AMC DOC. #: AMC7588_E (LF) Feb. 2005

range.

1%.

DESCRIPTION

The AMC7588 is a high performance low dropout

regulator rated for 3A output current. It is designed for

as well as fast transient response over the rated current

applications requiring a regulated 2.5V to 3.6V power

including over current and thermal shutdown. Also,

reverse battery protection scheme limits the reverse

current when the input voltage falls below the output

use in applications requiring low dropout characteristics

These features are ideal for low voltage micro- processor

supply. On chip trimming adjusts the reference voltage to

In addition, the AMC7588 provides the device protections

AMC7588

ADJUSTABLE 3A LOW DROPOUT REGULATOR

FEATURES

- Input-Output differential of typical 1.1V at 3A and low quiescent current
- Output current is excess of 3A
- Reverse battery protection
- □ Fast transient response
- Short circuit protection
- □ Internal thermal overload protection
- Available in 3L plastic TO-220, surface mount 3L TO-263 and 3L TO-252 packages
- Pin assignment identical to EZ158XB and LT158XA series.

APPLICATIONS

- Pentium[®] Processor Supplies
- PowerPCTM Supplies
- Computer Add-On Cards
- Other Applications Requiring Low Dropout Voltage Over Rated Current.
- Voltage Options: AMC7588-ADJ -- Adjustable

Vin Vin Vout Vout ADJ ADJ 3-Pin Plastic TO-220 3-Pin Plastic TO-263

PACKAGE PIN OUT

(Top View)

3-Pin Plastic TO-263 Surface Mount (Top View)

3-Pin Plastic TO-252 Surface Mount (Top View)

ORDER INFORMATION							
T (0 T)	T	Plastic TO-220	ST	Plastic TO-263	ST	Plastic TO-252	
$T_{A}(^{\circ}C)$		3-pin	91	3-pin	21	3-pin	
0 to 70	0 to 70 AMC7588-ADJT			AMC7588-ADJST		AMC7588-ADJSJ	
0 to 70	AMC	7588-ADJTF(Lead Free)	AMC7	588-ADJSTF(Lead Free)	AMC	7588-ADJSJF(Lead Free)	
 Note: 1.All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number (i.e., AMC7588-ADJTT, AMC7588-ADJSTT or AMC7588-ADJSJT). 2. The letter "F" is marked for Lead Free process. 							
2.11		I IS Marked for Lead II	ee proe	0 00.			

AMC7588 Adjustable 3A Low Dropout Regulator

TYPICAL APPLICATION $V_{IN} >$ AMC7588 - ADJ V_{OUT} R1 ADJ 1% *C1 + **C2 10µF 22µF R2 1% **REQUIRED IF REGULATOR IS** LOCATED FAR FROM POWER SUPPLY FILTER $V_{OUT} = V_{REF} (1 + (R2/R1)) + I_{ADJ}R2$ ** DESIGN C2 AS CLOSE TO VOUT PIN AS POSSIBLE

ABSOLUTE MAXIMUM RATINGS (Note 1)				
Input Voltage (V _{IN})	7V			
Operating Junction temperature	150°C			
Storage Temperature Range	-65 °C to 150 °C			
Lead temperature (Soldering, 10 seconds) 300 °C				
Note 1: Exceeding these ratings could cause damage to the device. All voltages are with re	espect to Ground.			

Currents are positive into, negative out of the specified terminal.

POWER DISSIPATION TABLE									
Package	$\theta_{\rm JA}$	De-rating factor ($mW/^{o}C$)	$T_A \le 25 ^{o}C$	$T_A=70^{\circ}C$	$T_A = 85 ^{o}C$				
	(°C/W)	$T_A \ge 25 ^{\circ}C$	Power rating(mW)	Power rating(mW)	Power rating (mW)				
Т	45	22.2	2775	1776	1443				
TF	45	22.2	2775	1776	1443				
ST	45	22.2	2775	1776	1443				
STF	45	22.2	2775	1776	1443				
SJ	80	12.5	1562	1000	812				
SJF	80	12.5	1562	1000	812				

Note :

1. $\theta_{J_{A:}}$ Thermal Resistance-Junction to Ambient, D_F : De-rating factor, Po: Power consumption. Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{J_A})$, $Po = D_F \times (T_J - T_A)$ The θ_{J_A} numbers are guidelines for the thermal performance of the device/PC-board system. All of the above assume no ambient airflow.

