AN5637

SECAM decoder IC

Overview

The AN5637 is a chroma signal processing circuit for use in SECAM system. It outputs the color difference signal.

Features

- Built-in bell filter, deemphasis circuit
- One point adjustment
- Small number of external components
- Applications
- SECAM system TV

Note) The package of this product will be changed to lead-free type (DIP016-P-0300M). See the new package dimensions section later of this datasheet.

Block Diagram

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Reference frequency signal/	8	PLL filter automatic adjustment sample
	Ident input pin		hold pin
2	Bell filter output monitor pin	9	– (R–Y) output pin
3	Power supply pin	10	– (B–Y) output pin
4	Black level adjustment voltage input pin	11	Killer voltage monitor pin
5	Black level adjustment reference voltage	12	N.C.
	output pin	13	N.C.
6	Grounding pin	14	N.C.
7	Bell filter automatic adjustment sample	15	Sand castle pulse input pin
	hold pin	16	SECAM signal input pin

■ Absolute Maximum Ratings

J			
Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	11.0	V
Supply current	I _{CC}	73	mA
Power dissipation *2	P _D	777	mW
Operating ambient temperature *1	T _{opr}	-20 to +70	°C
Storage temperature *1	T _{stg}	-55 to +150	°C
ote) *1 : T _a = 25 °C except operating an *2 : Power dissipation of the packa			%.
Recommended Operating Ba	ange		

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V _{CC}	7.2 to 9.9	V

Electrical Characteristics at $V_{CC} = 9 V$, $T_a = 25 °C$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Power supply		X				
Supply current	I ₃	Current when $V_{CC} = 9 V$	30	40	50	mA
Pin voltage	V ₅	Voltage when $V_{CC} = 9 V$	2.9	3.2	3.5	V

\blacksquare Electrical Characteristics at V_{CC} = 9 V, T_a = 25 °C (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input(Pin16)	Typical in	nput : (Pin16) Color bar signal, (Pin (Pin1) 4.43362 MHz sine wave			-	period
Input dynamic range	V _{DR16}	V _{DR16} Composite signal input amplitude range		1.0	1.5	v
Chroma signal input amplitude *1	V _{ch.16}	Chroma signal input amplitude range			300	mV[p-p]
Input impedance	Z ₁₆	DC measurement	17	25	33	kΩ
Bell filter	Typical ii	nput : (Pin16) 4.0 MHz to 4.6 MHz s (Pin15) Sand castle pulse, (Pin1) 4.43362 MHz sine wave				period
Bell adjusting voltage	V _{ADB}	Sample hold pin voltage at bell filter automatic adjustement	2.8	3.9	5	V
Center frequency	f _{OB}	Center frequency of bell filter (Signal period)	4.202	4.262	4.322	MHz
Band width	В	Band width of bell filter (Signal period)	250	310	370	kHz
ACC	Typical in	(Pin16) Color bar signal (Com (Pin15) Sand castle pulse, (Pin1) 4.43362 MHz sine wave	-			period
ACC characteristics 1	ACC1	Output change amount when discrimination signal changes from 150 mV[p-p] to 300 mV[p-p]	-6	0	6	%
ACC characteristics 2	ACC2	Output change amount when discrimination signal changes from 150 mV[p-p] to 15 mV[p-p]	-6	0	6	%
Demodulator/Output	Typical ir	nput : (Pin16) Color bar signal (Com (Pin15) Sand castle pulse, (Pin1) 4.43362 MHz sine wave		So i i		period
PLL adjusting voltage	V _{ADV}	Sample hold pin voltage at PLL automatic adjustement	3.1	3.7	4.3	V
R-Y output amplitude	V _{RY}	Color bar (Composite) signal input (1 V[p-p])	0.85	1.00	1.15	V[p-p]
B-Y output amplitude	V _{BY}	Color bar (Composite) signal input (1 V[p-p])	1.07	1.27	1.47	V[p-p]
Detector output linearity	L _O	Color bar (Composite) signal input (1 V[p-p])	-6	0	6	%
R-Y/B-Y output ratio	(R-Y)(B-Y)	Amplitude ratio of V_{RY} and V_{BY}	1.12	1.27	1.42	Times
Black level adjusting voltage *2	V _{AD4}	Pin4 voltage when difference of B–Y black level becomes 0	1.45	2.1	2.75	V
Black level error $(R-Y)^{*2}$	f _{BER}	Value referred to input frequency			10	kHz

Note) *1: Refer to "Explanations of testing method 1"

*2: Refer to "Explanations of testing method 2"

