

AONV070V65G1

650V Enhancement Mode GaN Transistor

650V

45A

70mΩ

6.9nC

6µJ

Features

- 650V Enhancement Mode GaN Transistor
- Normal-off Design
- Ultra-low Qg
- No Qrr
- Low Inductance

Applications

- Server Power Supplies
- High-Frequency Converters
- Resonant Topologies

Pin Configuration and Pin Names

DFN 8x8		Pin Names		D		
8	5	Gate	8	0 1, 2, 3, 4		
5		Drain	1, 2, 3, 4			
		Kelvin Source	7			
	4	Source	5, 6	SK 0		
4	1	Thermal Pad	TP	7 0 5, 6		
Top View	Bottom View	(Connected to Source)		S		

Product Summary

V_{DS} @ T_J, max

 I_{DM}

R_{DS(ON)}

Q_{g,} typ

E_{oss} @ 400V

Absolute Maximum Ratings

Exceeding the Absolute Maximum Ratings may damage the device. $T_A = 25^{\circ}C$, unless otherwise stated.

Symbol	Parameter	Maximum	Units	
V _{DS}	Drain-Source Voltage		650 (DC) 720 (AC)	V
V _{GS}	Gate-Source Voltage		+6 / -4 (DC) +10 / -10 (AC)	V
Ι _D	Continuous Drain Current	T _A = 25°C T _A = 100°C	16 ⁽¹⁾ 12 ⁽¹⁾	А
PD	Power Dissipation ⁽²⁾	Derate above 25°C	125	W
T _J , T _{STG}	Junction and Storage Temperature Range		-55 to 150	°C
TL	Maximum Lead and Temperature for Soldering		260	°C

Thermal Characteristics

Symbol	Parameter	Maximum	Units
$R_{JC\theta}$	Maximum Junction-to-Case	1	°C/W
$R_{JA\theta}$	Maximum Junction-to-Ambient ⁽³⁾	65	°C/W

Electrical Characteristics

 $T_A = 25 \text{ °C}, V_{IN} = V$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC			1	1		
		DC static V _{DS} (max)			650	v
VDS(max)	Drain-Source voltage	AC transient _{VDS} (max)			720	
	Zero Gate Voltage Drain Current	V _{DS} =650V, V _{GS} =0V		0.5		
DSS		T _J =150°C		5		μΑ
I _{GSS}	Gate-Source Leakage Current	V _{DS} =0V, V _{GS} =6V		100		μA
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =5V, I _D =5mA	1.1	1.8	2.3	V
D	Static Drain Source On Posistance	V _{GS} =6V, I _D =6A		70	90	m0
''DS(ON)	Static Drain-Source On-resistance	T _J = 150°C		165		11152
V _{SD}	Diode Forward Voltage	I _S =10A,V _{GS} =0V		2.3		V
DYNAMIC						
C _{iss}	Input Capacitance			203		pF
C _{oss}	Output Capacitance	V _{GS} -0V, V _{DS} -400V, 1-110112		58		pF
C _{o(er)}	Effective Output Capacitance, Energy Related ⁽⁴⁾	(0)()(0) = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =		74		pF
C _{o(tr)}	Effective Output Capacitance, Time Related ⁽⁵⁾	V _{GS} =0V, V _{DS} =0 to 400V, 1=1MHz		105		pF
C _{rss}	Reverse Transfer Capacitance	V _{GS} =0V, V _{DS} =400V, f=1MHz		1.5		pF
Rg	Gate Resistance	f=1MHz		10		Ω
SWITCHIN	G					
Qg	Total Gate Charge			6.9		nC
Q _{gs}	Gate Source Charge	V _{GS} =6V, V _{DS} =400V, I _D =6A		2		nC
Q _{gd}	Gate Drain Charge			1.4		nC
t _{D(on)}	Turn-On DelayTime			2.4		ns
t _r	Turn-On Rise Time	V _{GS} =-3V/+6V, V _{DS} =400V, I _D =6A,		5.4		ns
t _{D(off)}	Turn-Off DelayTime	$R_{G,ON}$ =4.7 Ω , $R_{G,OFF}$ =1 Ω		6.2		ns
t _f	Turn-Off Fall Time]		14.2		ns
Q _{rr}	Body Diode Reverse Recovery Charge	IF=6A, dl/dt=100A/ms, V _{DS} =400V		0		nC
Q _{oss}	Output Charge	IF=6A, dl/dt=100A/ms, V _{DS} =400V		42		nC

Notes:

1. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C, Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.

 The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

3. The value of R $_{0JA}$ is measured with the device in a still air environment with T $_A$ =25°C.

4. C_{o(er)} is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{(BR)DSS}.

5. $C_{o(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% $V_{(BR)DSS}$

 These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150°C.

7. The static characteristics in Figures 1 to 7 are obtained using <300ms pulses, duty cycle 0.5% max.

45

Typical Characteristics

 T_A = 25 °C, V_{IN} = V, unless otherwise specified

Figure 3. On-Resistance vs. Drain Current and Gate Voltage

Figure 2. High Temperature On-Region

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Typical Characteristics

 T_A = 25 °C, V_{IN} = V, unless otherwise specified

4 0 0 25 50 75 100 125 150 T_{CASE} (° C)

Figure 11. Current De-rating (Note 6)

Typical Characteristics

 T_A = 25 °C, V_{IN} = V, unless otherwise specified

Figure 12. Normalized Maximum Transient Thermal Impedance for TO-220F Pb Free (Note 6)

Test Circuits and Waveforms

Gate Charge Test Circuit & Waveforms

Package Dimensions, DFN8x8-8L

RECOMMENDED LAND PATTERN

	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
SYMBOLS	MIN	NOM	MAX	MIN	MON	MAX	
Α	0.800		1.100	0.031		0.043	
A1	0.000		0.050	0.000		0.002	
A2	0.150	0.250	0.350	0.006	0.010	0.014	
b	0.900	1.000	1.100	0.035	0.039	0.043	
D	7.900	8.000	8.100	0.311	0.315	0.319	
D1	6.840	6.940	7.040	0.269	0.273	0.277	
D2	0.400	0.500	0.600	0.016	0.020	0.024	
E	7.900	8.000	8.100	0.311	0.315	0.319	
E1	0.900	1.000	1.100	0.035	0.039	0.043	
E2	3.100	3.200	3.300	0.122	0.126	0.130	
E3	2.700	2.800	2.900	0.106	0.110	0.114	
e	2.00 B.S.C.			0.079 B.S.C.			
L	0.400	0.500	0.600	0.016	0.020	0.024	

UNIT: mm

NOTE CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

Tape and Reel, DFN8x8-8L

Reel

UNIT: MM

TAPE SIZE	REEL SIZE	м	N	W	Н	к	S
16 mm	¢330	Ø330.00 MAX.	¢100.00 MIN.	16.4 +2.0 -0.0	¢13.0 +0.5 -0.2	10.1 MIN.	1.5 MIN.

Tape

Leader / Trailer & Orientation

Part Marking

PART NO.	DESCRIPTION	CODE	
AONV070V65G1	Green product	070V65G1	

LEGAL DISCLAIMER

Alpha and Omega Semiconductor makes no representations or warranties with respect to the accuracy or completeness of the information provided herein and takes no liabilities for the consequences of use of such information or any product described herein. Alpha and Omega Semiconductor reserves the right to make changes to such information at any time without further notice. This document does not constitute the grant of any intellectual property rights or representation of non-infringement of any third party's intellectual property rights.

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.