- 2. $\theta_{JT:}$ Thermal Resistance-Junction to Tab, $T_C:$ case(Tab) temperature, $T_J = T_C + (P_D \times \theta_{JT})$ For T and ST packages, $\theta_{JT} = 3.0 \text{ }^{\circ}\text{C} / \text{W}$. For SJ, packages, $\theta_{JT} = 7.0 \text{ }^{\circ}\text{C} / \text{W}$.
- 3. If power consumption is over above rating, adequate heat sink is required to dissipate heat.

AMC7588 Adjustable 3A Low Dropout Regulator

BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITIONS							
Parameter		Recommend	Units				
		Min.	Тур.	Max.	Onits		
Input Voltage	V _{IN}	2.5		7	V		
Load Current (with adequate heatsinking)	Io	0.010		3	А		
Input Capacitor (V _{IN} to GND)		10			μF		
Output Capacitor with ESR of 10Ω max., (V _{OUT} to GND)		22			μF		
Junction temperature	T _J			125	°C		

AMC7588 Adjustable 3A Low Dropout Regulator

Feb. 2005

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperature of $T_A = 25^{\circ}C$ for AMC7588-ADJ; $I_O = 10$ mA, $C_{OUT} = 10 \mu$ F, and are for DC characteristics only. (Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)

Doromator	Symbol	Test Conditions	AMC7588-ADJ			Unite	
Farameter	Symbol	Test Conditions	Min.	Тур.	Max.	Onits	
	V _{REF}	$(V_{IN} - V_{OUT}) = 1.5V, I_0 = 10mA$	1.238	1.250	1.262		
Reference Voltage		$\begin{array}{c c} 3.3V \leq V_{\rm IN} \leq 5.5V, \\ 10mA \leq I_{\rm O} \leq 3A \end{array} \hspace{1.5cm} 1.230 \hspace{1.5cm} 1.250 \end{array}$		1.270	V		
Line Regulation (Note 2)	$\triangle V_{OI}$	$2.75V \leq V_{\rm IN} \leq 7V$		0.05	0.2	%	
Load regulation (Note 2) ΔV_{C}		$ (V_{\rm IN} - V_{\rm OUT}) = 3V, \\ 10mA \le I_O \le 3A $		0.08	0.3	%	
Dropout Voltago	ΔV	$I_O = 10 \text{mA}$		1.150	1.300	V	
Diopout Voltage	Δv	$I_O = 3A$		1.200	1.400	v	
Adjust Pin Current	I _{ADJ}			50	120	μΑ	
Current Limit	I _{CL}	$(V_{IN} - V_{OUT}) = 3V$	3.3	5.0		А	
Minimum Load Current	I _{MIM}	$1.5V \le (V_{IN} - V_{OUT})$		5	10	mA	
Long Term Stability (Note 3)				20		mV/1000hr	
Ripple rejection (Note 3)	R _R	$f_0 = 120$ Hz, $1V_{RMS}$, $I_0 = 100$ mA	66	80		dB	

Note 2: Line and load regulations are guaranteed up to maximum power dissipation determined by input/output differential and the output current. However, the maximum power will not be available over the full input/output voltage range.

Note 3: These parameters, although guaranteed, are not tested in production.

Feb. 2005

AMC7588 Adjustable 3A Low Dropout Regulator

Application Note:

Maximum Power Calculation:

 $P_{D(MAX)} = \frac{T_{J(MAX)} - T_{A(MAX)}}{\theta_{JA}}$

 $T_{I}(^{\circ}C)$: Maximum recommended junction temperature

 $T_A(^{\circ}C)$: Ambient temperature of the application

 $\theta_{JA}(^{O}C/W)$: Junction-to-junction temperature thermal resistance of the package, and other heat dissipating materials.

The maximum power dissipation of a single-output regulator :

 $P_{D(MAX)} = [(V_{IN(MAX)} - V_{OUT(NOM)})] \times I_{OUT(NOM)} + V_{IN(MAX)} \times I_Q$

Where: $V_{OUT(NOM)}$ = the nominal output voltage $I_{OUT(NOM)}$ = the nominal output current, and I_Q = the quiescent current the regulator consumes at $I_{OUT(MAX)}$ $V_{IN(MAX)}$ = the maximum input voltage Then θ_{IA} = (150 °C- T_A) / P_D

Thermal consideration:

When power consumption is over about 1.2W the devices using TO-220/263 packages (687 mW for TO-252 packages), additional heat sink is required to control the junction temperature below 125 $^{\circ}$ C.

