CA3020, CA3020A

8MHz Power Amps For Military, Industrial and Commercial Equipment

April 1997

Features

- Wide Frequency Range . . Up to 8MHz with Resistive Loads
- Single Power Supply For Class B Operation With Transformer
- Built-In Temperature-Tracking Voltage Regulator Provides Stable Operation Over -55°C to 125°C Temperature Range

Applications

- AF Power Amplifiers For Portable and Fixed Sound and Communications Systems
- Servo-Control Amplifiers
- Wide-Band Linear Mixers
- Video Power Amplifiers
- Transmission-Line Driver Amplifiers (Balanced and Unbalanced)
- Fan-In and Fan-Out Amplifiers For Computer Logic Circuits
- Lamp-Control Amplifiers
- Motor-Control Amplifiers
- Power Multivibrators
- Power Switches

Description

The CA3020 and CA3020A are integrated-circuit, multistage, multipurpose, wide-band power amplifiers on a single monolithic silicon chip. They employ a highly versatile and stable direct coupled circuit configuration featuring wide frequency range, high voltage and power gain, and high power output. These features plus inherent stability over a wide temperature range make the CA3020 and CA3020A extremely useful for a wide variety of applications in military, industrial, and commercial equipment.

The CA3020 and CA3020A are particularly suited for service as class B power amplifiers. The CA3020A can provide a maximum power output of 1W from a $12V_{DC}$ supply with a typical power gain of 75dB. The CA3020 provides 0.5W power output from a 9V supply with the same power gain.

Refer to AN5766 for application information.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
CA3020	-55 to 125	12 Pin Metal Can	T12.B
CA3020A	-55 to 125	12 Pin Metal Can	T12.B

Pinout

CA3020

Schematic Diagram

The resistance values included on the schematic diagram have been supplied as a convenience to assist Equipment Manufacturers in optimizing the selection of "outboard" components of equipment designs. The values shown may vary as much as 30%.

Intersil reserves the right to make any changes in the Resistance Values provided such changes do not adversely affect the published performance characteristics of the device.

CA3020, CA3020A

Absolute Maximum Ratings

Operating Conditions

Temperature Range -55°C to 125°C

Thermal Information

Thermal Resistance (Typical, Note 2)	θ _{JA} (°C/W	') θ _{JC} (ºC/W)
Metal Can Package	165	80
Maximum Junction Temperature (Metal Can	Package).	175 ⁰ C
Maximum Storage Temperature Range		65°C to 150°C
Maximum Lead Temperature (Soldering 10	0s)	300 ⁰ C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. The voltage ratings for Pin 9, Pin 4 and Pin 7 are referenced to the V- (Pin 12). A normal bias configuration for Pin 8 and Pin 11 is shown in Figure 1B. Refer to Application Note AN5766 for other options.
- 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $T_A = 25^{\circ}C$

