground to insure that the input voltage does not sag below the minimum drop out voltage during the load transient response. This pin must always be higher than V_{OUT} by at least the amount of the dropout voltage and some margin in order for the device to regulate properly.	
2	Gnd	Ground pin. This pin must be connected to the lowest potential in the system and all other pins must be at higher potential with respect to this pin.	
1	En	Enable pin. A low signal or left open on this pin shuts down the output. This pin must be tied HI or to V_{IN} for normal operation.	
5	Adj	A resistor divider from this pin to the V _{OUT} pin and ground sets the output voltage. To minimize the error due to the error amplifier, select the values of the resistor dividers to be less than $10K\Omega$.	
4	Vout	The output of the regulator. A minimum of 2.2μ F with max ESR of 1Ω capacitor must be connected from this pin to ground to insure stability.	

PIN DESCRIPTION	S
-----------------	---

5-PIN	Output	
SOT-23	Voltage	
APU8831	1.25V	

Table 1- Nominal output voltage vs. part number.

The output voltage of the adjustable device can be set using:

$$Vo = 1.25 \times \left(1 + \frac{R1}{R2}\right)$$

Where:

R1 = Resistor connected from output to the Adj pin R2 = Resistor connected from Adj pin to Gnd

BLOCK DIAGRAM

Package Outline : SOT-23-5L

SYMBOLS	Millimeters			
	MIN	NOM	MAX	
А	1.00	1.10	1.30	
A1	0.00		0.10	
A2	0.70	0.80	0.90	
b	0.35	0.40	0.50	
С	0.10	0.15	0.25	
D	2.70	2.90	3.10	
E	1.50	1.60	1.80	
e		1.90(TYP)		
Н	2.60	2.80	3.00	
L	0.37			
θ1	1°	5°	9°	
e2		0.95(TYP)		

Note 1 : Package Body Sizes Exclude Mold Flash Protrusions or Gate Burrs.

Note 2 : Tolerance ± 0.1000 mm(4mil) Unless Otherwise Spe- cified.

Note 3 : Coplanarity : 0.1000 mm

Note 4 : Dimension L Is Measured in Gage plane.

Part Marking Information & Packing : SOT-23 -5L