\blacksquare Electrical Characteristics at V_{CC} = 9 V, T_a = 25 °C (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Demodulator/Output (continued)	Typical in	nput : (Pin16) Color bar signal (Com (Pin15) Sand castle pulse, (Pin1) 4.43362 MHz sine wav	-			c period
Blanking period output DC voltage	V _{BLK}	Stable sine wave is necessary in V period (4.4336 MHz)	2.2	2.7	3.2	V
SN ratio ^{*3}	S/N	Amplitude ratio when Deviation = 460 kHz/0 kHz (Pin10 measurement)	30			dB
Residual high frequency amplitude	V _{RH}	Harmonic content with 100 % white signal input (Pin10 measurement)	5	_	10 200	mV[p-p]
Output impedance (when SECAM) Pin9	Z _{OS9}	DC measurement, $Pin1 = 5 V$	260	460	660	Ω
Output impedance (when non SECAM) Pin9	Z _{ON9}	DC measurement, $Pin1 = 1.5 V$	N.C.	_	_	ΜΩ
Output impedance (when SECAM) Pin10	Z _{OS10}	DC measurement, $Pin1 = 5 V$	260	460	660	Ω
Output impedance (when non SECAM) Pin10	Z _{ON10}	DC measurement, $Pin1 = 1.5 V$	1	_	_	MΩ
Sand castle pulse	Typical in	nput : (Pin1) 4.43362 MHz sine wav	e 350 m	V[p-p],	V-BLK	period
Horizontal and vertical BLK level *4	V _{BL}	Measurement of slice level of H, V blanking pulse	0.5	1	1.5	v
Burst gate level *5	V _{BG}	Measurement of slice level of burst gate pulse	3.4	3.9	4.4	V
Reference signal/interface	Typical in	nput : (Pin1) 4.43362 MHz sine way	e 350 m	V[p-p],	V-BLK	period
Reference signal amplitude	V _{ref}	Amplitude range of sine wave (4.43362 MHz) of Pin1 input	0.20	2	0.50	V[p-p]
System SW discrimination level	V _{SS}	Voltage when Pin10 becomes open if Pin1 is 5 V to 1 V variable	2.5	3.0	3.5	V
IDENT		nput : (Pin16) Color bar signal (Chro (Pin1) 4.43362 MHz sine wav				
Color On/Off hysteresis	H _C	Difference between color turn On or Off and Off to On level	0.5	2	6	dB
Killer sensitivity	K	Color turn Off level when disc- rimination signal changes 150 mV[p-p] to 0 mV[p-p]			-32	dB

Note) *3: Refer to "Explanations of testing method 3"

*4: Refer to "Explanations of testing method 4"

*5: Refer to "Explanations of testing method 5"

\blacksquare Electrical Characteristics at V_{CC} = 9 V, T_a = 25 $^\circ C$ (continued)

Design reference data

Note) The characteristic values below are theoretical values for designing and not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reference signal/interface						
Sink current	I _{SS}	Sink current of Pin1 when SECAM signal input	150	175	220	μΑ
Bell filter						·
Center frequency power supply voltage dependency	$\begin{array}{c} \Delta f_{OB} / \\ \Delta V_{CC} \end{array}$	Amount of center frequency fluc- tuation when $V_{CC} = 7.2$ V to 9.9 V	_	0.23		kHz/V
Center frequency ambient temperature dependency	$\Delta f_{OB} / \Delta T$	Amount of center frequency fluc- tuation when $T_a = 30 \text{ °C to } 80 \text{ °C}$	5	0.25	^S .	kHz/°C
Demodulator/Output				. C.		
Output signal bandwidth	B _s	Bandwidth of demodulator output signal (Pin9, 10)		1.3		MHz
Deemphasis pole-frequency	f _{PD}	Automatic adjustment period	<u>~~</u>	85		kHz
Pole zero point frequency ratio	f _{PD} /f _{OD}	Automatic adjustment period		3		Times
R-Y output amplitude power supply voltage dependency	$\Delta V_{RY} / \Delta V_{CC}$	Fluctuation amount of R–Y output amplitude when $V_{CC} = 7.2$ V to 9.9 V		1.5		%
R-Y output amplitude ambient temperature dependency	$\Delta V_{RY}/\Delta T$	Fluctuation amount of R–Y output amplitude when $T_a = -30$ °C to +80 °C	_	0.36	_	mV[p-p] /°C
B-Y output amplitude power supply voltage dependency	$\frac{\Delta V_{BY}}{\Delta V_{CC}}$	Fluctuation amount of B–Y output amplitude when $V_{CC} = 7.2$ V to 9.9 V	<u>60</u>	2.0	10th	%
B-Y output amplitude ambient temperature dependency	$\Delta V_{BY}/\Delta T$	Fluctuation amount of B–Y output amplitude when $T_a = -30$ °C to +80 °C	Po J	0.55	R. o.	mV[p-p] /°C
Black level error (R–Y) power supply voltage dependency	$\Delta f_{BER} / \Delta V_{CC}$	Fluctuation amount of black level error (R–Y) when $V_{CC} = 7.2$ V to 9.9 V	2000 2000 2000	Soll C		kHz/V
Black level error (R–Y) ambient temperature dependency	$\Delta f_{BER} / \Delta T$	Fluctuation amount of black level error (R–Y) when $T_a = -30$ °C to +80 °C	<u>.</u> ?	50		Hz/°C
Black level error (B–Y) power supply voltage dependency	$\Delta f_{BEB} / \Delta V_{CC}$	Fluctuation amount of black level error (B–Y) when $V_{CC} = 7.2$ V to 9.9 V	_	2		kHz/V
Black level error (B–Y) ambient temperature dependency	$\Delta f_{BEB} / \Delta T$	Fluctuation amount of black level error (B–Y) when $T_a = -30$ °C to +80 °C	_	90		Hz/°C

- Electrical Characteristics at $V_{CC} = 9 V$, $T_a = 25 \degree C$ (continued)
- Explanations of testing method
 - 1. Measurement of B-Y discrimination signal amplitude

Input 100 % white signal and adjust the voltage of Pin4 so that ΔV_B becomes 0 mV. Let the adjusted voltage be V_{AD4} .

