AN3275SB

CM detection IC for VCRs in the North American market

Overview

The AN3275SB is an IC which detects both a low luminance of video signal and a low sound amplitude based on COMMERCIAL--ADVANCE that is ADLE Inc.'s patent of the CM detection technology. Using this IC and a free memory area in a microcomputer, you can easily carry out a CM detection for VCRs used in the North America.

Features

- Video black detection
- Low sound detection
- Generation of various masking pulses (Detecting H-mask, V-mask and envelope)
- Generation of the pulse (CLR pulse) for an event latch
- Usable for COMMERCIAL ADVANCE, MOVIE AD-VANCE and CA-LITE
- Applications
- Stand-alone VCR
- Block Diagram

Note) COMMERCIA: ADVANCE is a trademark registered by SRT, Inc., invented by Jerry Iggulden who closed a licensing contract under the cooperation of Arthur D. Little Enterprises, Inc.

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	V _{CC}	Supply voltage (5 V typ.)	19	ENV L DET	PB FM envelope peak
2	HMW	H-mask width period adjustment			detection (below)
3	RA IN	Audio recording input	20	ENV H DET	PB FM envelope peak
4	PA IN	Audio playback input			detection (upper)
5	A FIL	Audio filter	21	VMD	V-mask time delay adjustment
6	MA A LEV	MOVIE ADVANCE audio	22	VMW	V-mask width period adjustmen
		detection level adjustment	23	VS OUT	Vertical sync. signal output
7	MA A FIL	MOVIE ADVANCE audio	24	SYNC FIL	Vertical sync. signal separation
		filter			filter
8	CA A FIL	COMMERCIAL ADVANCE	25	V DET	Black picture detection output
		audio filter			to a microcomputer
9	CA A LEV	COMMERCIAL ADVANCE	26	N.C	No connection
		audio detection level adjustment	27	MA V LEV	MA video detection level
10	A DC	Audio DC			adjustment
11	A DET	Audio detection latch output	28	MA V FIL	MA video filter control
		to a microcomputer	29	CA V LEV	CA video detection level
12	CLR IN	E/V mask pulse input	\times	24	adjustment
13	CLR OUT	E/V mask pulse output	30	CA V FIL	CA video filter control
14	ENV DET	PB FM envelope detection filter	31	CL CAP	Capacitor for clamping
15	PB FM IN	PB FM envelope input	32	C TRAP	Chroma trap filter
16	HEAD	Head amp. switch pulse input	33	VIN	Video input
•	AMP SW		34	A REF	Audio reference
17	ENV ADJ.	ENV mask level adjustment	35	CA/MA SEL	Selection of CA, MA
18	V DET OUT	Video detection delay	lo.		(CA-LITE)
		adjustment	36	GND	Signal processing circuit GNE

Pin Descriptions

Absolute Maximum Ratings 200

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	5.5	V
Supply current	I _{CC}	35	mA
Power dissipation *2	P _D	450	mW
Operating ambient temperature *1	T _{opr}	-20 to +70	°C
Storage temperature *1	T _{stg}	-55 to +125	°C

Note) *1: Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25^{\circ}C$. *2: The power dissipation shown is for the IC package at $T_a = 70^{\circ}C$.

