

APT50M38JLL

500V **91A** 0.038 Ω

POWER MOS 7™

Power MOS 7[™] is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7TM by significantly lowering $R_{DS(ON)}$ and Q_a. Power MOS 7TM combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

- Lower Input Capacitance
- Lower Miller Capacitance
- Lower Gate Charge, Qg
- Easier To Drive • Popular SOT-227 Package

Increased Power Dissipation

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

ISOTOP®

OD

S

Symbol	Parameter	APT50M38JLL	UNIT		
V _{DSS}	Drain-Source Voltage	500	Volts		
I _D	Continuous Drain Current @ T _C = 25°C	91	0		
I _{DM}	Pulsed Drain Current ^①	364	- Amps		
V _{GS}	Gate-Source Voltage Continuous	±30	Volts		
V _{GSM}	Gate-Source Voltage Transient	±40			
P _D	Total Power Dissipation @ T _C = 25°C	775	Watts		
	Linear Derating Factor	6.2	W/°C		
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	- °C		
Τ _L	Lead Temperature: 0.063" from Case for 10 Sec.	300	1		
I _{AR}	Avalanche Current $^{\textcircled{1}}$ (Repetitive and Non-Repetitive)	91	Amps		
E _{AR}	Repetitive Avalanche Energy ①	50			
E _{AS}	Single Pulse Avalanche Energy ④	3600	- mJ		

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	ТҮР	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V, I_{D} = 250\mu A$)	500			Volts
I _{D(on)}	On State Drain Current ⁽²⁾ $(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	91			Amps
R _{DS(on)}	Drain-Source On-State Resistance ⁽²⁾ $(V_{GS} = 10V, 0.5 I_{D[Cont.]})$			0.038	Ohms
	Zero Gate Voltage Drain Current ($V_{DS} = V_{DSS}$, $V_{GS} = 0V$)			100	μA
DSS	Zero Gate Voltage Drain Current ($V_{DS} = 0.8 V_{DSS}$, $V_{GS} = 0V$, $T_{C} = 125^{\circ}C$)			500	
I _{GSS}	Gate-Source Leakage Current ($V_{GS} = \pm 30V$, $V_{DS} = 0V$)			±100	nA
V _{GS(th)}	Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_{D} = 5mA$)	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com

USA	405 S.W. Columbia Street	Bend, Oregon 97702-1035	Phone: (541) 382-8028	FAX: (541) 388-0364
EUROPE	Chemin de Magret	F-33700 Merignac - France	Phone: (33) 5 57 92 15 15	FAX: (33) 5 56 47 97 61

DYNAMIC CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	ТҮР	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		12620		
C _{oss}	Output Capacitance	V _{DS} = 25V		2610		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		196		
Q _g	Total Gate Charge ^③	V _{GS} = 10V		316		
Q _{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		83	A	nC
Q _{gd}	Gate-Drain ("Miller") Charge	I _D = I _{D[Cont.]} @ 25°C		144		
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		30		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		18		20
t _{d(off)}	Turn-off Delay Time	$I_{D} = I_{D[Cont.]} @ 25^{\circ}C$ $R_{G} = 0.6\Omega$		60		ns
t _f	Fall Time	$R_{G} = 0.6\Omega$		12		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	ТҮР	MAX	UNIT
۱ _s	Continuous Source Current (Body Diode)			91	Amno
I _{SM}	Pulsed Source Current ① (Body Diode)			364	Amps
V _{SD}	Diode Forward Voltage ⁽²⁾ ($V_{GS} = 0V, I_{S} = -I_{D[Cont.]}$)			1.3	Volts
t _{rr}	Reverse Recovery Time $(I_s = -I_{D[Cont.]}, dI_s/dt = 100A/\mu s)$		880		ns
Q _{rr}	Reverse Recovery Charge $(I_s = -I_{D[Cont.]}, dI_s/dt = 100A/\mu s)$		31.0		μC

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	ТҮР	МАХ	UNIT
$R_{_{ ext{ heta}JC}}$	Junction to Case			0.17	°C/W
$R_{_{ extsf{ heta}JA}}$	Junction to Ambient			40	C/VV

① Repetitive Rating: Pulse width limited by maximum junction temperature.

⁽⁴⁾ Starting T_j = +25°C, L = 0.87mH, R_G = 25
$$\Omega$$
, Peak I_L = 91A

⁽²⁾ Pulse Test: Pulse width < 380 μ S, Duty Cycle < 2%

APT Reserves the right to change, without notice, the specifications and information contained herein.

SOT-227 (ISOTOP®) Package Outline

 APT's devices are covered by one or more of the following U.S.patents:
 4,895,810
 5,045,903
 5,089,434
 5,182,234
 5,019,522
 5,262,336

 5,256,583
 4,748,103
 5,283,202
 5,231,474
 5,434,095
 5,528,058