The junction temperature is: $T_J = P_D (\theta_{JT} + \theta_{CS} + \theta_{SA}) + T_A$

- P_D : Dissipated power.
- θ_{JT} : Thermal resistance from the junction to the mounting tab of the package.
- θ_{CS} : Thermal resistance through the interface between the IC and the surface on which it is mounted. (typically, $\theta_{CS} < 1.0^{\circ}C / W$)
- θ_{SA} : Thermal resistance from the mounting surface to ambient (thermal resistance of the heat sink).

If PC Board copper is going to be used as a heat sink, below table can be used to determine the appropriate size of copper foil required. For multi-layered PCB, these layers can also be used as a heat sink. They can be connected with several through hole vias.

PCB θ_{SA} (°C / W)	59	45	38	33	27	24	21
PCB heat sink size (mm ²)	500	1000	1500	2000	3000	4000	5000
Recommended figure of P	CB area use	ed as a heat s	ink.	through	ı hole vias		
(Top View)		(Bottom View)				

AMC7588

Feb. 2005 **3-Pin Plastic TO-220**

	I	NCHES	3	MILLIMETERS		
	MIN	TYP	MAX	MIN	TYP	MAX
А	0.140	-	0.190	3.56	-	4.83
b1	0.045	-	0.070	1.14	-	1.78
b	0.020	-	0.045	0.51	-	1.14
с	0.012	-	0.045	0.30	-	1.14
D	0.560	I	0.650	14.22	-	16.51
Е	0.380	-	0.420	9.65	-	10.67
е	0.090	-	0.110	2.29	-	2.79
e1	0.190	I	0.210	4.83	-	5.33
F	0.020		0.055	0.51	-	1.40
H1	0.230	-	0.270	5.84	-	6.86
J1	0.080	I	0.115	2.03	-	2.92
L	0.500	-	0.580	12.7	-	14.73
Ρ	0.139	-	0.161	3.53	-	4.09
Q	0.100	-	0.135	2.54	-	3.43
L1	-	-	0.250	-	-	6.35

ADJUSTABLE 3A LOW DROPOUT REGULATOR

3-Pin Surface Mount TO-263 (ST)

Feb. 2005

AMC7588 Adjustable 3A Low Dropout Regulator

3-Pin Surface Mount TO-252

r							
		NCHES	5	MILLIMETERS			
	MIN	TYP	MAX	MIN	TYP	MAX	
А	0.086	-	0.094	2.18	-	2.39	
A1	0.040	-	0.050	1.02	-	1.27	
b	-	0.024	-	-	0.61	-	
b2	0.205	-	0.215	5.21	-	5.46	
с	0.018	-	0.023	0.46	-	0.58	
c1	0.018	-	0.023	0.46	-	0.58	
D	0.210	-	0.220	5.33	-	5.59	
Е	0.250	-	0.265	6.35	-	6.73	
е	0.	.090 BS	С	2.29 BSC			
e1	0.	180 BS	С	4.58 BSC			
Н	0.370	-	0.410	9.40	-	10.41	
L	0.020	-	-	0.51	-	-	
L1	0.025	-	0.040	0.64	-	1.02	
L2	0.060	-	0.080	1.52	-	2.03	

Feb. 2005

AMC7588 Adjustable 3A Low Dropout Regulator

IMPORTANT NOTICE

ADD Microtech (ADDM) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDM integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDM products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDM assumes to no liability to customer product design or application support. ADDM warrants the performance of its products to the specifications applicable at the time of sale.

U.S.	Asia Pacific region				
ADD Microtech Inc.	ADD Microtech Corp				
492 Altamont Drive	13F, NO. 287, Sec. 3, Nan Jing E. Rd.,				
Milpitas, CA 95035	Taipei, Taiwan 105				
TEL: (408) 9410420	TEL: 2-27132800				
FAX: (408) 9410864	FAX: 2-27132805				

8