		TEST CON	IDITION	NS S							
		CIRCUIT AND PROCEDURE	DC SU VOLT	IPPLY TAGE		CA3020)	(CA3020	4	
PARAMETER	SYMBOL	FIGURE	V _{CC1}	V _{CC2}	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Collector-to-Emitter Breakdown Voltage, Q ₆ and Q ₇ at 10mA	V _(BR) CER	1A	-	-	18	-	-	25	-	-	V
Collector-to-Emitter Breakdown Voltage, Q ₁ at 0.1mA	V _{(BR)CEO}	-	1	1	10	-	1	10	-	-	V
Idle Currents, Q ₆ and Q ₇	I ₄ IDLE I ₇ IDLE	7	9.0	2.0	-	5.5	-	-	5.5	=	mA
Peak Output Currents, Q ₆ and Q ₇	I ₄ PK I ₇ PK	7	9.0	2.0	140	-	-	180	-	-	mA
Cutoff Currents, Q ₆ and Q ₇	I ₄ CUTOFF I ₇ CUTOFF	7	9.0	2.0	-	-	1.0	-	-	1.0	mA
Differential Amplifier Current Drain	I _{CC1}	7	9.0	9.0	6.3	9.4	12.5	6.3	9.4	12.5	mA
Total Current Drain	I _{CC1} + I _{CC2}	7	9.0	9.0	8.0	21.5	35.0	14.0	21.5	30.0	mA
Differential Amplifier Input Terminal Voltages	V ₂ V ₃	7	9.0	2.0	-	1.11	-	-	1.11	-	V
Regulator Terminal Voltage	V ₁₁	7	9.0	2.0	-	2.35	-	-	2.35	-	V
Q ₁ Cutoff (Leakage) Currents: Collector-to-Emitter	I _{CEO}		10.0	-	-	-	100	-	-	100	μΑ
Emitter-to-Base	I _{EBO}	i -	3.0	-	-	-	0.1	-	-	0.1	μΑ
Collector-to-Base	I _{CBO}		3.0	-	-	-	0.1	-	-	0.1	μΑ
Forward Current Transfer Ratio, Q ₁ at 3mA	h _{FE1}	-	6.0	-	30	75	-	30	75	-	
Bandwidth at -3dB Point	BW	8	6.0	6.0	-	8	-	-	8	-	MHz
Maximum Power Output for	P _{O(MAX)}	9	6.0	6.0	200	300	-	200	300	-	mW
$R_{CC} = 130\Omega$		9	9.0	9.0	400	550	-	400	550	-	mW
Maximum Power Output for $R_{CC} = 200\Omega$		9	9.0	12.0	-	-	-	800	1000	-	mW
Sensitivity for $P_{OUT} = 400$ mW, $R_{CC} = 130\Omega$	e _{IN}	9	9.0	9.0	-	35	55	-	-	-	mV
Sensitivity for $P_{OUT} = 800 \text{mW}$, $R_{CC} = 200 \Omega$	e _{IN}	9	9.0	12.0	-	-	1	-	50	100	mV
Input Resistance - Terminal 3 to Ground	R _{IN3}	10	6.0	6.0	-	1000	-	-	1000	-	Ω

Typical Performance Data (Note 3) A heat sink is recommended for high ambient temperature operation.

PARAN	METER	SYMBOL	CA3020	CA3020A	UNITS
Power Supply Voltage		V _{CC1}	9.0	9.0	V
		V _{CC2}	9.0	12.0	V
Zero Signal Current	Differential Amplifier	I _{CC1}	15	15	mA
	Output Amplifier	I _{CC2}	24	24	mA
Maximum Signal Current	Differential Amplifier	I _{CC1}	16	16.6	mA
	Output Amplifier	I _{CC2}	125	140	mA
Maximum Power Output at THD = 10%		PO	550	1000	mW
Sensitivity		e _{IN}	35	45	mV
Power Gain		G _P	75	75	dB
Input Resistance		R _{IN}	55	55	kΩ
Efficiency		η	45	55	%
Signal-to-Noise Ratio		S/N	70	66	dB
THD at 150mW Level			3.1	3.3	%
Test Signal Frequency from 600Ω Generator			1000	1000	Hz
Equivalent Collector-to-Collector L	oad Resistance	R _{CC}	130	200	Ω

NOTE:

Test Circuits and Waveforms

FIGURE 1A. COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (Q $_6$ AND Q $_7$) CIRCUIT

FIGURE 1B. TYPICAL AUDIO AMPLIFIER CIRCUIT UTILIZING
THE CA3020 OR CA3020A AS AN AUDIO
PREAMPLIFIER AND CLASS B POWER AMPLIFIER

FIGURE 1.

^{3.} Refer to Figures 7 through 11 for measurement and symbol information.