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V _{CC}	4.75 to 5.25	V

Electrical Characteristics at $V_{CC} = 5.0 \text{ V}, \text{ T}_a = 25^{\circ}\text{C}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply current	I _{CC}	MA mode	_	21	28	mA
CA mode hold voltage	V _{35H}	_	3.5		5.0	V
CL SLP mode hold voltage	V _{35M}	_	1.75		3.0	V
CL SP,MA mode hold voltage	V _{35L}		0	_	1.25	V
Pin 32 output impedance	R ₃₂		1 830	2 0 3 0	2 2 3 0	Ω
Pin 5 output impedance	R ₅	_	4 505	5 005	5 505	Ω
VSS pulse high level	V _{23H}	Outoput 23, with 10 k Ω to GND	4.0	—	—	V
VSS pulse low level	V _{23L}	Outoput 23, with 10 k Ω to V _{CC}	-		0.5	v
CLR pulse high level	V _{13H}	Outoput 13, with 10 k Ω to GND	4.0	200	SUIL .	V
CLR pulse low level	V _{13L}	Outoput 13, with 10 k Ω to V _{CC}		<u> - 4</u> 19	0.5	V
Video det. output high level	V _{25H}	Outoput 25, with 10 k Ω to GND	4.0	<u>80.</u>	_	V
Video det. output low level	V _{25L}	Outoput 25, with 10 k Ω to V _{CC}	and the second s	_	0.5	V
Audio det. output high level	V _{11H}	Outoput 11, with 10 k Ω to GND	4.0	_		V
Audio det. output low level	V _{11L}	Outoput 11, with 10 k Ω to V _{CC}	_	_	0.5	V
Black det. level 1 (CA mode) *1	V _{DET1}	Input 33, output 25 Video signal: 140IRE = 2.1 V[p-p]	10.5	13	15.5	(IRE)
Black det. level 2 (CA mode) *1	V _{DET1}	Input 33, output 25 Video signal: 140IRE = 2.1 V[p-p]	8.5	11	13.5	(IRE)
Non-audio detection level 1 (CA mode)	A _{DET1}	Input 3, output 11 Pin 7: 47 k Ω to GND, $f_{IN} = 1.0$ kHz	56	76	96	mV[p-p]
Non-audio detection level 2 (MA mode)	A _{DET2}	Input 4, output 11 Pin 7: 47 kΩ to GND, $f_{IN} = 5$ kHz	1.8	3.6	5.4	mV[p-p]
Black detection adjustment range 1 *1	V _{AD1}	Input 33, output 25, pin 29 = DC, sweep: 140 IRE = 2.1V[p-p]	7	—	28	(IRE)
Black detection adjustment range 2 *1	V _{AD2}	Input 33, output 25, pin 27 = DC, sweep: 140 IRE = 2.1V[p-p]	7	—	28	(IRE)
Non-audio detection adjustment range 1	A _{AD1}	Input 3, output 11 Pin 9 = DC, sweep, $f_{IN} = 1.0$ kHz	50	—	100	mV[p-p]
Non-audio detection adjustment range 2	A _{AD2}	Input 4, output 11 Pin 6 = DC, sweep, $f_{IN} = 5 \text{ kHz}$	2.4	_	5.2	mV[p-p]
V-mask delay	t _{VD}	Input 33, output 13 Delay from VSS: 0.1 uF, pin 21: 0.1 µF	1.65	1.95	2.25	ms
V-mask width	t _{vw}	Input 33, output 13, pin 22: 0.22 µF	11	12.5	14	ms

Note) *1: The unit which stands for the ratio of the video signal amplitude to a total amplitude. 140IRE = 2.1 V[p-p]

Electrical Characteristics at $V_{CC} = 5.0 \text{ V}$, $T_a = 25^{\circ}C$ (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
H-mask delay	t _{HD}	Input 33, output 30, delay from HSS	10.5	12.5	14.5	μs
H-mask width	t _{HW}	Input 33, output 30, pin 2: 2 700 pF	30	34	38	μs
ENV detection level	SE	Input 15, output 13, V _{IN} = 200 mV[p-p]	- 5.5	- 7.5	- 9.5	dB

• Design reference data

Note) The characteristics below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Black detection block						
Pin33 sync. DC level	V _{SY33}	Input 33, output 33 Pin 33: 1.0 μF, 140IRE = 2.1 V[p-p]	-	1.8		V
Chroma trap frequency characteristics	f _{V2}	Input 33, output 30 Ratio of pin 30 = 500 kHz to 3.58 MHz	Ξ	- 35		dB
LPF2 frequency characteristics	f _{V3}	Input 33, output 30 Ratio of pin 30 = 500 kHz to 1.0 MHz	-	- 3.0	ontino	dB
Pin 30 output dynamic range *1	V ₃₀	Input 33, output 30 Pin 30: 10 k Ω to GND	Jot the	30		(IRE)
Pin 30 pedestal DC level	V _{PD30}	Input 33, output 30 Pin 30: 10 k Ω to GND	IUNE	1.6		V
Pin 28 output dynamic range *1	V ₂₈	Input 33, output 28 Pin 28: 10 k Ω to GND	—	30	_	(IRE)
Pin 28 pedestal DC level	V _{PD28}	Input 33, output 28 Pin 28: 10 k Ω to GND	—	1.6	—	V
Masking level DC offset	ΔV_{PD}	Input 33, output 28 Pin 28: 10 k Ω to GND, pin 2 = GND	- 2.0	0.0	0.2	V
Black detection hysteresis	ΔV_{VCN}	Input 28, output 18 Pin 28 = triangular wave	105	130	155	mV[p-p]
HSS,VSS block	. Allo	, NR	1	1	1	1
Sync. separation minimum input sensitivity	S _{HSS}	Input 33, output 24 Pin 33: V _{IN} = 2.1 V[p-p], white 100%		40		%
HSS front edge delay	t _{DHSS}	HSS front edge delay from input 33, output 24, pin 33		1.0		μs
VSS front edge delay	t _{DVSS}	Input 33, output 23		25		μs
VSS pulse width	t _{WVSS}	Input 33, output 23		215		μs
Non-audio detection block						
LPF3 frequency characteristics	f _{A1}	Input 4, output 7 Ratio of pin 7 = 5 kHz to 15 kHz		-3		dB
Pin 7 output dynamic range	ΔV_7	Input 4, output 7		5.0		mV[p-p]