And let the value of ΔV_R based on input frequency at that time be f_{BER} , black level error (R-Y).

- 3. Calculate by using the value of Pin10 (B-Y) output amplitude V_{BY} when the color bar signal (Deviation = 460 kHz) is input to Pin16 and the value of Pin10 output V_{NOISE} when the color bar signal (Deviation = 0 Hz) is input. S/N = 20 log₁₀ $|V_{BY}/V_{NOISE}|$
- 4. The horizontal and vertical blanking level V_{BL} is determined by the internal stabilizing power supply circuit.
- 5. The burst gate level V_{BG} is determined by dividing the IC built-in resistor between V_{CC} -GND. $V_{BG} = V_{CC} \times 3.8/9$ (typ.)

Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Description	Voltage
1	V _{CC} 150μA 100μA 200μA To AN5192/95 Image: Constraint of the second s	 Reference frequency signal/ Ident input Pin : Input and output pin for interfacing with AN5192/95. The circuit becomes non-SECAM mode if DC voltage of Pin1 becomes 3 V or less. Current of 175 µA sinks into Pin1 in SECAM. 	AC + DC DC 1.1 V or 4.4 V AC 350 mV[p-p] or 0
2	V _{CC}	Bell filter output monitor pin	AC + DC DC 4.3 V AC 200 mV[p-p]
3		Power supply pin	DC:9 V
4	V_{CC} (3) $(6.8k\Omega)$ $(10k\Omega)$ $(15k\Omega)$ 777 777 $(100\mu A 200\mu A$	 Black level adjustment voltage input pin : Monitoring –(B–Y) Out (Pin10), adjust Pin4 voltage so that pedestal step difference becomes 0. (using external volume) Pin4 voltage is generated by resistor dividing Pin5 voltage so as not to be affected by V_{CC} and temperature fluctuation. 	DC 1.45 V to 2.75 V
5	3.2V 3.2V 3.2V 3.2V 3.2V 3.2V 3.2V 3.2V 3.2V 3.2V 3.2V 4.00µA	Black level adjustment reference voltage output pin	DC : 3.2V

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage
6		Grounding pin	DC : 0 V
7	V _{CC} 300Ω 200Ω 300 300	Bell filter automatic adjustment sample hold pin	DC 2.5 V to 5.0 V
8	V _{CC} 750Ω 200Ω 200Ω 1.5kΩ 1.5kΩ 1.5kΩ 1.5kΩ	PLL automatic adjustment sample hold pin	DC 3.6 V to 3.9 V
9		Pin9 ; –(R–Y) output pin	AC + DC
10	V _{CC} (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Pin10; –(B–Y) output pin	AC -(R-Y) -(B-Y) -(B-Y) -(DC : 2.9 V

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage
11	V _{cc} 100μ A 500Ω $20k\Omega$ 100μ A 100μ	Killer voltage monitor pin When SECAM more than 4 V When non-SECAM 3 V	DC 1.5 V to 5 V
12		N.C.	<u> </u>
13	_	N.C.	
14	_	N.C.	—
15	V _{CC}	Sand castle pulse input pin	AC
16	V _{CC} 50kΩ 10pF 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ 40kΩ	SECAM signal input pin	AC 1.0 V[p-p]

Application Circuit Example

Note) The following signal is inputted to Pin1 from the AN5192/95.

System discrimination

- 1. Pin1 is the input and output pin for the three pieces of information
 - (1) Reference frequency signal input pin (AC)
 - (2) System discrimination signal input pin (DC voltage)
 - (3) SECAM/Non-SECAM discrimination output pin (DC current)

AN5637 System discrimination	Pin1 input DC voltage	Pin1 sink current	Pin9, 10 output
SECAM	"H" (4.6 V)	175 µA	Color difference signal output
SECAM	"L" (1.3 V)	175 µA	Open
N. OFCAM	"H" (4.6 V)	0μΑ	DC voltage output
Non-SECAM	"L" (1.5 V)	ΟμΑ	Open
(a)			

2. Reference frequency signal

The reference frequency signal input for Pin1 is used for the following 4 signals ;

- (1) Bell filter automatic adjustement
- (2) PLL(VCO) automatic adjustement
- (3) Deemphasis automatic adjustement
- (4) Ident discrimination

Be sure to input the high precision PAL carrier signal (4.43362 MHz) only in the vertical retrace period.

- New Package Dimensions (Unit: mm)
- DIP016-P-0300M (Lead-free package)

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.