Test Circuits and Waveforms (Continued)

FIGURE 2A. TEST SETUP

FIGURE 2B. CHARACTERISTICS WITH R₁₀ SHORTED OUT

FIGURE 2. TYPICAL TRANSFER CHARACTERISTICS

FIGURE 3A. TEST SETUP

FIGURE 3B. CHARACTERISTIC WITH R₁₀ IN CIRCUIT

FIGURE 3. TYPICAL TRANSFER CHARACTERISTICS

FIGURE 4A. TEST SETUP

FIGURE 4B. CHARACTERISTIC

FIGURE 4. "MINIMUM DRIVE" TYPICAL CURRENT-VOLTAGE SATURATION CURVE

Test Circuits and Waveforms (Continued)

FIGURE 5A. TEST SETUP

FIGURE 5B. DIFFERENTIAL AMPLIFIER CHARACTERISTICS
OF I_{CC1} CURRENT vs V_{CC1} VOLTAGE

FIGURE 5C. OUTPUT AMPLIFIER CHARACTERISTICS OF I_{CC2} CURRENT vs V_{CC1} VOLTAGE FIGURE 5. ZERO SIGNAL AMPLIFIER CURRENT vs DIFFERENTIAL AMPLIFIER SUPPLY VOLTAGE

FIGURE 6A. TEST SETUP

FIGURE 6B. DIFFERENTIAL AMPLIFIER CHARACTERISTICS OF I_{CC1} CURRENT vs ambient temperature

FIGURE 6. ZERO SIGNAL AMPLIFIER CURRENT VS AMBIENT TEMPERATURE

Test Circuits and Waveforms (Continued)

FIGURE 6C. OUTPUT AMPLIFIER CHARACTERISTICS OF I_{CC2} CURRENT vs AMBIENT TEMPERATURE FIGURE 6. ZERO SIGNAL AMPLIFIER CURRENT vs AMBIENT TEMPERATURE

CURRENTS OR VOLTAGES	S ₁	S ₂
I ₄ -IDLE	OPEN	OPEN
I ₇ -IDLE	OPEN	OPEN
I ₄ -PEAK	OPEN	CLOSE
I ₇ -PEAK	CLOSE	OPEN
I ₄ -CUTOFF	CLOSE	OPEN
I ₇ -CUTOFF	OPEN	CLOSE

CURRENTS OR VOLTAGES	S ₁	S ₂
I _{CC1}	OPEN	OPEN
I _{CC2}	OPEN	OPEN
V ₂	OPEN	OPEN
V ₃	OPEN	OPEN
V ₁₁	OPEN	OPEN

FIGURE 7. STATIC CURRENT AND VOLTAGE TEST CIRCUIT

PROCEDURES:

- 1. Apply desired value of V_{CC1} and V_{CC2}.
- 2. Apply 1kHz input signal and adjust for $e_{IN} = 5mV_{RMS}$.
- 3. Record the resulting value of eOUT in dB (reference
- 4. Vary input-signal frequency, keeping e_{IN} constant at 5mV, and record frequencies above and below 1kHz at which eOUT decreases 3dB below reference value.
- 5. Record bandwidth as frequency range between -3dB points.

FIGURE 8. MEASUREMENT OF BANDWIDTH AT -3dB POINTS

NOTE: Push-pull output transformer; load resistance (R_I) should be selected to provide indicated collector-to-collector load impedance (R_{CC}).

PROCEDURES:

- 1. Apply desired value of V_{CC1} and V_{CC2} and reduce e_{IN} to
- 2. Record resulting values of I_{CC1} and I_{CC2} in mA as Zero-Signal DC Current Drain.
- 3. Apply desired value of $\rm V_{CC1}$ and $\rm V_{CC2}$ and adjust $\rm e_{IN}$ to the value at which the Total Harmonic Distortion in the output of the amplifier = 10%.
- 4. Record resulting value of I_{CC1} and I_{CC2} in mA as Maximum Signal DC Current Drain.
- 5. Determine resulting amplifier power output in watts and record as Maximum Power Output (POLIT).
- 6. Calculate Circuit Efficiency (η) in % as follows:

$$\eta = 100 \frac{P_{OUT}}{V_{CC1}^{I} CC1} + V_{CC2}^{I} CC2}.$$

where \mbox{P}_{OUT} is in watts, \mbox{V}_{CC1} and \mbox{V}_{CC2} are in volts, and I_{CC1} and I_{CC2} are in amperes.