Note) *1: The unit which stands for the ratio of the video signal amplitude to a total amplitude. 140IRE = 2.1 V[p-p]

\blacksquare Electrical Characteristics at V_{CC} = 5.0 V, T_a = 25^{\circ}C (continued)

• Design reference data (continued)

Note) The characteristics below are theoretical values based on the IC design and are not guaranteed.

		6 6				
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Envelope detection block						
ENV detection adjustment range	E _{AD}	Input 15, output 13 V _{IN} = pin 15, 200 mV[p-p]	-3		+3	dB
ENV detection hysteresis	ΔV_{ENON}	Input 15, output 13 V _{IN} = pin 15, 200 mV[p-p]		1.7	_	dB
SP ENV pulse front edge delay	t _{DHSW}	Input 16, output 13 V _{IN} = rectangular wave, 0 V to 5 V 300 Hz	_	0.4	—	μs
SP ENV pulse width	t _{WSHW}	Input 16, output 13 V _{IN} = rectangular wave, 0 V to 5 V 300 Hz	_	570	—	μs
SP ENV pulse hysteresis	$\Delta V_{\rm HSON}$	Input 16, output 13 V _{IN} = triangular wave, 2 V[p-p] 300 Hz		80	_	mV[p-p]

Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Impedance	Signal waveform	DC (V)
1	V _{cc}		NONCE THE	5.0
2	HMW $2 \rightarrow 200 \Omega$ HSS on $-3 \rightarrow 7 \rightarrow 777$ $777 \rightarrow 777$	Current output		_
3	RA IN (CA)	10 kΩ	Sin wave	2.3

Pin No.	Equivalent circuit	Impedance	Signal waveform	DC (V)
4	PA IN (MA, CL)	10 kΩ	Sin wave	2.3
5	A FIL $f = \frac{1}{200 \Omega} + \frac{2 k\Omega}{2} + \frac{1}{200 \Omega} + \frac{1}{2} + \frac{1}{10} + $	5005 Ω	toductification and the stage stag	1.5
6	MAALEV $70 \text{ k}\Omega$ $6 \frac{200 \Omega}{30 \text{ k}\Omega}$ $777 \frac{777}{777}$	21 kΩ	South DC	2.1
7	MAAFIL $i_{200 \Omega}$	Current output	(R GND) 0 V	

Pin No.	Equivalent circuit	Impedance	Signal waveform	DC (V)
8	CAAFIL $80 \text{ k}\Omega$	Tr-C	DC	CA 0 V MA open
	Low at CA 20 kΩ		DC	
9	CAALEV 1 75 kΩ	19 κΩ	DC	2.1
	9 ^{200 Ω} 9 ^{25 kΩ} 777 777 777		ductificorde discrit	NO BY
10	A DC \downarrow 10 kΩ 200 Ω \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	10 κΩ	Softimues DC	2.8
11	A DET	Tr-C		

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Impedance	Signal waveform	DC (V)
12	CLR IN $10 \text{ k}\Omega 200 \Omega$ 12 500Ω $30 \text{ k}\Omega$ 777 777	Tr-B		0
13	CLR OUT	Tr-C	Auctifection disconti	Ling the s
14	ENVDET $1 + \frac{2 \text{ k}\Omega - 200 \Omega}{14} + \frac{1}{777} + \frac{1}{777}$	2.0 kΩ		1.0
15	PB FM IN	20 kΩ		2.7

