

1000V, 23A, 0.38 Ω Max, $t_{rr} \le$ 300ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of $C_{\text{rss}}/C_{\text{iss}}$ result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- ZVS phase shifted and other full bridge
- Half bridge
- PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
	Continuous Drain Current @ T _C = 25°C	23	
'D	Continuous Drain Current @ T _C = 100°C	15	Α
I _{DM}	Pulsed Drain Current ^①	140	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy®	2165	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	18	Α

Thermal and Mechanical Characteristics

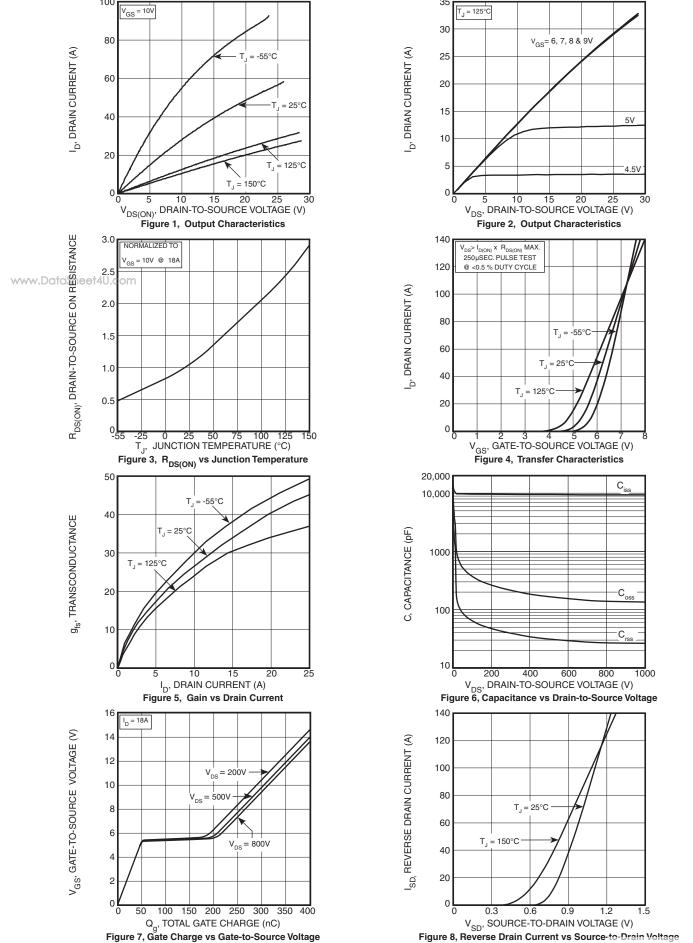
Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			545	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.23 °C/W		
$R_{\theta CS}$	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11		C/VV	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Package Weight		1.03		OZ	
			29.2		g	
Torque	Terminals and Mounting Screws.			10	in∙lbf	
				1.1	N∙m	

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Syllibol	Parameter	rest Conditions	IVIIII	Тур	IVIAX	Offic
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$	1000			V
$\Delta V_{BR(DSS)}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, $I_D = 250\mu A$		1.15		V/°C
R _{DS(on)}	Drain-Source On Resistance®	$V_{GS} = 10V, I_{D} = 18A$		0.32	0.38	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	V V I 0.5mA	2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_D = 2.5 \text{mA}$		-10		mV/°C
	Zero Gate Voltage Drain Current	$V_{DS} = 1000V \qquad T_{J} = 25^{\circ}C$			250	μA
DSS	Zero date voltage Diain Current	$V_{GS} = 0V$ $T_J = 125^{\circ}C$			1000	μΑ.
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

Dynamic Characteristics

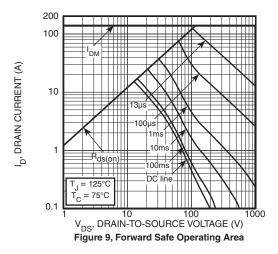
WWW.

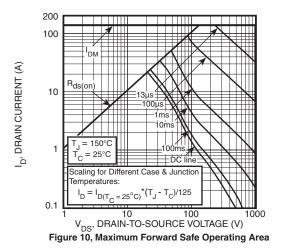
T_{.I} = 25°C unless otherwise specified

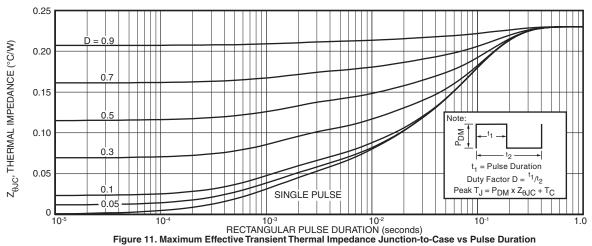

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
g _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 18A		39		S
C _{iss}	Input Capacitance	V 0V V 05V		9835		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		130		
ataS Ass t4U.d	Output Capacitance			825		
C _{o(cr)} ⊕	Effective Output Capacitance, Charge Related	V = 0V V = 0V to 667V		335		pF
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 667V$		170		
Q_g	Total Gate Charge	V 04-40V I 40A		305		
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 18A,$ $V_{DS} = 500V$		55		nC
Q_{gd}	Gate-Drain Charge	V _{DS} = 500V		145		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		44		
t _r	Current Rise Time	V _{DD} = 667V, I _D = 18A		40		ne
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		150		ns
t _f	Current Fall Time			38		

Source-Drain Diode Characteristics

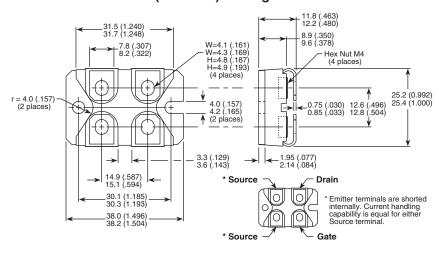
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
I _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the			23	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)	s		140	A
V _{SD}	Diode Forward Voltage	$I_{SD} = 18A, T_{J} = 25^{\circ}C, V_{GS} = 0V$			1.1	V
t _{rr}	Reverse Recovery Time	T _J = 25°C			300	ns
"	Theveloe Heedvery Time	T _J = 125°C			650	
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 18A^{\textcircled{3}}$ $T_{J} = 25^{\circ}C$		1.61		μC
rr	Theverse frecovery Charge	$V_{DD} = 100V \qquad T_{J} = 125^{\circ}C$		4.21		μ
1	Reverse Recovery Current	$di_{SD}/dt = 100A/\mu s$ $T_J = 25^{\circ}C$		11.6		Α
'rrm		T _J = 125°C		15.8		^
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 18A$, di/dt $\le 1000A$ / μ s, $V_{DD} = 667$ $T_{J} = 125$ °C	V,		25	V/ns


- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25$ °C, L = 13.36mH, $R_G = 25\Omega$, $I_{AS} = 18$ A.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}.
 C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than V_{(BR)DSS}, use this equation: C_{o(er)} = -2.85E-7/V_{DS}^2 + 5.04E-8/V_{DS} + 9.75E-11.
- (6) R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)


Microsemi reserves the right to change, without notice, the specifications and information contained herein.


E (V) 57 o-Drain Voltage 57 www.DataSheet4U.con

Rev C



www.DataSheet4U.com

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)