- 7. Record value of e_{IN} in mV_{RMS} required in Step 3 as Sensitivity (e_{IN}).
- 8. Calculate Transducer Power Gain (Gp) in dB as follows: $G_p = 10log_{10} \frac{P_{OUT}}{P_{IN}}$

$$G_p = 10log_{10} \frac{P_{OUT}}{P_{IN}}$$

where
$$P_{IN}(\text{in mW}) = \frac{e_{IN}2}{3000 + R_{IN(10)(Note 4)}}$$

NOTE:

4. See Figure 10 for definition of R_{IN(10)}.

FIGURE 9. MEASUREMENTS OF ZERO-SIGNAL DC CURRENT DRAIN, MAXIMUM-SIGNAL DC CURRENT DRAIN, MAXIMUM POWER OUTPUT, CIRCUIT EFFICIENCY, SENSITIVITY, AND TRANSDUCER POWER GAIN

PROCEDURES:

Input Resistance Terminal 10 to Ground (R_{IN10}).

- 1. Apply desired value of V_{CC1} and V_{CC2} and set S in Position 1.
- 2. Adjust 1kHz input for desired signal level of measurement
- 3. Adjust R for $e_2 = e_1/2$.
- 4. Record resulting value of R as R_{IN10}.

Input Resistance Terminal 3 to Ground (R_{IN3}).

- 1. Apply desired value of V_{CC1} and V_{CC2} and set S in Position 2.
- 2. Adjust 1kHz input for desired signal level of measurement
- 3. Adjust R for $e_2 = e_1/2$.
- 4. Record resulting value of R as R_{IN3}.

FIGURE 10. MEASUREMENT OF INPUT RESISTANCE

NOTE: Push-pull output transformer; load resistance (R_L) should be selected to provide indicated collector-to-collector load impedance (R_{CC}).

PROCEDURES:

Signal-to-Noise Ratio

- 1. Close S_1 and S_3 ; open S_2 .
- 2. Apply desired values of V_{CC1} and V_{CC2} .
- 3. Adjust e_{IN} for an amplifier output of 150mW and record resulting value of E_{OUT} in dB as e_{OUT1} (reference value).
- 4. Open S_1 and record resulting value of e_{OUT} in dB as e_{OUT2}
- 5. Signal-to-Noise Ratio $(S/N) = 20log_{10} \frac{e_{OUT1}}{e_{OUT2}}$

Total Harmonic Distortion

- 1. Close S_1 and S_2 ; open S_3 .
- 2. Apply desired values of V_{CC1} and V_{CC2} .
- 3. Adjust $e_{\mbox{\scriptsize IN}}$ for desired level amplifier output power.
- 4. Record Total Harmonic Distortion (THD) in %.

FIGURE 11. MEASUREMENT OF SIGNAL-TO-NOISE RATIO AND TOTAL HARMONIC DISTORTION

CA3020, CA3020A

Intersil products are sold by description only. notice. Accordingly, the reader is cautioned to and reliable. However, no responsibility is assi	Intersil Corporation reserves the right to overify that data sheets are current before umed by Intersil or its subsidiaries for its us	and tested under ISO9000 quality systems commake changes in circuit design and/or specifications at a colacing orders. Information furnished by Intersil is believed a; nor for any infringements of patents or other rights of thin	ny time without to be accurate
may result from its use. No license is granted in For information	by implication or otherwise under any pate n regarding Intersil Corporation and its produ	<u> </u>	
Sales Office Headquarte			
NORTH AMERICA ntersil Corporation	EUROPE Intersil SA	ASIA Intersil (Taiwan) Ltd.	
P. O. Box 883, Mail Stop 53-204	Mercure Center	Taiwan Limited	

3-9

100, Rue de la Fusee

TEL: (32) 2.724.2111

FAX: (32) 2.724.22.05

1130 Brussels, Belgium

Melbourne, FL 32902

TEL: (321) 724-7000

FAX: (321) 724-7240

7F-6, No. 101 Fu Hsing North Road

Taipei, Taiwan

Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029