Pin No.	Equivalent circuit	Impedance	Signal waveform	DC (V)
16	HEAD AMP SW $3 600 \Omega$ 200 Ω $3 600 \Omega$ 200 Ω $8 400 \Omega$ 16 777	11 kΩ		1.3
17	ENV ADJ. $45 \text{ k}\Omega$ 17 $55 \text{ k}\Omega$ 777 777 777 777	25 kΩ	DC DC	2.7
18	V DET OUT $70 \text{ k}\Omega$ 18 $10 \text{ k}\Omega$ 500Ω 7 pF $MA \text{ on }777$	Tr-B Tr-B		0
19	ENV L DET	200 Ω		3.3

Pin No.	Equivalent circuit	Impedance	Signal waveform	DC (V)
20	ENV H DET $ \begin{array}{c} $	200 Ω	$\sim \sim$	1.8
21	VMD	Current output		
	200Ω VSS on -7 -7 -7		0V 0V V V VSS	UND CHING CH
22	VMW	Current output		_
	$\begin{array}{c} & & & \\ & & & \\ 22 \\ MMI \text{ on } & & \\ & $	estollowing dis		
23	VS OUT	Tr-C		

Pin No.	Equivalent circuit	Impedance	Signal waveform	DC (V)
24	SYNC FIL $2 100 \Omega$ 200 Ω 24 777	2 100 Ω		1.5
25	V DET	Tr-C	Chucking the contract of the c	Jed thes
26	N.C.	- 1011	nime -	
27	MA V LEV 147 kΩ 200 Ω 153 kΩ 777	25 kΩ	DC	2.6
28	MA V FIL 1000Ω 200 Ω 28 777	1 000 Ω	DC	Pedestal 1.8

Pin No.	Equivalent circuit	Impedance	Signal waveform	DC (V)
29	CA V LEV	25 kΩ	DC	2.9
30	CA V FIL $1 \\ 1 \\ 200 \Omega \\ 200 \Omega \\ 30 \\ 777 \\ 30 \\ 777 $ 777 \\ 777 777 \\ 777	200 Ω	DC DC DC DC DC DC DC DC DC	Pedestal 1.8
31	CL CAP	Push-pull	DC	3.0
32	CTRAP $1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	2 030 Ω		Sync. 1.8

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pin No.	Equivalent circuit	Impedance	Signal waveform	DC (V)
$35 CA/MA \text{ SEL} \qquad 25 \text{ k}\Omega \qquad DC \qquad 2.5$	33	$\begin{array}{c} 200 \Omega \\ \hline \\$	Tr-E		
$\begin{array}{c} 35 \\ 200 \Omega \\ 10 \text{ k}\Omega $	34	200Ω	25 κΩ	DC DC	2.9
36 GND	35	35 200 Ω 10 kΩ 10 kΩ 10 kΩ 10 kΩ	25 kΩ	Continue DC	2.5
	36	GND GND			

Reference

• Description on COMMERCIAL ADVANCE:

The COMMERCIAL ADVANCE technology is focused on detecting a black level existing between a program and a CM in the TV broadcasting in the North America and the rental video tapes so as to let a microcomputer recognize a CM part by its algorithm in order to skip the CM automatically. This IC is designed for a black level detection of a video signal and for no-sound detection.

There are the following three modes in the CA technology:

1) COMMERCIAL ADVANCE mode

Once a program is recorded in this mode, its CM part is automatically identified and is skipped from the next playback.

First it identifies the CM in recording the program, then puts a mark on the CM position on the video tape so that the mark can be detected at the playback to erase the sound of the marked part and display a blue color on the TV screen.

In the case that the tape not recorded in the commercial advance mode has been played back in this particular mode, the marking will be done and the commercial will be skipped from the next playback.

2) MOVIE ADVANCE mode

The mode is used to play back the recorded rental video tape. You can automatically skip the commercials or commercial promotions (preview) placed before a movie start and can move to a movie starting point. In this mode, there are two modes available: one that skips all of a preview commercial and the other that stops skipping just before a preview commercial, so that you can make a choice when you want to watch a preview commercial.

3) CA-LITE mode

In any programs recorded by either way, the VCR enters into a FORWARD SEARCH mode if a user presses the Skip button, and when a commercial is skipped, the skipping process stops automatically. Since the end of the commercial group is detected by software just after the last CM has passed, the VCR runs a reverse search for a short time then returns to a normal play mode and starts a program again.

Application Circuit Example

• System example

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure
 - mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.