

APT20M10JLL

200V 185A 0.010Ω

POWER MOS 7™

Power MOS 7[™] is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7™ by significantly lowering R_{DS(ON)} and Q_a. Power MOS 7TM combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

- Lower Input Capacitance
- Increased Power Dissipation Lower Miller Capacitance Easier To Drive
- Lower Gate Charge, Qg
- **MAXIMUM RATINGS**

• Popular SOT-227 Package

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT20M10JLL	UNIT		
V _{DSS}	Drain-Source Voltage	200	Volts		
Ι _D	Continuous Drain Current @ T _C = 25°C	180			
I _{DM}	Pulsed Drain Current ^①	720	- Amps		
V _{GS}	Gate-Source Voltage Continuous	±30			
V _{GSM}	Gate-Source Voltage Transient	±40	Volts		
P _D	Total Power Dissipation @ T _C = 25°C	690	Watts		
	Linear Derating Factor	5.52	W/°C		
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C		
Τ _L	Lead Temperature: 0.063" from Case for 10 Sec.	300			
I _{AR}	Avalanche Current $^{\textcircled{1}}$ (Repetitive and Non-Repetitive)	180	Amps		
E _{AR}	Repetitive Avalanche Energy ①	30			
E _{AS}	Single Pulse Avalanche Energy ④	3600	mJ		

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	МАХ	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V, I_{D} = 250\mu A$)	200			Volts
I _{D(on)}	On State Drain Current ⁽²⁾ $(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	180			Amps
R _{DS(on)}	Drain-Source On-State Resistance ⁽²⁾ $(V_{GS} = 10V, 0.5 I_{D[Cont.]})$			0.010	Ohms
I _{DSS}	Zero Gate Voltage Drain Current ($V_{DS} = V_{DSS}$, $V_{GS} = 0V$)			100	μA
	Zero Gate Voltage Drain Current ($V_{DS} = 0.8 V_{DSS}$, $V_{GS} = 0V$, $T_{C} = 125^{\circ}C$)			500	
I _{GSS}	Gate-Source Leakage Current ($V_{GS} = \pm 30V$, $V_{DS} = 0V$)			±100	nA
V _{GS(th)}	Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_{D} = 5mA$)	3		5	Volts

🟹 🙏 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com

USA 405 S.W. Columbia Street Bend, Oregon 97702-1035 Phone: (541) 382-8028 FAX: (541) 388-0364 EUROPE Chemin de Magret F-33700 Merignac - France Phone: (33) 5 57 92 15 15 FAX: (33) 5 56 47 97 61

DYNAMIC CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	ТҮР	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		12780		
C _{oss}	Output Capacitance	$V_{DS} = 25V$		4330		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		327		
Q _g	Total Gate Charge ^③	V _{GS} = 10V		316		
Q _{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		96		nC
Q _{gd}	Gate-Drain ("Miller") Charge	$I_D = I_{D[Cont.]} @ 25^{\circ}C$		174		
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		15		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		35		ns
t _{d(off)}	Turn-off Delay Time	$I_D = I_{D[Cont.]} @ 25°C$ $R_G = 0.6\Omega$		41		115
t _f	Fall Time	$R_{G} = 0.6\Omega$		12		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	ТҮР	МАХ	UNIT
۱ _s	Continuous Source Current (Body Diode)			180	A
I _{SM}	Pulsed Source Current ① (Body Diode)			720	Amps
V _{SD}	Diode Forward Voltage ⁽²⁾ $(V_{GS} = 0V, I_{S} = -I_{D[Cont.]})$			1.3	Volts
t _{rr}	Reverse Recovery Time $(I_s = -I_{D[Cont.]}, dI_s/dt = 100A/\mu s)$		460		ns
Q _{rr}	Reverse Recovery Charge $(I_s = -I_{D[Cont.]}, dI_s/dt = 100 A/\mu s)$		7.0		μC
dv/ _{dt}	Peak Diode Recovery ^{dv} / _{dt} ⑤			5	V/ns

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	ТҮР	МАХ	UNIT
$R_{_{ ext{ heta}JC}}$	Junction to Case			0.18	• °C/W
$R_{_{ hetaJ}A}$	Junction to Ambient			40	

① Repetitive Rating: Pulse width limited by maximum junction temperature.

② Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%</p>

③ See MIL-STD-750 Method 3471

(4) Starting $T_j = +25^{\circ}C$, L = 0.22mH, $R_G = 25\Omega$, Peak I_L = 180A

(5) $dv/_{dt}$ numbers reflect the limitations of the test circuit rather than the device itself. $I_{S} \leq -I_{D[Cont.]} \frac{di}{dt} \leq 700 \text{A}/\mu \text{s}$ $v_{R} \leq v_{DSS}$ $T_{J} \leq 150^{\circ}\text{C}$

APT Reserves the right to change, without notice, the specifications and information contained herein.

SOT-227 (ISOTOP[®]) Package Outline

 APT's devices are covered by one or more of the following U.S.patents:
 4,895,810
 5,045,903
 5,089,434
 5,182,234
 5,019,522
 5,262,336

 5,256,583
 4,748,103
 5,283,202
 5,231,474
 5,434,095
 5,528,058